Proceedings of the 2018 Winter Simulation Conference
M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds.

ON REPEATABLE EMULATION IN VIRTUAL TESTBEDS

Vignesh Babu
David M. Nicol

Department of Electrical and Computer Engineering
University of Illinois, Urbana Champaign
1308 W Main St.

Urbana IL-61820, USA

ABSTRACT

Virtual testbeds are essential tools for evaluation of cyber-security problems and cyber-security solutions
in embedded control systems such as those that control the power grid. However, without explicit control,
virtual testbed behavior is not repeatable, which limits our ability to replay a testbed experiment to re-create
a surprising event, or even isolate and fix a bug. In this paper we consider extensions to TimeKeeper
emulation framework aimed at improving its repeatability. One approach steps through assembly language
instructions, the other asks emulated applications to report their own progress through virtual time. Empirical
data demonstrates the potential of our proposals.

1 INTRODUCTION

Evaluation of cyber-security in an embedded system is challenging. Most often the system of interest
is on-line and its operators are hesitant to allow anything on the system that might perturb it. This is
particularly true when the system controls a critical infrastructure, such as a component of the electric
power grid. Still, there are very real needs to evaluate the vulnerability of the system and the need to
evaluate cyber-security solutions (both for effectiveness and impact they have on the system’s ability to meet
real-time response objectives.) A practical approach to meeting these needs is to do as much evaluation as
is possible in a testbed. This has its own challenges though, because the number of devices in a deployed
system is considerably larger than that in a testbed, and the testbed will not have the same communication
infrastructure. This challenge is met though by developing and using virtual testbeds which combine real
devices, emulated devices, emulated networks, and simulated devices and networks. The work reported in
this paper is motivated by our efforts to improve the capability of virtual testbeds to assess cyber-security
in embedded systems used to control the power grid.

This paper focuses on an important attribute of a virtual testbed, repeatability. Consider—an experiment
may reveal that a device’s software is vulnerable to a particular combination of events and network conditions,
or may exhibit some surprising behavior that is not yet understood, or may simply crash. An ability to
repeat or replay the sequence of events and conditions that lead to a state of interest would be extremely
valuable, but is not typically available. Lack of repeatable behavior also increases the work needed to
compute statistically significant estimates of average behavior. If the testbed does not behave exactly the
same way every time given the same initial state and precisely the same events it means that there is some
internal variance introduced by the testbed itself. We can think of this variance as “noise”—the larger
the noise relative to the signal, the more repetitions are needed to filter through the noise to get to the
behaviours of interest.

Network emulation is a powerful tool in the toolbox available for constructing a virtual testbed. Popular
network emulators like CORE (Ahrenholz et al. 2008), EMANE (NRL 2010), Mininet (ONF 2016) can
execute entire software stacks and include ways to impose constraints on emulated networks through link

978-1-5386-6572-5/18/$31.00 ©2018 IEEE 3813

Babu and Nicol

delays, bandwidths and flow control mechanisms. However, when enforcing these constraints it is difficult
to cause each exchanged message in the emulated system to behave or have the same timing as it would in a
real system. For instance, to enforce link delays on individual packets, a network emulator would use timers
to wait until the specified duration elapses before forwarding the packet. In such “best-effort” emulations
there will be variance in precisely when a timer firing is recognized, depending on what is happening in the
operating system or other applications. Furthermore, any computation that references time (for instance,
to sleep for a specified interval) will reference the hardware clock of the virtual machine manager; unlike
the real system, the virtual machine will sometimes be executing and sometimes not, which means that
measured elapsed time in a virtual machine may include periods when it was not running at all. These
limitations are exposed when the emulated network models are larger and can yield experimental results
which deviate significantly from what would be observed in the real deployment.

These issues can be addressed by giving every emulated node its own virfual clock. Any explicit or
implicit reference its code makes to time is intercepted and interpreted using the virtual clock as a basis.
Periods of real time when a node’s emulation is not executing are periods when its virtual clock is not
advancing, so measured epochs of virtual time are not skewed by inactivity due to scheduling. Furthermore,
when every node has its own notion of virtual time, their executions can be explicitly scheduled to advance
them all together in virtual time.

