
Proceedings of the 2018 Winter Simulation Conference
M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds.

LEVERAGING SHARED MEMORY IN THE ROSS TIME WARP
SIMULATOR FOR COMPLEX NETWORK SIMULATIONS

Caitlin J. Ross
Christopher D. Carothers

Computer Science Department
Rensselaer Polytechnic Institute

110 8th Street
Troy NY 12180, USA

Misbah Mubarak
Robert B. Ross

Mathematics and Computer Science Division
Argonne National Laboratory

9700 South Cass Avenue
Lemont, IL 60439, USA

Jianping Kelvin Li
Kwan-Liu Ma

Computer Science Department
University of California, Davis

1 Shields Avenue
Davis, CA 95616, USA

ABSTRACT

Scalability of parallel discrete-event simulation (PDES) systems is key to their use in modeling complex
networks at high fidelity. In particular, intranode scalability is important due to the prevalence of many-core
systems, but MPI communication between cores on the same node is known to have drawbacks (e.g.,
software overheads). We have extended the ROSS optimistic PDES framework to create memory pools
shared by MPI processes on the same node in order to reduce on-node MPI overhead. We perform
experiments to compare the performance of shared memory ROSS with pure MPI ROSS on two different
systems. For the experiments, we use several models that exhibit a variety of characteristics to understand
the conditions where shared memory can benefit the simulation. In general, higher remote event rates
means that simulations are more likely to benefit from using shared memory, but this may also be due in
part to improved rollback behavior.

1 INTRODUCTION

Parallel discrete-event simulation (PDES) can be a productive tool in the codesign of high performance
computing (HPC) systems and networks. For instance, IBM used PDES to study a variety of design
tradeoffs in the Blue Gene/L system (Adiga et al. 2005), as well as to evaluate newly proposed networks
to determine cheaper, yet effective, alternatives to expensive fat-tree networks (Chen et al. 2016). PDES
has also been shown to be a highly scalable method of simulation, which has been seen, for example, in
prior performance studies of Rensselaer’s Optimistic Simulation System (ROSS). ROSS has been shown
to scale up to 1.9 million cores when running PHOLD on the Sequoia system at Lawrence Livermore
National Laboratory (Barnes et al. 2013). However, this level of scalability may not be experienced when
using PDES to simulate more complex, heterogeneous models, which drives the work in improving the
scalability of simulators such as ROSS.

3837978-1-5386-6572-5/18/$31.00 ©2018 IEEE

Ross, Li, Mubarak, Carothers, Ma, and Ross

In PDES, entities are modeled as logical processes (LPs) that interact through the exchange of times-
tamped messages. For parallel processing, LPs are mapped to processing elements (PEs), and synchronization
is performed to ensure causal correctness of the simulation. Two main classes of synchronization protocols
in PDES exist: conservative and optimistic. Conservative PDES ensures causal correctness by processing
events only when it is safe to do so. Optimistic PDES protocols allow events to be processed speculatively and
ensure causal correctness by providing an out-of-order event detection and recovery mechanism (Jefferson
1985; Fujimoto 1990).

ROSS is an open source PDES framework that provides conservative and optimistic parallel exectution
modes. ROSS is built around the use of MPI for communication between all processing elements, making
each PE an MPI rank. In modern multicore systems, using MPI communication between cores located on
the same node is known to have drawbacks, such as software overheads and additional data copies (Gropp
and Thakur 2006). As the number of cores on compute nodes increases, this on-node MPI communication
overhead becomes worse. A common approach to reducing MPI overheads for intranode communication
has been to combine the use of MPI and a multithreaded programming paradigm, such as pthreads. In
PDES applications, this approach would make each PE a thread that shares a common memory space
with other PEs/threads on that node. However, mixing pthreads and MPI requires that either the developer
ensures that only one thread per node makes MPI calls or MPI THREAD MULTIPLE mode is used to
allow pthreads to call MPI operations in a thread-safe way. The former option can cause performance
bottlenecks, while the latter causes increased overhead.

In this work, we extend ROSS to use shared memory for communication between MPI ranks located
on the same node. Because of the issues combining the use of MPI and pthreads discussed previously, we
keep PEs realized as MPI ranks, but use shared memory between ranks on a given node to reduce on-node
MPI overhead. In Section 3, we provide the implementation of shared memory to be used by MPI processes
in ROSS, along with a discussion of the design tradeoffs for other approaches to improving the intranode
exchange of data. In addition, we compare the performance of Shared Memory ROSS (SHMEM-ROSS)
with the previous MPI only version of ROSS (MPI-ROSS), using a variety of models including PHOLD, a
neuromorphic processor model, and HPC interconnect models. In particular, we examine the performance
of the two ROSS versions on the Theta Cray XC supercomputer at Argonne National Laboratory (ANL),
since each node contains a 64-core Intel Xeon Phi processor, as well as a Linux cluster with 16-core nodes.
Further details of our experimental setup and performance evaluation are provided in Sections 4 and 5.

