
Proceedings of the 2018 Winter Simulation Conference
M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds.

SIMULATION STUDY OF DYNAMIC LOAD BALANCING FOR PROCESSOR SHARING
SERVERS WITH FINITE CAPACITY UNDER GENERALIZED HALFIN-WHITT REGIMES

Matı́as Bonaventura Matthieu Jonckheere
Rodrigo Castro

Departamento de Computación IC-CONICET
FCEyN, UBA and ICC-CONICET Ciudad Universitaria, Pabellón 2
Ciudad Universitaria, Pabellón 1 Buenos Aires, C1428EGA, ARGENTINA

Buenos Aires, C1428EGA, ARGENTINA

ABSTRACT

Defining efficient decentralized load balancing schemes exhibiting low memory and communication costs is
an important ongoing topic. In particular, characterizing critical regimes where a system optimizes resource
usage is uncharted territory. We consider here dynamic balancing schemes in a set of processor sharing
servers with finite capacity. Guided by recent results for insensitive load balancing schemes, we applied a
modeling and simulation strategy to characterize systematically and extensively several classes of balancing
policies under various statistical conditions. We found that there is a class of efficient policies for which a
common critical regime can be identified and interpreted as a generalization of the Halfin-Whitt-Jagerman
regime for one-server systems. We also study the gap between full and partial information systems, and
analyze the performance sensitivity to jobs’ size distribution. This study is motivated by the network
architecture in the ATLAS experiment at CERN, where load balancing plays a key role.

1 INTRODUCTION

Load balancing is an essential, often crucial mechanism to improve performance in call centers, server
farms, and various applications that operate on parallel servers.

In the last decades new challenges have emerged given the enormous growth in the number computer
nodes involved in an increasing number of applications. On top of defining efficient balancing schemes (in
terms of delay and blocking probability), applications with a large number of servers typically require cheap
schemes in terms of exchanged messages, required memory and computing efforts at the dispatcher. However,
for systems with load balancing, the precise load regimes (ratio between the amount of incoming load and
the service capacity) that can lead to very efficient utilization of resources remain largely uncharacterized.

As a consequence, there are no simple rules of thumb for dimensioning systems with dynamic load
balancing schemes, i.e. when the decisions at the dispatcher depend on the instantaneous load (e.g. the
number of active jobs in the system) with various possible types of load information and costs criteria. This
fact becomes even more evident for large systems with asymmetric server speeds and blocking probability,
where both the precise structure of optimal policies and their performance elude current theoretical knowledge
and practical techniques.

Two main ideas are usually adopted to gain theoretical insights: to assume large scale networks to
obtain asymptotic results using propagation of chaos, on the one hand, and to restrict the load balancing
schemes to obtain computable bounds, on the other.

Since the 80s, strong attention has been given to mean-field results for different classes of networks with
load balancing schemes. In particular, a great deal of research has been devoted to prove mean-field limits
for schemes like join the shortest of d among n queues (also called power of d) where n is large, starting with
the seminal work of Mitzenmacher (2001) and Vvedenskaya et al. (1996), and quickly complemented by

3873978-1-5386-6572-5/18/$31.00 ©2018 IEEE

Bonaventura, Jonckheere, and Castro

several papers on the mean-field behavior of such systems. Transient functional law of large numbers and
propagation of chaos have been obtained for instance in Graham (2000) and Mukhopadhyay et al. (2015)
for First In First Out (FIFO) scheduling, and more recently, propagation of chaos properties and asymptotic
behavior of the number of occupied servers were obtained under very general assumptions (Bramson M.
2012). All these results concern systems without blocking and sensitive to the job size distribution.

Meanwhile, researchers have considered schemes that lead to the insensitivity of the queuing system
to the jobs’ size distribution. This route was first taken in Bonald et al. (2004), considering dynamic load
balancing schemes that are insensitive to the job size distribution (see also Leino and Virtamo 2006, Pla
et al. 2008 or Jonckheere and Mairesse 2010)

For small networks with a single class of traffic, it was shown that the insensitive load balancing
(ILB) compares very accurately to optimal policies for a given job size distribution to estimate blocking
probabilities, while delay estimations are a bit less accurate (Bonald and Proutière 2003; Bonald et al.
2004). The penalization imposed by reversibility is greater for multi-class networks while the sensitivity
(of optimal sensitive policies) also deteriorates (Leino and Virtamo 2006; Jonckheere and Mairesse 2010).