We can create the illusion of concurrency such as seen in the embedded system by maintaining and
advancing a separate virtual clock for each node, and causing all timing measurements and timing-influenced
aspects of applications running on the node to be tied to it. Incorporation of virtual time (VT) in emulations
has a rich history. Gupta et. al (Gupta et al. 2005) introduced the concept of Time Dilation which simply
re-scaled time returned by the system clock with a multiplicative factor (¢¢) called Time Dilation Factor
(TDF). Inside a VM with TDF «, the perception of time for all processes progressed o times slower than
real time.

Later, virtual time was extended to OpenVZ container based emulation (Zheng et al. 2012) and to
individual processes in the Linux Kernel - TimeKeeper (Lamps et al. 2014). In TimeKeeper, the processes
are advanced together through a window of virtual time, like time-stepping through virtual time with the
window length defining the step size . No process is run in the next window before every process has run
in the current window. The idea is to keep the virtual clocks of all processes with ¢ units of each other.
The smaller is ¢, the tighter the synchrony. The TimeKeeper scheduler allows a process to advance ¢ units
in virtual time, after which control is relinquished back to the scheduler. TimeKeeper allows each process
to have its own TDF. Versions of TimeKeeper prior to that reported in this paper used Unix signals and
timers to govern scheduling. For a window size #, to run a process with TDF o the TimeKeeper scheduler
sends it a Unix signal, and schedules a timer to fire in & *¢ time units of wallclock time, upon whose firing
it sends a Unix signal to stop. Repeatability is an issue though with the non-determinism of these timer
firings, leading to the work we report here.

For repeatability we need a new control mechanism which, given a particular starting state of an
application and window size ¢, will for every repetition stop the application in the same state upon cessation
of the window execution. We call this Perfect Repeatability. Towards that end, we propose two alternative
mechanisms for advancing virtual time. The first we call Application driven virtual time or APP-VT and the
second we call Instruction driven virtual time, or INS-VT. Under APP-VT an application directly controls
advancement of its virtual time. Just as in a discrete-event simulation the model specifies how virtual
time advances as events execute, under APP-VT a modeler annotates source code to cause measurement
and reporting of virtual time advance. By contrast the INS-VT approach is completely transparent to the
emulated code. It more closely resembles the original TimeKeeper mechanism, except that the execution
burst is defined in terms of the number of assembly language instructions the application executes, not a
length of time.

In the rest of the paper, we describe both of these modes of VT advancement and highlight difficulties
in their practical implementation. We evaluate overheads associated with each of them in a simple network

3814

Babu and Nicol

emulation case study using the mininet emulator, and analyze the conditions (if any) under which one or
more of them may be perfectly repeatable. The paper is organized as follows: In Section 2 we introduce
TimeKeeper and give a brief overview of its architecture and virtual time advancement mechanism. In
Sections 3 and 4 we introduce APP-VT and INS-VT modes and describe their implementation. In Section
5, we briefly describe the experiment setup that is used in the rest of the paper to compare and contrast the
three VT advancement modes. In Section 6 we use the running case study setup to measure repeatability
and overheads associated with all 3 modes of VT advancement. In Sections 7 and 8, related works and
conclusions are presented respectively.

2 TIMEKEEPER

TimeKeeper (Lamps et al. 2014) is a software bundle which includes a portable Linux Kernel Module and
a small set of modifications to the Linux Kernel; these bring the notion of virtual time to each process
placed under TimeKeeper’s control. TimeKeeper manages the scheduling of these processes. Applied to
network emulation, each process is typically a device (or node) in the emulated network, such as a host,
switch, or router. In typical application emulation-specific scripts are used to cause the emulator to bring
up all nodes and their constituent applications; these processes are all under the control of TimeKeeper.
TimeKeeper processes are advanced together in a time-stepped fashion with a time-step size (in virtual
time) of 7. To ensure that no message sent within a time-step is also called upon to be received in the same
time-step (by a process different from the sender,) a simple technique is to choose the time-step size ¢ to
be the smallest link delay in the emulated network.