2 BACKGROUND AND RELATED WORK

A number of PDES frameworks have been developed over the years that support conservative and/or
optimistic synchronization protocols, such as Georgia Tech Time Warp (GTW), Warped2, and ns-3. GTW
was developed for optimistic simulation of models with relatively fine event granularity on cache-coherent,
shared memory multiprocessors (Das et al. 1994). Warped2 is also an optimistic PDES framework and
supports the use of both pthreads and MPI (Martin et al. 2003). Another popular discrete event simulator
for modeling computer networks is ns-3; it supports sequential and conservative parallel simulation, with
MPI being used for parallel simulation (Pelkey and Riley 2011).

Similarly to the work presented in this paper, other Time Warp simulators have been used in the exploration
of intranode optimizations. For instance, Pellegrini and Quaglia (2015) have explored optimizations
for Time Warp systems running on non-uniform memory access (NUMA) multicore systems. They
developed a NUMA-aware memory management architecture for multithreaded Time Warp systems. Their
implementation is application-transparent and they test it with the ROOT-Sim optimistic simulator. However,
their performance studies are limited to single node systems.

3838

Ross, Li, Mubarak, Carothers, Ma, and Ross

2.1 ROSS

ROSS is an open source Time Warp simulator that implements the rollback mechanism using reverse
computation (Carothers et al. 2002). In addition to the LPs and PEs discussed in Section 1, ROSS has
entities, called kernel processes (KPs), that are responsible for a subset of LPs colocated on the same PE
and were introduced to reduce fossil collection overheads. However, this results in rollbacks occurring on
a KP basis instead of LP basis, meaning that some LPs may be rolled back unnecessarily. The number of
KPs to use in a simulation is a performance tradeoff, between fossil collection overhead and false rollback
overhead. For further details on the ROSS implementation, we refer the reader to the work of Carothers
et al. (2002) and Bauer et al. (2009).

Some previous work has looked into converting ROSS from being MPI-based to being multithreaded,
in order to take advantage of multicore systems. For example, Jagtap et al. implemented ROSS-MT
using threads instead of MPI processes. They evaluated the performance of ROSS-MT against MPI-ROSS
running the PHOLD benchmark on a 4-core Intel Core i7 processor, a 48-core AMD Opteron 6100 machine,
and a 64-core Tilera processor (Jagtap et al. 2012a; Jagtap et al. 2012b; Wang et al. 2014). ROSS-MT
experienced a speedup up to 3x on the Core i7, a 1.2x speedup on the 48-core machine, and up to 2.8x
speedup on the Tilera chip. Since ROSS-MT has no support for a multi-node system (i.e., it does not use
MPI to scale beyond a single node), it was then extended to ROSS-CMT, which allows the threads on a node
to use MPI for communication with other nodes (Wang et al. 2012; Wang et al. 2013). In their performance
studies, they found that ROSS-CMT outperformed MPI-ROSS by a factor of 4.5x, however, they allow
only one thread on a node to perform MPI communication, which can potentially cause performance
bottlenecks at scale. In contrast, in our implementation MPI processes on a node share event memory
pools for communication with other ranks on the same node, and each process still has the ability to use
MPI for internode communication. Our implementation and design choices are discussed in further detail
in Section 3. To the best of our knowledge, ROSS is the only PDES framework that has explored the use
of MPI and shared memory without the use of pthreads.

2.2 CODES

CODES is a simulation framework built on top of ROSS, leveraging its event scheduling capability to
provide high-fidelity simulation of a variety of HPC network and storage models (Mubarak et al. 2017b).
In the CODES HPC interconnect models, each router or switch is represented by a single LP. Each end
point is represented by at least two LPs, dependent on the type of workload being simulated. All end points
have one LP that handles the packet send and receive functionality and at least one LP that represents an
MPI rank that generates traffic for the modeled workload.

3 SHARED MEMORY ROSS

The design of our shared memory pool structure for a single compute node is shown in Figure 1. This
framework will enable the fast sharing of timestamped event data via shared memory pools including direct
cancellation of incorrectly scheduled events across MPI ranks that reside on the same compute node. This
performance improving functionality will be supported without having to change any of the LP mappings
or the overall flow of how messages are processed except at the lowest event-passing levels.

3.1 Pthreads vs. MPI Ranks

Central to this design is preservation of the original data structure and functionality of the processing
element (PE), which is realized as an MPI rank. A PE contains all the necessary data structures for
a serial simulator plus additional functionality to realize a variety of optimistic and conservative event
schedulers. Specifically, we did not want to introduce a mix of pthreads and MPI into this design because
of the functional complexity of keeping pthreads from having to access MPI functionality or the increased

3839

Ross, Li, Mubarak, Carothers, Ma, and Ross

Shared	Memory	Pool	

KP	

LP	

LP	

LP	LP	

KP	

LP	

LP	

LP	LP	

KP	

LP	

LP	

LP	LP	

MPI	

PE	

KP	

LP	

LP	

LP	LP	

KP	

LP	

LP	

LP	LP	

KP	

LP	

LP	

LP	LP	

MPI	

PE	

KP	

LP	

LP	

LP	LP	

KP	

LP	

LP	

LP	LP	

KP	

LP	

LP	

LP	LP	

MPI	

PE	

KP	

LP	

LP	

LP	LP	

KP	

LP	

LP	

LP	LP	

KP	

LP	

LP	

LP	LP	

MPI	

PE	

Figure 1: Diagram of ROSS entities using shared memory on a node.

overhead of the alternative MPI THREAD MULTIPLE mode, which allows pthreads to participate in MPI
operations in a thread-safe way (Gropp and Thakur 2006). Another observation that led to this design
choice is that pthreads and MPI ranks are both realized as full blown processes in all Linux OS distributions.
The only difference is that pthreads provide a globally shared memory view by sharing the same set of
virtual page tables within the Linux process. This can be seen in the Linux kernel because the clone()
system call used by pthreads maps to the same system call handler function do fork() as the fork()
system call. The key difference between these calls is additional flags that enable mapping to the same
virtual memory address space (e.g., CLONE VM).