Hence, a small to moderate price must be paid for robustness and simplicity. It is perhaps counter-
intuitive that for models with infinite buffers, this price becomes very high. It was indeed proved that if the
state space is infinite, and assuming absence of blocking, the optimal insensitive load balancing is static
(i.e., it does not depend on the queue-length) and it is hence much less efficient than a state-dependent
sensitive load balancing (Jonckheere 2006).

Both research directions described above shed light on the possible performance of dynamic load
balancing, but also present strong limitations:

• The performance of the limiting system might not be informative. For instance the blocking
probability or the delay will be 0 for a large class of policies,

• The price to impose insensitivity to the job size distribution is largely unknown.

In Jonckheere and Prabhu (2016), the intersection of both research directions was considered by
studying the asymptotics of large networks (i.e., a finite but arbitrarily large number of servers) for ILB
schemes. It was shown that a qualitative phase transition occurs at a critical load ρc(n) = 1−an−θ/(θ+1)

where θ is the buffer depth and a is a constant value. The blocking probability is exponentially small
until ρc(n), it then changes to order O(εn−1/2) at the critical load, and to a higher order thereafter. This
generalizes the Halfin-Whitt-Jagerman (H-W-J) regime established for M/M/n/n systems. In Halfin and
Whitt (1981), Jagerman (1974), critical regimes for optimal use of resources were identified for single
queues. In particular the blocking probability for M/M/n/n systems is O(n−1/2) only if the number of
servers scales as ρ + a

√
ρ , where ρ is the load of the system. Before this critical regime the blocking

probability is exponentially small, while it is of constant order after that critical point.
In Jonckheere and Prabhu (2016), it is hence shown that a rule similar to the popular staffing rule

established for the M/M/n/n system is valid, but must depend critically on the value of θ when dynamic
load balancing is employed.

Whether this critical regime is a general phenomenon or not (i.e., is it verified for a large class of
dynamic load balancing schemes ?) remains an important and completely open question that we investigate
numerically in this work.

Our main contribution is to show, by means of extensive systematic simulations, that there exists a
class of ’efficient’ policies (i.e. optimal for some job size distribution, including for instance join the
shortest queue) which share the same critical regime as the ILB policy, while more decentralized and less
efficient policies (like power of d) might have different critical regimes. We also investigate the sensitivity
of non-reversible policies that are sensitive to the job size distribution.

Finally, our last contribution consists of providing performance benchmarks for balancing policies with
various types of information (e.g., the number of jobs in each server, the number of idle servers, a local
information about the congestion of each server, etc.) for general service distributions.

3874

Bonaventura, Jonckheere, and Castro

This paper is organized as follows. In Section 2 we present a real case study at CERN that motivates
our study of load-balancing strategies. In Section 3 we introduce the model under study, detail the different
strategies, and mention relevant modeling and simulation aspects related to DEVS (our simulation framework
of choice). Section 4 shows the simulation results and the critical load at which some strategies exhibit a
phase transition in their blocking probability. In Section 5 we present conclusions and possible lines for
future research.

2 MOTIVATING CASE STUDY

The ATLAS experiment at CERN (Collaboration 2008) hosts one of the four detectors at the Large Hadron
Collider (LHC) where bunches of particles collide every 25 ns. The ATLAS detector measures and digitizes
physical properties of the traveling particles (in units of information called Events) at a raw workload
of about 80 TB/s. In order to assimilate such a huge throughput ATLAS relies on a complex layered
system known as TDAQ (trigger and data acquisition) (Pozo Astigarraga et al. 2015) that combines custom
electronics networked with farms of servers. TDAQ decides in real time whether each Event should be
permanently stored for off-line analysis or safely discarded, achieving a rejection factor of about 40000x.
A first-level trigger (L1) system uses electronics to filter events down to roughly 100 kHz. L1-accepted
Events are temporarily stored in the Read-Out System (ROS), composed of approximately 100 server nodes.