TimeKeeper processes may have individual time dilation factors. To advance a process with TDF ¢; by
t in virtual time the original versions of TimeKeeper scheduled the process to run for ¢; * ¢ units of wallclock
time. During each such execution burst, the dilated process may invoke system calls to query the current
time (e.g. “gettimeofday”.) TimeKeeper intercepts all of these system calls and returns a value based on
the processes’ virtual time clock. For more complex time based operations such as sleep, TimeKeeper must
ensure that every such operation is enforced in virtual time. In the most recent implementation (Lamps
et al. 2018) of TimeKeeper, the list of intercepted time query system calls include gettimeofday, time, and
clock_gettime. A Linux process can also schedule sleep operations or poll on network sockets or files for
new data using sleep, nanosleep, select, poll, and timerfd. TimeKeeper modifies the implementation of
these system calls so that when called by a process under TimeKeeper administration the specified relative
span is accorded in virtual time. In addition TimeKeeper can,

e Assign and dynamically change the length of the execution burst used to advance a process and
automatically detect and control new processes spawned by existing dilated ones;

e Cause a stopped process to start and a running process to stop;

e Schedule TimeKeeper controlled processes so that they advance together in virtual synchrony.

With this functionality, the interface to TimeKeeper provides an emulator with the ability to advance a
controlled process for a specific duration of virtual time and know when the processes have stopped at the
end of a round.

For each emulated node, TimeKeeper maintains a separate scheduler queue and tracks all processes
running on the emulated node. During each execution burst, round robin scheduling is imposed on processes
present in a node’s schedule queue which are resumed and paused using kernel level signalling techniques
(SIGCONT and SIGSTOP). Thus by simply leveraging signals, TimeKeeper is able to circumvent the linux
scheduler and control the order and execution durations to all processes under its control. Algorithm 1
illustrates TimeKeeper’s VT advancement mechanism during each time-step. It takes as input the set of
nodes to manage and a CPU mapping which specifies which CPU each node should run on. The algorithm
is run in parallel on all CPUs.

3815

Babu and Nicol

Algorithm 1 TimeKeeper_Per_TimeStep_Operation(CPU)

INPUT {(node;,t;) }
INPUT CPU_MAP
for each node € CPU_MAP|[CPU] :
Get node’s execution burst length ¢
AClock(node) = 0 {initialize virtual time increment of node}
for each process € node until AClock(node) =1 :
Compute process target virtual time advance 7, {Based on round-robin schedule among processes in
each node}
Start process execution burst for TDF xt, secs
Handle all time operations in virtual time
Freeze process after TDF 1, secs
Clock(node) += 1, units, AClock(node) += 7, units {Advance virtual time of node by 7, units}

2.1 Remarks on Timer Accuracy

The repeatability of an experiment depends on the extent to which the emulation platform is able to reproduce
each process’ execution behaviour and inter process interactions at precise moments in virtual time. Without
TimeKeeper the operating system controls an emulator’s processes by allocating them execution quanta,
and by preempting select processes in favour of others. This makes an emulation non-repeatable. With
TimeKeeper, we are able to control the order and length of execution bursts to each process and thus
circumvent some of the variances introduced by the Linux scheduler. But control over each execution burst
is still enforced through the use of OS level timers, which still admits for timing inaccuracies. We can
instruct the OS to fire a timer after s microseconds and send a signal, but actual recognition of the timer’s
firing is impacted by the state of the OS at the time of the firing, likewise the recognition of a signal is
state-dependent. We do not have precise control over where precisely in the application code a process is
when it is suspended.

We later present empirical results which show that while statistics about application behavior have
considerably less variance under TimeKeeper than when the emulator is uncontrolled, it is not zero. We
next present new ways of controlling a processes’ execution that (under certain circumstances) make their
execution repeatable.

3 APPLICATION DRIVEN VIRTUAL TIME

In the original versions of TimeKeeper, virtual time advancement was tied to wallclock time advancement
with a scaling factor, the time-dilation factor. In the course of developing TimeKeeper we encountered
emulations that cried out for a different means of linking execution behavior to virtual time advancement.
One example was the emulation of a Programmable Logic Controller (PLC), written in python (Babu and
Nicol 2016). Most of the coded executed by that emulator is python framework code and not interpretation
of PLC instructions. Another example was a software defined router (in C++) we used to emulate a hardware
router. A considerable amount of the code executed was in support of routing, but was not code (or even
functionality) you find in hardware routers.