Inside each PE (i.e., MPI rank) are kernel processes (KPs) which aggregate a number of LPs together
to reduce fossil collection overheads. LPs are the containers of model state and communicate exclusively
by exchanging timestamped event messages. Direct sharing of model data across LPs is strictly forbidden
in the current implementation of ROSS, since that would allow LPs to access incorrect versions of state in
virtual time, leading to incorrect simulation results. For that, shared-state functionality, such as Space-Time
Memory (Ghosh and Fujimoto 1991; Mehl and Hammes 1993), would need to be implemented.

3.2 Shared Memory Segment Setup

Prior to setting up the shared memory segment, each MPI rank attempts to perform a bind operation to
a specific core on the compute node. This is done to prevent MPI ranks from migrating between cores
which impacts the efficient sharing of data. In particular, we want to colocate the shared memory segment
onto banks of physical memory closest to the cores that will be using that memory. Setting the core/CPU
affinity helps to accomplish this task. Additionally, new MPI sub-communicators are established to enable
multiple shared memory pools to be allocated within different sub-groups of MPI ranks all executing on
the same node. For example, this capability supports configurations such as 8 shared pools with 8 MPI
ranks each on a single shared memory node with 64 cores.

3.3 Shared Memory Segment Allocation

Now, to implement a shared memory pool, we allocate a shared memory segment using the shmget system
call to which all MPI ranks executing within a compute node can be attached. However, an interesting
challenge occurs when using the shared memory segment. By default, the virtual memory address where
each MPI rank attaches could be different. Thus, the shared memory addresses for removing events would
differ depending on which MPI rank was performing the processing. For our purposes, this is an unwanted
feature of Linux shared memory segments.

To overcome this issue, we leverage the mmap system call to poll a virtual memory address to determine
whether that block is available by mapping a “dummy” test memory block. If the mmap call succeeds
for all the MPI ranks within a particular shared memory group communicator, then we have all MPI

3840

Ross, Li, Mubarak, Carothers, Ma, and Ross

ranks within the group attempt to perform an shmat() system call which will attach the shared memory
segment at the desired virtual memory address. Should the mmap system call fail, we subtract the size of
the desired shared memory segment again from the previously tested virtual address and try again. We
observe that on most Linux systems, fewer than 100 attempts are required which execute in less than 20
seconds at simulation start up. In Linux, we start at address 0x00007fffff000000 and subtract the
size of desired shared memory segment from that address which becomes the address of attachment. On
the Theta supercomputer system, we find the typical attached address is 0x7ffeadfe7000 for a shared
event pool size of 700 MB.

3.4 Sharing Remote Events and Direct Event Cancellation

Once created, the shared memory event pool is divided in equally large chucks across the MPI ranks that
are attached to this segment. Then within each subpool, a free list of shared memory events is created
where each event’s shared flag is marked true. This flag will be used to determine which free list (local
or shared) to place an event back into during fossil collection.

Additionally, three pthread locks for queue lists are held in each MPI rank’s shared memory address
space. The first list is the event q, which will hold forward/positive timestamped event messages sent
between LPs that are mapped to this group of MPI ranks. Next, the cancel q will hold anti-message
events sent between MPI ranks within this sharing group. The last list is the return q and is used to
hold a list of remote shared events that originated from this MPI rank’s shared memory segment. Pthread
locks on all of these list heads are used to ensure atomic access to these list data structures.

During regular event processing, if a new event is to be scheduled between LPs that are part of the
same shared memory group, an event from the shared free list is allocated. After the event message data
is populated in the model event handler and the event is “sent” into the ROSS engine for delivery, ROSS
first determines the shared status of the event by checking its shared flag and then determines which
MPI rank’s shared memory event q is its destination. Once the right pool area is determined, the correct
event q is locked and the event is threaded into the event list. A pointer to any sent event is kept in the
parent event’s cancellation list, which can be used during rollback processing. Direct event cancellation
will be described below in more detail.

To receive shared events, each MPI ranks polls its own local event q list. This is done prior to any
MPI message polling for events that have been scheduled for LPs that are not on the same compute node or
within the same shared memory segment group. If there are events, the lock is obtained on the event q,
and the whole list of events is inserted into the MPI rank’s event priority queue (e.g., a Splay Tree).