A crucial element is the High Level Trigger Supervisor (HLTSV) node, that orchestrates and balances
the assignment of each Event stored at the ROS nodes into one of approximately 2000 Trigger Processing
Unit (TPU) servers, that compose the next filtering layer. This is a highly sensitive task from the load
balancing perspective, since the HLTSV must assign Events complying with several constraints: it should
be fast enough to avoid buffer overflows at the ROS layer, and it should distribute Events fairly among
TPUs to avoid overloading resources.

A strong requirement is to avoid any piece of information to get discarded without being analyzed
(i.e. interesting physics Events should not be discarded due to uncontrolled system conditions, such as
overflown nodes in the network or farm nodes). The estimated averaged processing delay for an Event is
around 300 ms (end to end, since it is first stored at the ROS farm layer until it gets fully analyzed by the
TPU farm layer).

An inefficient load balancing strategy can saturate TPUs unnecessarily making delays grow, thus
increasing the blocking probability and processing times.

Requirements, technologies and budget change on a continuous basis in the engineering process of
the TDAQ system. Thus, varied design options should be considered for load balancing strategies. A
key practical design question is what kind of balancing algorithm can offer the best combination of delay
and blocking features for a given number of nodes or, conversely, what is the minimum number of nodes
required to guarantee delay and blocking for a given strategy.

In the Discrete Event Simulation lab we apply modeling and simulation (M&S) research for the TDAQ
system, assisting the TDAQ network and data-flow teams at CERN. We rely on the Discrete Event System
Specification (DEVS) formal M&S framework (Zeigler et al. 2018) to develop models and tools through
different life-cycles: Build and maintenance (of simulation models), Hypothesis and design (on the system)
and Explore and discover (on simulation results) (Bonaventura et al. 2016). We also develop an ecosystem of
related tools and methods, such as automated data analysis for continuous simulation validation (Foguelman
et al. 2016) or automated topology generation for software defined networks simulation (Laurito et al.
2017).

In this context, an important goal is to verify, through simulation studies, different load balancing
strategies guided by theoretical insights. In this work we implement all simulations with the DEVS M&S
framework making the models of the investigated schedulers readily pluggable into our TDAQ system
model.

3875

Bonaventura, Jonckheere, and Castro

3 MODEL AND DIFFERENT LOAD BALANCING POLICIES

We consider a set of n processor sharing servers, with speed 1 and buffer size θ , receiving jobs according to
a Poisson process of rate λ = ρ.n. The job size distribution is assumed generic with a finite first moment.
We denote by x = (x1, . . . ,xn) the number of jobs at each of the n servers. A dispatcher routes each incoming
job to one of the servers according to a given load balancing strategy. We denote by λi(x) the arrival rate
at the i-th server describing the load balancing strategy. When the dispatcher sends an incoming job to
a server with θ active concurrent jobs, the new request gets blocked, i.e. it is rejected from the system.
Hence, the state space of the number of jobs in the system is finite and the system is always stable. We
denote by Bθ

n the blocking probability of a system with n servers of capacity θ each (i.e. a maximum of
θ jobs can be served simultaneously). We call delay to the service time spent by an arbitrary job within
the system.

We now characterize the set of load balancing policies that shall be studied, which can be grouped into
centralized and decentralized strategies. Centralized load balancing refers to policies having full information
(about the number of jobs in each server) available at the dispatcher. Decentralized load balancing, on
the contrary, refers to policies where the dispatcher manages only partial (or local) information. Usually
centralized policies yield better service time and blocking probabilities while decentralized schemes minimize
the utilization of communication channels between the processors and the dispatcher (which have limited
capacity in real world systems). We will study the following schemes:

• Join the shortest queue (JSQ) This centralized strategy dispatches to one (of possibly many)
shortest queue, breaking ties at random. It is optimal for a wide class of job size distributions
but is also known not to be optimal for size distributions with high variance (see (Righter and
Shanthikumar 1989) and references therein).