Correspondingly we hit on the notion of annotating the source of emulated code with calls to a software
framework, the Application Virtual Time Manager, or AVTM, to have the application itself report its
advances in virtual time. This places the burden of modeling the advancement of virtual time on a human
being. The application interface to the AVTM is simple, comprised of three calls. A type one call says
“I’ve advanced virtual time by ¢”; a type two call says “I’ve advanced virtual time by ¢, and I’'m about to
enter an 1O operation.” A type three call says “I’ve completed an 1O operation”. By adding the incremental
advances in virtual time that are reported to it, the AVTM computes the process’ virtual time clock, which

3816

Babu and Nicol

2. Forward T if I/O busy
flag is clear, else setv' =T
and return

> AVTM lib
_ |1 Specify T, (maintains v')
@ > -
g g | O Block APP and return v’ 4. Handle all AVTM calls
% 2 assoonasv' 2T, Type-1 call € increment v’
E ‘ 3.Resume Type-2 call & set /O busy flag, v'=Tv
'6" Return v' Application Type-3 call* < clear |/O busy flag & block

Application

Figure 1: APP-VT architecture. The figure describes all steps involved in the interaction between Time-
Keeper, Tracer and an application process in one round. It is to be noted that Type-3 AVTM calls (marked
with *) are an exception and can occur asynchronously at any point in time.

is stored where TimeKeeper’s Unix modifications access it when called upon to interpret a time-dependent
system call.

Control of the emulated process’ execution is hierarchical. TimeKeeper controls a process known as
Tracer; indeed, from TimeKeeper’s point of view, Tracer is the process it controls. As TimeKeeper is a
kernel process and Tracer is a user process, they communicate through proc file ioctls. From TimeKeeper’s
point of view, it tells a process to advance up to a given virtual time 7. Receiving this the process unblocks,
does what it needs to do to advance virtual time to 7;,, communicates its completion back to TimeKeeper
and suspends. Receiving this TimeKeeper knows that that process has done what it needs to do in the
current time-stepped round. But virtual time advance is not so clean when advanced by the application, it
is possible for an application to advance through a length of time equivalent to many many time-steps all
at once. Tracer is the intermediary between TimeKeeper’s view of virtual time advance and what actually
happens in the emulator. AVTM and Tracer maintain a Unix pipe between them. AVTM looks for direction
from Tracer by performing a blocking read on this pipe. When Tracer sends a message down the pipe with
a target virtual time 7,,, AVTM and the emulated process unblock and the process executes. Each time the
process reports a virtual time advance to AVTM the virtual clock is updated, as described below.

e If the update V' is the result of a type one call and v/ < T, then the AVTM just returns control to
the caller.

e If the update V' is the result of a type one call and T, <V/, the AVITM notifies Tracer of virtual
time V' through the pipe, and suspends via a blocking read on the pipe. On receiving this message,
Tracer notifies TimeKeeper that it has completed the time-step.

e If the update V' is the result of a type two call, AVIM sets the virtual time to max{V',T;}, sets a
shared flag "10-busy’, sends the new virtual time to Tracer across the AVTM pipe, and continues
with the 10. Tracer sees a virtual time at least as large as 7, and notifies TimeKeeper that it has
completed the time-step. Note that AVTM and the emulated process are still executing, not under
control of the Tracer. When the 10 operation eventually completes the process notifies AVIM with
a type three call. In response the AVTM clears the '10-busy’ flag, and blocks on the AVTM pipe.
The process’ virtual time at the point of the IO completion and subsequent type three call to AVIM
defines the time of the IO completion.

The special case of active IO calls for a more specific description of the interaction between TimeKeeper
and Tracer. When TimeKeeper notifies Tracer to advance to virtual time 7;, the following occurs.

3817

Babu and Nicol

e If the virtual time maintained by Tracer is already as large as T, Tracer immediately reports to
TimeKeeper that the time-step is complete, and blocks.

e If the "IO-busy’ flag is set, Tracer advances the virtual time to 7,, reports to TimeKeeper that the
time-step is complete, and blocks.

e Otherwise Tracer sends a message over the AVTM pipe for the process to advance at least as far
as T,.

The key point is that suspension is tied to a specific line of source code, so that every re-animation of
the process is a return from that call. This gives greater control over repeatability than did the timer-based
control of execution bursts. That said, it is still possible for a APP-VT controlled emulation to not be
perfectly repeatable. The source of non-repeatability is IO. The solution we describe allows the advancement
of virtual time on a process executing IO to depend on that IO’s physical timing. It is conceivable that by
directly modeling the duration of 10 operations we could ensure perfect repeatability, and will examine
that approach in future work. Figure 1 is a compact illustration of the APP-VT architecture and all of the
above described steps.