To cancel a shared event due to its parent event being rolled back, it is pulled off the parent event’s
cancellation list and placed into the destination MPI rank’s shared cancel q and the event’s internal flag is
marked as being a cancellation event. As part of normal event processing, the destination MPI rank will also
poll the cancel q and pull off (using the pthread lock) any cancellation events for processing. Because the
cancellation or “anti-message” event and its positive event are the same event, no special lookup is required
to “find” the positive event. Instead, flags have been set to denote its location within the MPI rank’s event
processing data structures, for example, the priority queue or processed event list. This direct cancellation
process is the same as that used in the original shared memory ROSS implementation (Carothers et al.
2000).

To return shared events to their original MPI rank owners, each MPI rank finds correctly marked shared
memory events during its normal fossil collection operation and places shared memory events back into
the original MPI rank’s return q. This queue list is locked to ensure proper atomic access. Then locally
when an MPI rank has exhausted its own shared event free list, it will replenish that list by pulling off
the complete list of events in the return q and inserting the whole list into the empty free list of shared
events.

3841

Ross, Li, Mubarak, Carothers, Ma, and Ross

4 EXPERIMENTS

This section discusses the experimental design used to compare the performance of SHMEM-ROSS with
MPI-ROSS. We describe the platforms used for the simulation runs, along with brief model descriptions
and parameter settings.

4.1 Experimental Platform

All simulation runs are performed on the Theta Cray XC system at Argonne National Laboratory or the
DRP Linux cluster at Rensselaer Polytechnic Institute’s Center for Computational Innovation. Theta has
4,392 nodes, with each node containing a 64-core 1.3 GHz Intel Xeon Phi processor. Each node also has
16 GB of MCDRAM, along with 192 GB of DDR4 RAM. The DRP cluster consists of 64 nodes with each
node containing two 8-core 2.6 GHz Intel Xeon E5-2650 processors. Each node has 128 GB of RAM and
the nodes are connected via 56 Gb FDR InfiniBand. For runs performed on Theta, we use up to 64 cores
per node, while on DRP, we use up to 16 cores per node.

4.2 Simulation Models

4.2.1 CODES Dragonfly Model

For the CODES dragonfly model, we use a network configuration to simulate the Theta Cray XC system.
We use a previous Theta configuration from April 2017 with 3,456 nodes connected by a high-radix
dragonfly network (Argonne Leadership Computing Facility 2017; Faanes et al. 2012). The 864 routers
are represented by one LP each, while the 3,456 nodes are each represented by two LPs, resulting in
7,776 LPs. For further details regarding the CODES implementation of the dragonfly model and Theta
configuration, including validation results, we refer the reader to the works of Mubarak and Ross (2017a)
and Mubarak et al. (2017c). For this model, we perform our experiments with a workload consisting
of synthetically generated uniform random traffic and an adaptive routing protocol. We set the message
size and packet sizes to each be 2,048 bytes. Each workload generator LP is configured to generate 200
messages throughout the simulation, with an interarrival time of 20 ns. We perform the experiments with
2 to 64 PEs on both Theta and the DRP cluster.

4.2.2 CODES Fat-Tree Model

For simulations performed with the CODES fat-tree network model, we use a configuration to simulate the
future Summit HPC system at Oak Ridge National Laboratory. This configuration uses a pruned 3-level
fat-tree topology with 36-port switches and a total of 3,564 nodes. There are thus 504 switch LPs and
7,128 LPs to represent 3,564 compute nodes (2 LPs per simulated compute node), resulting in a total of
7,632 LPs. Further details on the CODES fat-tree model implementation can be found in the work of
Wolfe et al. (2017). Similarly to the dragonfly simulations, we use uniform random traffic, with message
and packet sizes set to 2,048 bytes. The interarrival time is again set to 20 ns and the packet injection rate
is set to 90% of the terminal link bandwidth. All of the fat-tree experiments are performed on both Theta
and the DRP cluster with 2 to 64 PEs.

4.2.3 NeMo Model

NeMo is a neuromorphic processor architecture simulation framework built on top of ROSS. NeMo models
the neurons, axons, and synapses of neurosynaptic cores with unique LP types (Plagge et al. 2016). In our
NeMo simulations, we simulate the IBM True North chip with 4,096 neurosynaptic cores, each of which
is mapped to ROSS PEs. Each neurosynaptic core contains 256 axon LPs, 256 neuron LPs, and 1 synapse
LP that represents all 65,536 synapses present in the core. This results in a total of 2,101,248 LPs for
our NeMo configuration. We perform the experiments on both Theta and DRP with 16 to 512 total PEs

3842

Ross, Li, Mubarak, Carothers, Ma, and Ross

incrementing by powers of 2. These runs are performed on 1 to 8 nodes of Theta and 1 to 32 nodes on
the DRP cluster, depending on the number of PEs used. Simulated time in NeMo is in number of ticks,
and all of our NeMo configurations run for a total of 1,000 ticks.

4.2.4 PHOLD Model

For these experiments, we use a modified PHOLD model. Our modification ensures that remote events are
exchanged between PEs located in the same shared memory group as opposed to a uniform random traffic
pattern that is typical in PHOLD. This allows us to determine the performance gains ROSS experiences
when fully exploiting the use of shared memory. For the PHOLD runs, we run with 128 LPs per PE
and 8 KPs per PE. The mean used for timestamp distribution of events is set to 1 in all configurations,
and we use three settings for the remote event rate: 0.1, 0.5, and 0.9. We use the PHOLD model to test
SHMEM-ROSS at scale, so we perform these runs only on Theta, using 64 to 2,048 nodes of the system.