• Insensitive load balancing (ILB) This centralized strategy has been extensively studied in (Bonald
et al. 2004; Jonckheere and Mairesse 2010) and more recently in (Jonckheere and Prabhu 2016). It
has the desirable property to be insensitive to the job size distribution, i.e., the stationary measure
of the number of concurrent jobs in each server depends only on the first moment of the job size
distribution. The incoming job is routed to server i with the following probability:

pILB
i (x) =

θ − xi

∑
n
j=1(θ − x j)

.

This load balancing rule was proved to be optimal (in the sense that it minimizes the blocking
probability for any convex criterion) in the set of insensitive load balancing for a single class of
traffic in (Bonald et al. 2004).

• Join the idle queue (JIQ) This partially centralized strategy uses only as state information whether
each server is idle or not (and dispatches at random otherwise). It is hence a first step towards
decentralization while its efficiency is potentially much better than fully decentralized schemes.

• Random (RND) This completely decentralized strategy uses no information from the system and
chooses at random a single server for each new incoming request.

• Power of d (Pod) This partially decentralized strategy corresponds to choosing at random a subset
of d servers among n and then send to the shortest queue within this subset.

• First-Finished-First-Assigned (FFFA) This centralized strategy is the one currently implemented
in the TDAQ farm. It imposes a small computing effort on the dispatcher. It assigns new jobs to
servers in the same order in which they finish processing jobs. The bootstrap assignment starts
with nθ random (unique) assignments.

• Centralized Random (CRND). This strategy uses only as state information whether each server
is fully busy or not (and dispatches at random otherwise).

3876

Bonaventura, Jonckheere, and Castro

Remark 1 (The particular case θ = 1) When θ = 1 all centralized policies coincide, and the system
corresponds to the M/M/n/n queue. Measures such as the mean delay and the blocking probability can be
explicitly calculated and the critical regime corresponds to the well-known Halfin-Whitt-Jagerman regime.

3.1 Model Implementation in DEVS

We modeled the load balancing system described above in PowerDEVS (Bergero and Kofman 2011), a
discrete event simulator that implements the DEVS mathematical formalism. PowerDEVS offers several
libraries of predefined models, consisting of reusable blocks that can be interconnected to build more
complex systems. We expanded the libraries to incorporate new load-balancing models making them
available for other applications. In particular, the new models can be readily plugged into the TDAQ
network model described in Section 2 to test different policies in varied TDAQ scenarios.

Figure 1 (bottom) shows the high-level view of the load balancing model as implemented in PowerDEVS.
The JobGenerator model follows parameterizable probabilistic distributions to generate new jobs with desired
sizes and send rates λ . New jobs are sent to the Dispatcher model that behaves according to the DEVS
Graphs diagram (Christen et al. 2004) depicted in Figure 1 (top right). Upon receiving a new job, an
external state transition is triggered by the NewJob arriving at the input port In0. This transition brings
the model from the Wait state to the SendAssignment state. The Dispatcher will remain at the Wait state
forever (its autonomous time advance is infinite, depicted as ta=INF) unless an external message arrives.
Conversely, the lifetime of the SendAssignment state is zero (depicted with ta=0), meaning this is an
instantaneous state, which will undergo an internal transition immediately. The Dispatcher relies on a load
balancing strategy to decide which processor will handle each new job. This decision is made during the
external transition (solid arrow), while the message with the decided assignment is sent out during the
instantaneous internal transition (dotted arrow, back to Wait) through the output port Out0.

Job

Generator Dispatcher Processor Sharing
Servers

new jobs
assignments

discards

 finished

Out0 ! assignment

In0 ? newJob strategy->
 setProcessorIdle(finishedID) assignment.procID = strategy->getNextProcessor

assignment.job = newJob

In1 ? finishedID

Out0

In0

In1

Figure 1: Model implementation in PowerDEVS (bottom) and Dispatcher model state machine (top).