4 INSTRUCTION DRIVEN VIRTUAL TIME

In the previous section, we described APP-VT. It is clear that in APP-VT, the virtual time advancement
is not transparent to the application’s source code, which places a modeling burden on the user, and in
any case is only possible when the source code of the application being emulated is accessible and can be
modified and re-compiled. The question we then try to answer is: Can we design a mechanism which is
transparent to the application’s source code while maintaining perfect repeatability whenever possible ?

The instruction driven virtual time mechanism is an alternative approach that can satisfy both requirements
under certain conditions. It is based on the idea of specifying every execution burst in terms of number
of instructions to execute instead of a time duration. The execution burst duration must be converted to a
specific number of instructions and we assume that the user provides this conversion ratio at the start of
the emulation. The INS-VT architecture is similar to the APP-VT setup where TimeKeeper interacts with
a tracer process. Here a tracer may control multiple applications. When TimeKeeper schedules a process
to run, it notifies the tracer of the target upper edge of the virtual time window. The tracer converts this
into a number of instructions to run, and then does so. In our practical implementation, we use the ptrace
interface available in the Linux kernel to control execution behaviour at instruction level granularity. The
ptrace interface is a fundamental component of many popular debuggers like gdb and it can be used to
single step instructions by setting a trap flag on the x86 processor. It treats each system call as one user
instruction and single steps over them as well. Using the ptrace interface, the tracer process can simply
initiate a single step of the application and wait until the single step completes before repeating it again for
the specified number of instructions. The pseudocode of the tracer process is illustrated below in Algorithm
2.

One of the subtle challenges that comes with using the ptrace interface is dealing with system calls
that may block. On single stepping a blocking system call (e.g sleep), the single step operation would
complete only after the system call returns and the tracer process would be blocked in the mean time. This
would not bode well for the virtual time advancement mechanism because the current round can only be
completed when all applications run their assigned number of instructions. To prevent such a situation,
we implement kernel level modifications to the linux scheduler (in particular to the schedule() function in
the linux kernel) and detect if a controlled application process voluntarily relinquishes the CPU inside a
system call. Upon detection of a voluntary CPU yield, the tracer process is notified and a “block flag” is
set for the application. The block flag is only cleared upon exit from the blocked system call.

One of the advantages of INS-VT over APP-VT is the independence of the virtual time advancement
mechanism from the application’s source code. In addition, it can achieve perfect repeatability unless the
control flow is altered on rare occasions by I/O device interaction failures (e.g busy disks) which may

3818

Babu and Nicol

Algorithm 2 Tracer_Operation()

while Experiment not stopped do
INPUT {(APP,,Ninstructions;)} {At start of round, input number of instructions to execute}
for each APP, in Tracer’s control do :
for j = 0; j < Ninstructions;; j++ do
if APP,; is blocked then
break
else
Initiate single step for APP;
Wait until single step is complete or APF; is blocked
end if
end for
end for
end while

cause certain system calls to sometimes block or fail. But as we observe in our evaluations, INS-VT in
general performs very well in reproducing experimental results. On the downside, it suffers from increased
overheads because each atomic single step operation generates a trap and forces execution of hundreds
of additional instructions. These overheads increase the overall experiment completion times significantly.
Furthermore, aligning virtual time advancement with the number of instructions executed make sense only
with compiled code, and not interpreted code. APP-VT can separate code execution that advances virtual
time from code execution that does not in a way that neither original TimeKeeper nor INS-VT can achieve.

5 EXPERIMENT SETUP

In this section, we briefly describe an example that is used in the rest of the paper to compare and contrast
the three virtual time advancement mechanisms. The emulated network is configured as a binary tree with
3 levels. The four leaves are hosts while the remaining three nodes are switches. Hosts and switches are
numbered increasingly from left to right as depicted in the Figure 2. Host pairs 21 —h3 and h2 — h4
communicate with each other with 41 and A2 acting as clients. Clients repeatedly send requests and wait
for responses from servers before immediately sending the next request. Custom C implementations of
hosts and switches are used and the topology is emulated with the mininet emulator on a standard Dell
Laptop with 8 cores and 16GB of RAM. All links were assigned a delay of 1ms. We estimated virtual time
advancement values used in APP_VT by attempting to measure them. We used a fixed per-round virtual
time window size of 100us (which is smaller than all link delays) in all experiments. In our INS.-VT
experiments, we used a conversion ratio of 1000 instructions per ys which translates each execution burst
to 100,000 instructions.