5 EVALUATION

We first discuss the runtime results for all of the simulated models described in Section 4. For all
configurations of both CODES models and NeMo, we ran each simulation 10 times. The graphs for these
results show the average runtime, and error bars denote the standard deviation for that configuration. Each
model has different levels of remote events in the simulation. The percentage of remote events for these
three models are shown in Table 1. For these models, the number of remote events increases as the number
of PEs increase.

The runtimes for the simulations performed with the CODES dragonfly model are shown in Figure 2,
with DRP results on the left and Theta results on the right. For DRP, we note that both versions of ROSS
perform similarly for 8 PEs or less, while SHMEM-ROSS starts to outperform MPI-ROSS starting at 16
PEs. At this point, the percentage of remote events transferred through shared memory approaches 20%,
while the percentage of MPI events stays below 10% when running on multiple nodes, allowing for the
simulation to benefit from the use of shared memory. The dragonfly results on Theta appear to have a reverse
trend from the DRP results. Here, SHMEM-ROSS experiences more runtime improvement at smaller PE
counts than larger, despite the fact that remote events are now exchanged only through shared memory at
all scales, due to Theta having more cores per node. However, Theta’s processors have a slower clock rate
(1.3 GHz) than the processors on DRP (2.6 GHz), contributing to increased runtimes over the DRP runs.

We examined the rollback behavior of the dragonfly model running on both machines (not pictured)
and found that SHMEM-ROSS appears to help control the amount of rollbacks experienced for the DRP
runs when increasing the number of PEs, while on Theta, the rollback behavior of this model is almost the
same for both ROSS versions. It appears that a side effect of Theta’s slower processors is more controlled
rollback behavior upon which SHMEM-ROSS is unable to improve, whereas for the faster processors on
the DRP cluster, the use of shared memory appears to help to control rollbacks.

Figure 3 shows the runtimes for the CODES fat-tree model, with DRP results on the left and Theta on
the right. In the case of simulations performed on DRP, the largest runtime improvement for SHMEM-ROSS
over MPI-ROSS is seen at 16 PEs, where the percentage of remote events peaks at approximately 30%.
Unlike the dragonfly model, when continuing to increase the PEs (and thus, node count), the percentage of
shared memory remote events starts to decrease and the percentage of MPI events increases at a faster rate.
This may explain why the runtime difference between MPI-ROSS and SHMEM-ROSS starts to decrease
at 32 and 64 PEs for the fat-tree model. With the fat-tree runs on Theta, we see a similar trend to the
dragonfly Theta runs, namely increased runtimes in general, as well as the largest differences in runtime

Table 1: Percentage of remote events for NeMo and the CODES network models.

Network Dragonfly Fat-tree NeMo
Remote Events (%) 5–28% 10–40% < 0.1%

3843

Ross, Li, Mubarak, Carothers, Ma, and Ross

0

10

20

0

10

20

30

40

2 4 8 16 32 64
Number of PEs

R
u

n
tim

e
 (

se
co

n
d
s)

R
e
m

o
te

 E
ve

n
ts (%

)

ROSS Version: MPI−ROSS SHMEM−ROSS

Remote Events: MPI events SHMEM events

(a) DRP Cluster Results

0

50

100

150

0

10

20

30

40

2 4 8 16 32 64
Number of PEs

R
u

n
tim

e
 (

se
co

n
d
s)

R
e
m

o
te

 E
ve

n
ts (%

)

ROSS Version: MPI−ROSS SHMEM−ROSS

Remote Events: MPI events SHMEM events

(b) Theta Results

Figure 2: Runtimes for CODES Dragonfly model on DRP (a) and Theta (b). Red and blue lines denote
runtime results for the two ROSS versions, while black lines show percentage of remote events for shared
memory (dashed) and MPI (solid). Data points for the runtimes are the average of 10 simulation runs for
each configuration, while error bars denote the standard deviation. Note that data points without error bars
means that the standard deviation is near 0.

0

100

200

300

0

10

20

30

40

50

2 4 8 16 32 64
Number of PEs

R
u
n
tim

e
 (

se
co

n
d

s)

R
e
m

o
te

 E
ve

n
ts [%

]

ROSS Version: MPI−ROSS SHMEM−ROSS

Remote Events: MPI events SHMEM events

(a) DRP Cluster Results

0

500

1000

1500

2000

0

20

40

60

80

2 4 8 16 32 64
Number of PEs

R
u
n
tim

e
 (

se
co

n
d

s)

R
e
m

o
te

 E
ve

n
ts [%

]

ROSS Version: MPI−ROSS SHMEM−ROSS

Remote Events: MPI events SHMEM events

(b) Theta Results

Figure 3: Runtimes for CODES fat-tree model on DRP (a) and Theta (b). Red and blue lines denote
runtime results for the two ROSS versions, while black lines show percentage of remote events for shared
memory (dashed) and MPI (solid). Data points for the runtimes are the average of 10 simulation runs for
each configuration, while error bars denote the standard deviation. Note that data points without error bars
means that the standard deviation is near 0.

being experienced at lower PE counts. However, the rollback behavior (not pictured) remains the same for
the fat-tree model across machines and ROSS versions. It is not clear why rollback behavior is affected by
the system and version of ROSS used for the dragonfly model, but not the fat-tree model. In future work,
we plan to extend our previous work in visual analysis of ROSS instrumentation data (Ross et al. 2016) to
better understand the effect of the interplay of the hardware, simulation engine, and model characteristics
on rollback behavior and simulation performance.