The Dispatcher also receives events through the port In1 whenever a server finishes processing a job, in
which case it notifies the ID of the processor to the strategy. All strategies described in the previous section
are implemented following a single class hierarchy (as shown in Figure 1, top left) and they all implement a
common IDispatcherStrategy interface, which decouples the Dispatcher and strategy logics. This modeling

3877

Bonaventura, Jonckheere, and Castro

approach facilitates the addition of new strategies, which should only implement the common interface,
without changing the Dispatcher logic nor the rest of the system.

The Processor Sharing Servers model uses Vectorial DEVS (Bergero and Kofman 2014) to create
automatically N instances of a same DEVS model (depicted with a green border), possibly with different
values for its parameters. Each server model, identified by its index i, has a parameterizable finite capacity
θi and processing power ci (the latter fixed all to 1 in this work).When servers receive assigned jobs from the
Dispatcher the current number of jobs being processed xi is checked: if it exceeds θi the job is discarded,
otherwise the job is accepted and processed.

4 NUMERICAL SIMULATION AND RESULTS

We start the study with simulations for the ILB policy in the vicinities of the critical regime (described
in Jonckheere and Prabhu 2016) for which the following result was proved, giving an asymptotic closed
form expression to compute the blocking probability for the limiting system:
Theorem 1 For a ∈ (−∞,∞), let

nρ = n+an
1

θ+1 . (1)

Then,

lim
n→∞

Bθ
n n

θ

θ+1 =

[∫
∞

0
exp

(
au− u(θ+1)

(θ +1)!

)
du

]−1

. (2)

In the sequel, we consider the following as the normalized blocking probability

B̄θ
n = Bθ

n n
θ

θ+1 .

Our first simulations check how the blocking probability in the pre-limit (i.e., for fixed large n) compares
to the theoretical limit defined above for the ILB policy. Figure 2 shows the ILB blocking probabilities for
systems with different number of servers, with the case n = ∞ representing the theoretical limiting formula
(2). Note that the x-axis depends on the a parameter which is a handy link to the load nρ according to
formula (1) that facilitates looking at limiting values when n→ ∞.

Figure 2(a) shows results for high loads, where the blocking probability of the simulated systems get
closer to the theoretical system as n increases. Note that the expected asymptotic blocking probability for
large ρ (Bθ

n = 1) is not predicted by the formula (which shows that the limits in n and ρ do not commute
here).

For light loads, the formula predicts quite well the blocking probabilities for all systems (independently
of the number of servers).

Figure 2(b) is a close-up view around the critical load a = 0 with a log scale in the ILB blocking
probability. The figure shows that the theoretical formula predicts very well the inflexion point for the
ILB blocking probability in the critical regime. The formula precisely predicts (B̄θ

n = 0.5) for all systems
(independently of the number of servers) in the critical load (a = 0). For loads in the vicinity of a = 0 the
theoretical predictions get precise for n > 100 and deteriorate for large |a|.

In particular, for critical loads lower than a = −5 the theoretical formula gets a significant bias and
predicts much lower blocking probabilities than those obtained with simulations. It is interesting to observe
that all simulated systems start their phase transition (passing from an exponentially small blocking to a
polynomially small blocking) at approximately the same normalized load (at a'−5) and with approximately
the same normalized blocking probability (B̄θ

n ' 10−6). As expected, this is not predicted by the asymptotic
formula (2) (which does not depend on n).

3878

Bonaventura, Jonckheere, and Castro

4.1 Performance Comparisons

A performance comparison for different policies is presented in Figures 2c and 2d for blocking probabilities
and mean service time, respectively. All strategies present small blocking probabilities when compared to
the random strategy, and all start increasing quickly after ρ > 1. Regarding the mean service time, CRND
shows the worst processing times. JIQ, JSQ and Power-of-20 are the best performing policies and show a
close-to-optimal delay with low loads and a rapid increase in the critical regime. The rest of the policies
dwell in the middle with a softer increase of the delay for higher loads. Under heavy traffic conditions

(a) (b)