6 EVALUATION

Table 1: Maximum RMS errors between each of the 5 sets of experiment runs for every configuration.
The RMS errors are computed (in secs) on the delays experienced by the first 1000 packets at 1.

Normal TimeKeeper-VT APP-VT INS-VT
3.845e-04 1.0126e-04 0.0 4.3817e-05

3819

Babu and Nicol

Figure 2: The simple binary tree topology used in experiments. It was emulated with mininet. Nodes /1,
h2 run a client application while 43 and 24 run a server application. /1 sent requests to 43 and A2 requested

from h4.
=== normal ==s APP VT 1 TimeKeeper-VT mi INS_VT
1.0 ST T————— -
0.8 i
c :
L2 == H
3 0.6 s :
& I s .
a s = :
(0] _: = n
© = = u
S s Z .
S s E .
v § £ :
0.2 N : :
0_% - E .
2 8.4 8.6 8.8 9.0 9.2 9.4 2.6
Request-Response Delay (ms)

Figure 3: CDFs of round trip times experienced by all packets at £1 and A2 across the 5 experiment runs

for each configuration.

3820

Babu and Nicol

‘; A APPVT @ @ TimeKeeperVT Vv ¥ INS_V'I"

(od
o

A A A A

N w » w e} ~ @
o o o o o o o

=
o

Virtual Time Advancement Error per Round (us)

(] (] (]
0 - w L2

1 2 3
Experiment Number

~H0
UHe
o

Figure 4: Mean and standard deviation of round overshoot in each configuration.

‘; A APPVT @ @ TimeKeeperVT V V¥ INS_V'I"

60
g ® ® ® ° °
E
= 50
[J]
o
G
o
“ 40
g
©°
b A A A A A
® 30
[9)
o
o
w
2
L 20
o
(0]
ot
‘G
@ 10
Q
S
=
v v v
% 1 2 3 4 5 6

Experiment Number

Figure 5: Measure of overhead: number of requests served per sec of real time.

In this section, we empirically measure repeatability and overheads associated with each of the three
modes of VT advancement. We use the setup described in the previous section and look at 4 different
configurations: (1) normal: without any virtual time, (2) TimeKeeper-VT with TDF 1 (3) APP-VT and (4)
INS-VT. We repeated the experiment 5 times for each configuration.

3821

Babu and Nicol

6.1 Measuring Repeatability

During each experiment run, the two clients send requests to their respective servers and measure the delay
between the send time of each request and the receive time of its response. Each client sends the next
request as soon as the response to its previous request is received and processed.

For each experiment run in a specific configuration, we look at the round trip delays experienced by
the first 1000 packets received at 41 and treat it as a vector. For each configuration, we compute the
maximum RMS error between all pairs of corresponding delay vectors. Table 1 contains the measured
maximum RMS error values for each configuration. A lower max RMS error value indicates that even
across experiment runs, packets more or less experienced similar round-trip times. From the table it is
clear that without virtual time scheduling the RMS value is higher than any other scheduling policy. When
operated in APP-VT mode, round trip times observed across multiple runs appear perfectly identical to
each other. We observe non zero RMS errors for TimeKeeper-VT and INS-VT which suggests some degree
of variability. But RMS errors could potentially be swayed even by 1 or 2 packets experiencing abnormal
delays and thus we need a more detailed picture to reason about these errors. To draw deeper insights, we
plot the CDFs of delays experienced by all packets at 41 and A2 across all 5 runs for each configuration.
(Figure 3).

From Figure 3, it is clear that with INS-VT and APP-VT, most packets experience near identical delays
across experiment runs. That the delays are different is a result of the different ways of advancing virtual
time. INS-VT may be counting instructions that APP-VT does not directly attribute to advancing virtual
time, and/or the virtual delays APP-VT reports at the source code level don’t align precisely with counts
of instructions at the assembly language level.