3844

Ross, Li, Mubarak, Carothers, Ma, and Ross

The runtime results for the NeMo model are shown in Figure 4 for DRP on the left and Theta on the
right. MPI-ROSS shows performance similar to or better than that of SHMEM-ROSS in all configurations
on both systems tested. These results are most likely due to the fact that NeMo experiences much fewer
remote events than either CODES network model. NeMo has less than 0.1% remote events at all scales,
which is much less than the dragonfly and fat-tree models (Table 1). Since NeMo has so few remote events,
it does not experience the same level of MPI communication overhead as the CODES models, so it is
unable to benefit from the use of shared memory.

100

1000

16 32 64 128 256 512
Number of PEs

R
u
n
tim

e
 (

se
co

n
d
s)

MPI−ROSS SHMEM−ROSS

(a) DRP Cluster Results

100

1000

16 32 64 128 256 512
Number of PEs

R
u
n
tim

e
 (

se
co

n
d
s)

MPI−ROSS SHMEM−ROSS

(b) Theta Results

Figure 4: Runtimes for NeMo model on DRP (a) and Theta (b). Data points are the average of 10 simulation
runs for each configuration, while error bars denote the standard deviation. Note that data points without
error bars means that the standard deviation is near 0.

We also perform a scaling studying using the PHOLD model on Theta, scaling from 4,096 to 131,072
PEs. We perform each configuration only once, due to CPU allocation hours on Theta and the scale of the
runs performed (up to 2,048 nodes). Figure 5 shows the event rates from the PHOLD runs. We show event
rate for PHOLD benchmark results to be consistent with other literature in this area. Each color represents
a different remote event rate used in the simulation, while solid lines represent MPI-ROSS runs and dotted
lines represent SHMEM-ROSS runs. Running PHOLD with SHMEM-ROSS outperforms MPI-ROSS in all
cases, with the improvement in event rate getting larger as we increase the remote event rate of the model.
In the case of a remote event rate of 0.1, we see an improvement in event rate by a factor of up to 1.14.
For remote event rates of 0.5 and 0.9, we see improvements by factors of up to 1.43 in both cases. This
is in line with the earlier discussed results, where the NeMo model experiences very few remote events
and thus sees no performance improvement from the use of shared memory, while the CODES network
models have higher remote event rates that may be able to take advantage of shared memory.

6 CONCLUSION

Because of the prevalence of many-core processors in modern HPC systems, such as Intel Xeon Phi
processors in the Theta supercomputer at ANL, improving the intranode performance of applications,
including PDES, is important. The work in this paper explores the use of shared memory with MPI
processes in the ROSS Time Warp simulator. In particular, we avoid combining the use of MPI with
pthreads, in order to avoid complexities and overheads associated with ensuring pthreads access MPI
functionality in a thread-safe way. We tested the performance of SHMEM-ROSS against the pure MPI
implementation of ROSS on two systems: the Theta supercomputer, with 64 cores per node, and a Linux
cluster, with 16 cores per node. For the PHOLD benchmark, we found a consistent speedup in runtime
performance while scaling up to 2,048 nodes of Theta. For the NeMo model, we found no performance

3845

Ross, Li, Mubarak, Carothers, Ma, and Ross

0.0e+00

2.5e+09

5.0e+09

7.5e+09

4,096 8,192 16,384 32,768 65,536 131,072
Number of PEs

E
ve

nt
 R

at
e

Remote Event Rate
0.1

0.5

0.9

MPI−ROSS

SHMEM−ROSS

Figure 5: Event rate for PHOLD model simulations performed on Theta for various remote event rate
settings.

improvment when using SHMEM-ROSS, which is due to NeMo having a remote event rate less than 0.1%
at all scales.

For the two CODES network models on Theta, SHMEM-ROSS tends to result in faster runtimes than
MPI-ROSS, however the difference between versions decreases as the number of PEs increases. On the
DRP Linux cluster, this trend is reversed for dragonfly, where the largest performance differences are seen
at higher PE counts. We believe this is also due to the fact that SHMEM-ROSS appears to help reduce
the amount of rollbacks experienced at larger scales. However for the dragonfly runs performed on Theta,
the slower processors appear to help control rollback behavior, and the use of shared memory provides no
additional decrease in rollbacks. In contrast, the fat-tree model experiences no change in rollback behavior
due to the system used nor ROSS version used, so in future work, we plan to use time series data from the
simulation to better understand the interplay of the hardware, simulation engine, and model and its effect
on the rollback behavior. In addition to this, we plan to make further use of shared memory in ROSS to add
additional features, such as load balancing schemes. Currently LP to PE mappings are computed on the
fly, making it more difficult to provide better mappings for load balancing. With SHMEM-ROSS, we plan
to add mapping tables that are shared by all PEs on a node, which will help in generating more efficient
mapping schemes. This should enable further performance improvements to models such as CODES
network models that can experience large load imbalances depending on the type of network traffic being
simulated.