RND
Po20

CRND
TDAQ FFFA

Po5
Po5 IBL

JIQ
JSQ

Normalized Blocking Probability
service=EXPONENTIAL; N=200; theta=3

System load
1) rho=lambda/(mu*N)

2) a=(1rho)/N^(theta/(theta+1))
(c)

RND

Po20

CRND

TDAQ FFFA
IBL

JIQ
JSQ

Po5

Mean Service Time
service=EXPONENTIAL; N=200; theta=3

System load
1) rho=lambda/(mu*N)

2) a=(1rho)/N^(theta/(theta+1))
(d)

Figure 2: Normalized blocking probability. (a) and (b) for IBL with different number of servers. (c) and
(d) for different strategies. Theta=3, Service=exp(1). Bars represent the standard deviation.

3879

Bonaventura, Jonckheere, and Castro

(ρ ≥ 1), all policies behave almost similarly with delays close to the maximum given by µθ . The Random
policy shows an interesting (perhaps surprising) trade-off between a reasonable delay and a (very) high
blocking probability.

4.2 Critical Regimes for Efficient Policies

In this section, we provide important conclusions suggesting the possible validity of the generalization of
the Halfin-Whitt-Jagerman scaling for a large class of efficient policies. This leads to a convenient rule of
thumb given by the formula (2) that implies choosing n servers for an incoming load of n+an

1
θ+1 .

We therefore define the class C of policies such that

lim
n→∞

Bθ
n n

θ

θ+1 = κ(a) ∈ (0,∞).

For this class, the blocking probability is exactly of order O(n
−θ

θ+1) for large n, with κ(a) the corresponding
constant depending of the normalized load a. By definition, the ILB policy belongs to C .

One way to check if a policy belongs to C is to plot the normalized blocking probability and to verify
whether it transitions from very small values to O(1) as a changes. The simulations in Figure 3 show the
normalized blocking probability and evidences that there indeed exist consistent classes of policies that do
share the same phase transition (i.e. same critical load depending on n and θ). Also, various policies with
less efficiency do not share the same characteristics. For those efficient policies, the dimensioning rule of
thumb could be applied.

Also, the results in Figure 3a showing the normalized blocking probability for IBL as compared to other
strategies, indicate that the theoretical formula (2) could be applied in practical scenarios as an estimate of
low/high bounds for the blocking probability. For example, in the TDAQ case study, IBL exhibits blocking
probabilities very similar to FFFA, and it is expected not to be far from the theoretical closed formula
(easier to calculate) for a large number of servers (n ∼ 200).

3880

Bonaventura, Jonckheere, and Castro

RND

Po20

CRND

TDAQ FFFA

Po5

IBL

JIQ

JSQ

System load
1) rho=lambda/(mu*N)

2) a=(1rho)/N^(theta/(theta+1))
(a)

RND

Po20

CRND

TDAQ FFFA

Po5
IBL

JIQ
JSQ

System load
1) rho=lambda/(mu*N)

2) a=(1rho)/N^(theta/(theta+1))
(b)

Figure 3: Normalized Blocking Probability (a) and Mean Service Time (b) for different strategies in the
critical regime (logarithmic scale). N=200, theta=3, service=exp(1).

(a) (b)

Figure 4: Sensitivity of load balancing strategies to service time distribution.

Finally, in view of the simulation results we can propose the following conjectures:
Conjecture 1 The JSQ policy, the JIQ policy and the FFFA policy belong to C .
Conjecture 2 The Power of d policy does not belong to C for any fixed d (i.e., not depending on n).
Conjecture 3 There exists d(n)≤

√
n such that the Power of d(n) policy belongs to C .

3881

Bonaventura, Jonckheere, and Castro

4.3 Sensitivity

Figure 4 compares the performance of several policies for different job size distributions (with mean equal
to 1 in all cases). A generic conjecture for processor sharing servers (and more generally for any symmetric
scheduling) is that all the limits are insensitive to job size distribution as n→ ∞. But it remains an open
problem to quantify the sensitivity for fixed n. Our simulations showed that this sensitivity is limited in all
policies for N ≤ 50, and almost inexistent for N ≥ 50. This contribution provides insights on the price of
imposing insensitivity to the job size distribution. This implies that for medium to large systems (N > 50),
dynamic load balancing schemes are robust to the statistical variation in the service distribution, at least
for blocking probabilities.

5 CONCLUSIONS AND FUTURE WORK

Using extensive and systematic simulations, we reached the following findings.

1. There exists a non-trivial critical regime corresponding to a generalization of the Halfin-Whitt regime
for a large class of centralized load balancing. This is the desirable regime of operation in order
to best take advantage of the available resources. This regime has been completely characterized
for the ILB strategy but remains an open theoretical problem for other load balancing strategies.
Based on our simulation results, we conjectured that the scaling parameters should be essentially
the same for a large class of policies including ILB and JSQ.

2. In this critical regime, we systematically observed that the blocking probabilities of efficient
centralized policies are very similar. There is a mild gap of performance with partially decentralized
policies which becomes very large when comparing against purely random load balancing.

3. We empirically observed a non-trivial trade-off between blocking probability and delays which
could make decentralized policies attractive for applications where a certain amount of blocking
can be allowed.

4. Finally, we found that the sensitivities of blocking probability and mean service time to the service
time distribution vanishes quickly as the number of servers grows. Therefore, it is reasonable to
conjecture asymptotic insensitivity in the studied critical regime.

Our simulations provide new evidence indicating that it is possible to design novel decentralized load
balancing policies that could reach the same (asymptotic) performance as centralized policies. These results
and the conjectures in Section 4.2 can have a significative impact for load balancing applications, as we
studied a regime where resources are fully exploited while blocking probability stays arbitrarily low.. We
plan to continue studying these regimes both theoretically and using simulations, for instance broadening
the scope to include different distributions for the arrival process.

The general study in this work can contribute to our motivating case study, the TDAQ system at CERN,
both from theoretical and practical points of view. The general conjectures derived can orient future sizing
tasks for the TDAQ farm, and the new load balancing simulation models can now be incorporated into the
existing TDAQ models.

REFERENCES

Bergero, F., and E. Kofman. 2011. “PowerDEVS: A Tool for Hybrid System Modeling and Real-Time
Simulation”. Simulation 87(1-2):113–132.

Bergero, F., and E. Kofman. 2014. “A vectorial DEVS Extension for Large Scale System Modeling and
Parallel Simulation”. Simulation 90(5):522–546.

Bonald, T., M. Jonckheere, and A. Proutière. 2004, June. “Insensitive Load Balancing”. ACM Sigmetrics
Performance Evaluation Review 32(1):367–377.

3882

Bonaventura, Jonckheere, and Castro

Bonald, T., and A. Proutière. 2003. “Insensitive Bandwidth Sharing in Data Networks”. Queueing Sys-
tems 44(1):69–100.

Bonaventura, M., D. Foguelman, and R. Castro. 2016. “Discrete Event Modeling and Simulation-Driven
Engineering for the ATLAS Data Acquisition Network”. Computing in Science & Engineering 18(3):70–
83.

Bramson M., Lu Y., P. B. 2012. “Asymptotic Independence of Queues Under Randomized Load Balancing”.
Queueing Systems 71:247–292.

Christen, G., A. Dobniewski, and G. Wainer. 2004. “Modeling State-Based DEVS Models in CD++”.
In Proceedings of MGA, advanced simulation technologies conference, 105–110. Arlington Virginia,
USA.

Collaboration, A. 2008. “The ATLAS Experiment at the CERN Large Hadron Collider”. Journal of
Instrumentation 3(08):S08003.

Foguelman, D. J., M. Bonaventura, and R. D. Castro. 2016. “MASADA: A Modeling and Simulation
Automated Data Analysis Framework for Continuous Data-Intensive Validation of Simulation Models”.
In Proceedings of the European Simulation and Modeling Conference, Volume 30, 34–42. SIANI,
University of Las Palmas, Spain.

Graham, C. 2000. “Chaoticity on path space for a queueing network with selection of the shortest queue
among several”. Journal of Applied Probability 37(1):198–211.