ACKNOWLEDGMENTS

This material was based upon work supported by the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computer Research (ASCR), under contract DE- AC02-06CH11357 and
DE-SC0014917.

REFERENCES

Adiga, N. R., M. A. Blumrich, D. Chen, P. Coteus, A. Gara, M. E. Giampapa, P. Heidelberger, S. Singh, B. D.
Steinmacher-Burow, T. Takken, M. Tsao, and P. Vranas. 2005. “Blue Gene/L Torus Interconnection
Network”. IBM Journal of Research and Development 49(2):265–276.

Argonne Leadership Computing Facility 2017. “Theta”. https://www.alcf.anl.gov/theta. Accessed Mar 30,
2018.

Barnes, P. D., C. D. Carothers, D. R. Jefferson, and J. M. LaPre. 2013. “Warp Speed: Executing Time Warp
on 1,966,080 Cores”. In Proceedings of the 1st ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation. May 19th-22nd, Montreal, Canada, 327–336.

3846

Ross, Li, Mubarak, Carothers, Ma, and Ross

Bauer, D., C. D. Carothers, and A. Holder. 2009. “Scalable Time Warp on Blue Gene Supercomputers”. In
Proceedings of the 2009 ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distributed
Simulation. June 22nd-25th, Lake Placid, NY, USA, 35–44.

Carothers, C. D., D. Bauer, and S. Pearce. 2000. “ROSS: A High-Performance, Low-Memory, Modular
Time Warp System”. In Proceedings Fourteenth Workshop on Parallel and Distributed Simulation.
May 28th-31st, Bologna, Italy, 53–60.

Carothers, C. D., D. Bauer, and S. Pearce. 2002. “ROSS: A High-Performance, Low-Memory, Modular
Time Warp System”. Journal of Parallel and Distributed Computing 62(11):1648–1669.

Chen, D., P. Heidelberger, C. Stunkel, Y. Sugawara, C. Minkenberg, B. Prisacari, and G. Rodriguez. 2016.
“An Evaluation of Network Architectures for Next Generation Supercomputers”. In Proceedings of
the 7th International Workshop on Performance Modeling, Benchmarking, and Simulation of High
Performance Computing Systems. November 13th–18th, Salt Lake City, UT, USA, 11–21.

Das, S., R. Fujimoto, K. Panesar, D. Allison, and M. Hybinette. 1994. “GTW: A Time Warp System for
Shared Memory Multiprocessors”. In Proceedings of the 1994 Winter Simulation Conference, edited
by J. D. Tew et al., 1332–1339. Piscataway, New Jersey: IEEE.

Faanes, G., A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson, T. Johnson, J. Kopnick, M. Higgins,
and J. Reinhard. 2012. “Cray Cascade: A Scalable HPC System Based on a Dragonfly Network”. In
Proceedings of the International Conference on High Performance Computing, Networking, Storage
and Analysis. November 10th-16th, Salt Lake City, UT, USA.

Fujimoto, R. M. 1990. “Parallel Discrete Event Simulation”. Communications of the ACM 33(10):30–53.
Ghosh, K., and R. M. Fujimoto. 1991. “Parallel Discrete Event Simulation Using Space-Time Memory”.

Technical report, Georgia Institute of Technology.
Gropp, W., and R. Thakur. 2006. “Issues in Developing a Thread-Safe MPI Implementation”. In European

Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting. September 23rd-26th,
Vienna, Austria, 12–21.

Jagtap, D., N. Abu-Ghazaleh, and D. Ponomarev. 2012a. “Optimization of Parallel Discrete Event Simulator
for Multi-Core Systems”. In Proceedings of the 2012 IEEE 26th International Parallel and Distributed
Processing Symposium. May 21st-25th, Shanghai, China, 520–531.

Jagtap, D., K. Bahulkar, D. Ponomarev, and N. Abu-Ghazaleh. 2012b. “Characterizing and Understanding
PDES Behavior on Tilera Architecture”. In Proceedings of the 2012 ACM/IEEE/SCS 26th Workshop
on Principles of Advanced and Distributed Simulation. July 15th-19th, Zhangjiajie, China, 53–62.

Jefferson, D. R. 1985. “Virtual Time”. ACM Transactions on Programming Languages and Systems 7(3):404–
425.

Martin, D. E., P. A. Wilsey, R. J. Hoekstra, E. R. Keiter, S. A. Hutchinson, T. V. Russo, and L. J. Waters.
2003. “Redesigning the WARPED Simulation Kernel for Analysis and Application Development”. In
Proceedings of the 36th Annual Symposium on Simulation. March 30th-April 2nd, Washington, DC,
USA, 216-233.