Halfin, S., and W. Whitt. 1981. “Heavy-Traffic Limits for Queues with Many Exponential Servers”.
Operations Research 29(3):567–588.

Jagerman, D. L. 1974. “Some Properties of the Erlang Loss Function”. Bell System Technical Jour-
nal 53(3):525–551.

Jonckheere, M. 2006. “Insensitive Versus Efficient Dynamic Load Balancing in Networks Without Blocking”.
Queueing Systems 54(3):193–202.

Jonckheere, M., and J. Mairesse. 2010. “Towards an Erlang Formula for Multiclass Networks”. Queueing
Systems 66(1):53–78.

Jonckheere, M., and B. J. Prabhu. 2016, June. “Asymptotics of Insensitive Load Balancing and Blocking
Phases”. ACM Sigmetrics Performance Evaluation Review 44(1):311–322.

Laurito, A., M. Bonaventura, M. E. Pozo Astigarraga, and R. Castro. 2017. “TopoGen: A network Topology
Generation Architecture with Application to Automating Simulations of Software Defined Networks”.
In Proceedings of the Winter Simulation Conference, edited by C. Victor et al., Volume 50, 1049–1060.
Piscataway, New Jersey: IEEE.

Leino, J., and J. Virtamo. 2006. “Insensitive Load Balancing in Data Networks”. Computer Net-
works 50(8):1059–1068.

Mitzenmacher, M. 2001. “The Power of Two Choices in Randomized Load Balancing”. IEEE Transactions
on Parallel and Distributed Systems 12(10):1094–1104.

Mukhopadhyay, A., A. Karthik, R. R. Mazumdar, and F. Guillemin. 2015. “Mean Field and Propagation
of Chaos in Multi-Class Heterogeneous Loss Models”. Performance Evaluation 91:117 – 131. Special
Issue: Performance 2015.

Pla, V., J. Virtamo, and J. Martinez-Bauset. 2008. “Optimal Robust Policies for Bandwidth Allocation and
Admission Control in Wireless Networks”. Computer Networks 52(17):3258–3272.

Pozo Astigarraga, M., E. ATLAS Collaboration et al. 2015. “Evolution of the ATLAS Trigger and Data
Acquisition System”. In Journal of Physics: Conference Series, Volume 608, 012006. IOP.

Righter, R., and J. G. Shanthikumar. 1989. “Scheduling Multiclass Single Server Queueing Systems to
Stochastically Maximize the Number of Successful Departures”. PEIS 3:323–333.

Vvedenskaya, N. D., R. L. Dobrushin, and F. I. Karpelevich. 1996. “Queueing System With Selection of the
Shortest of Two Queues: An Asymptotic Approach”. Problems of Information Transmission 32(1):15–
27.

3883

Bonaventura, Jonckheere, and Castro

Zeigler, B. P., A. Muzy, and E. Kofman. 2018. Theory of Modeling and Simulation 3rd Edition: Discrete
Event and Iterative System Computational Foundations. Elsevier.

AUTHOR BIOGRAPHIES

MATÍAS BONAVENTURA is a MASc in Computer Science and a PhD student in the Departamento
de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and a project
associate with the ATLAS TDAQ group (CERN). His research interests are hybrid continuous/discrete
modeling and simulation of networked computing systems. His email address is mbonaventura@dc.uba.ar.

MATTHIEU JONCKHEERE received his PhD in applied mathematics from the Ecole Polytechnique
(Paris, France). He later completed a postdoctorate at CWI (Amsterdam) and became an assistant professor
at Eindhoven University of Technology. He is now a CONICET researcher and professor at the University
of Buenos Aires. He is a co-founder of the startup Aristas SRL. http://matthieujonckheere.blogspot.com.ar/
and his email address is mjonckhe@dm.uba.ar.

RODRIGO CASTRO is a Professor in the Departamento de Computación, Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, head of the Simulation Lab, and a researcher at CONICET. His
research interests include simulation and control of hybrid systems. His email address is rcastro@dc.uba.ar.

3884