Mehl, H., and S. Hammes. 1993. “Shared Variables in Distributed Simulation”. In Proceedings of the
Seventh Workshop on Parallel and Distributed Simulation (PADS ’93). May 16th-19th, San Diego, CA,
USA, 68–75.

Mubarak, M., and R. B. Ross. 2017a. “Validation Study of CODES Dragonfly Network Model with Theta
Cray XC System”. Technical report, MCS Division, Argonne National Laboratory.

Mubarak, M., C. D. Carothers, R. B. Ross, and P. Carns. 2017b. “Enabling Parallel Simulation of Large-Scale
HPC Network Systems”. IEEE Transactions on Parallel and Distributed Systems 28(1):87–100.

Mubarak, M., N. Jain, J. Domke, N. Wolfe, C. Ross, K. Li, A. Bhatele, C. D. Carothers, K.-L. Ma, and
R. B. Ross. 2017c. “Toward Reliable Validation of HPC Network Simulation Models”. In Proceedings
of the 2017 Winter Simulation Conference, edited by W. K. V. Chan et al., 659–674. Piscataway, New
Jersey: IEEE.

3847

Ross, Li, Mubarak, Carothers, Ma, and Ross

Pelkey, J., and G. Riley. 2011. “Distributed Simulation with MPI in ns-3”. In Proceedings of the 4th
International ICST Conference on Simulation Tools and Techniques. March 22nd-24th, Barcelona,
Spain, 410–414.

Pellegrini, A., and F. Quaglia. 2015. “NUMA Time Warp”. In Proceedings of the 3rd ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation (PADS ’15). June 10th-12th, London, UK,
59–70.

Plagge, M., C. D. Carothers, and E. Gonsiorowski. 2016. “NeMo: A Massively Parallel Discrete-Event Sim-
ulation Model for Neuromorphic Architectures”. In Proceedings of the 2016 ACM SIGSIM Conference
on Principles of Advanced Discrete Simulation. May 15th-18th, Banff, Canada, 233-244.

Ross, C., C. D. Carothers, M. Mubarak, P. Carns, R. Ross, J. K. Li, and K.-L. Ma. 2016. “Visual Data-
Analytics of Large-Scale Parallel Discrete-Event Simulations”. In Proceedings of the 7th International
Workshop on Performance Modeling, Benchmarking, and Simulation of High Performance Computing
Systems. November 13th–18th, Salt Lake City, UT, USA, 87-91.

Wang, J., D. Ponomarev, and N. Abu-Ghazaleh. 2012. “Performance Analysis of a Multithreaded PDES
Simulator on Multicore Clusters”. In Proceedings of the 2012 ACM/IEEE/SCS 26th workshop on
Principles of Advanced and Distributed Simulation, 93–95. July 15th-19th, Zhangjiajie, China, 53–62.

Wang, J., K. Bahulkar, D. Ponomarev, and N. Abu-ghazaleh. 2013. “Can PDES Scale in Environments
with Heterogeneous Delays?”. In Proceedings of the 1st ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation. May 19th-22nd, Montreal, Canada, 35–46.

Wang, J., D. Jagtap, N. Abu-Ghazaleh, and D. Ponomarev. 2014. “Parallel Discrete Event Simulation
for Multi-Core Systems: Analysis and Optimization”. IEEE Transactions on Parallel and Distributed
Systems 25(6):1574–1584.

Wolfe, N., M. Mubarak, N. Jain, J. Domke, A. Bhatele, C. D. Carothers, and R. B. Ross. 2017. “Preliminary
Performance Analysis of Multi-Rail Fat-Tree Networks”. In Proceedings of the 2017 17th IEEE/ACM
international symposium on Cluster, Cloud and Grid Computing. May 14th-17th, Madrid, Spain, 258–
261.

AUTHOR BIOGRAPHIES

Caitlin Ross is a Ph.D. candidate in the Department of Computer Science at Rensselaer Polytechnic Institute.
Ms. Ross received her B.S. in computer science from the University of North Carolina at Greensboro in
2014. Her email address is rossc3@rpi.edu.

Jianping Kelvin Li is a graduate student in the Computer Science Department at the University of California,
Davis. Mr. Li received his B.S. in computer engineering from the University of California, Davis, in 2009.
His email address is kelli@ucdavis.edu.

Misbah Mubarak is an assistant scientist in the Mathematics and Computer Science Research Division
at Argonne National Laboratory. Dr. Mubarak received her Ph.D. in computer science from Rensselaer
Polytechnic Institute in 2015. Her email address is mmubarak@anl.gov.

Christopher D. Carothers is a professor of computer science at Rensselaer Polytechnic Institute. Professor
Carothers received his Ph.D. from Georgia Institute of Technology in 1997. His email address is chrisc@
cs.rpi.edu.

Kwan-Liu Ma is a professor of computer science at the University of California, Davis. Professor
Ma received his Ph.D. in computer science from the University of Utah in 1993. His email address is
ma@cs.ucdavis.edu.

Robert B. Ross is a senior computer scientist in the Mathematics and Computer Science Division at Argonne
National Laboratory. Dr. Ross received his Ph.D. in computer engineering from Clemson University in
2000. His email address is rross@mcs.anl.gov.

3848