Original TimeKeeper and uncontrolled execution show more spread out distributions. This can be
explained by Figure 4 which shows the ”per round overshoot” in virtual time for each mode. Since
TimeKeeper cannot always precisely control the execution burst duration (due to timer inaccuracies),
processes may overshoot or run a little bit extra during each round. For the original versions of TimeKeeper
this caused variance in execution behaviour across rounds within the same experiment and across different
experiment runs eventually leading to more spread out delay distributions. Overshoots are also common
in APP-VT as illustrated in the Figure, but aren’t an error, as the application state and associated virtual
time are in perfect alignment.

6.2 Measuring Overhead

To measure overhead associated with each mode, we compute the total number of client-to-server requests
which were completed per second of real time. A higher value indicates that the experiment is performing
more useful “work™ per second and thus it will take less physical time to complete a required amount of
“work”, or (equivalently) advance through a given length of virtual time. From Figure 5, we observe that
overhead associated with INS-VT is an order of magnitude higher than others because single stepping at an
instruction level is quite expensive. With TimeKeeper’s mechanism, overhead is low because scheduling
timers to control execution bursts is less expensive. The overhead associated with APP-VT is higher than
TimeKeeper because of the multi-step interaction between the TimeKeeper, Tracer and the application
process (Figure 1).

7 RELATED WORK

The concept of embedding virtual time in emulation is not new. In (Gupta et al. 2005), time dilation was
put forward as a potential solution to improve scalability of hybrid emulation-simulation systems. Time
dilation factor (TDF) was defined as the ratio of rate of progress of real time to virtual time. SVEET!
(Erazo et al. 2009) is a TCP protocol evaluation testbed built using the proposed time dilation technique.
It stresses on the importance of virtual time systems in performance analysis of emerging technologies
and demonstrates the cost benefits of time dilation by accurately predicting TCP performance on slower

3822

Babu and Nicol

hardware. In (Zheng et al. 2012), the authors adopt a new approach to advancing virtual time which
unlike Gupta’s solution, is less constrained by the advancement of real time. The proposed virtual time
system includes a virtual time control phase to decide how far each container should advance in virtual
time. Virtual synchrony is maintained by blocking containers which have advanced too far in virtual time
to allow others to catch up. This work is extended in (Jin and Nicol 2015) specifically to simulation of
software defined networks (using OpenVZ) and in (Yan and Jin 2017) using Linux containers. TimeKeeper
(Lamps et al. 2014) builds on them by bringing the notion of TDF to the forefront and allows more finer
control over process execution times with small modifications to the Linux Kernel.

8 CONCLUSION

Virtual testbeds are a critical tool needed to help assess the cyber-security (and/or assess the effectiveness of
cyber-security protection mechanisms) of embedded systems such as those that control the nation’s electric
power grid. A desirable attribute of a virtual testbed is an ability to be able to precisely repeat behavior,
given the same initial state and exactly the same sequence of events, or inputs. Such an ability would help
analysts to understand precisely the sequence of events leading to a vulnerability exploit, to understand
how any other unexpected behavior came to pass, or even to debug the software and models comprising
the virtual testbed.

However, it is difficult to guarantee repeatable emulations because the OS and underlying hardware
have behaviors the emulation does not control, which leads to variance that can affect reproducibility of
timings associated with inter process interactions. We saw that by changing how virtual time is advanced
and by controlling their execution order and duration, we can reduce some OS level interference effects and
improve repeatability. We illustrate these improvements through empirical evaluations with an open source
virtual time system for Linux called TimeKeeper. However, we noted that TimeKeeper’s reliance on OS
level timers to control execution bursts can still admit non-reproducible variances in execution behaviour.
We proposed and analyzed two alternative modes of virtual time advancement (1) APP-VT: the application
controls advancement of its own virtual clock and (2) INS-VT: each applications virtual clock is advanced
based on the number of instructions executed. We empirically demonstrated that with both APP-VT and
INS-VT one could achieve near perfect repeatability. APP-VT places the burden of defining virtual time
advance on the modeller but can be used with emulators where the measuring execution time or counting
instructions is not a good measure of virtual time advance. By contrast INS-VT is completely transparent
to the modeler. Of the three, the technique of measuring execution bursts has the least overhead but the
greatest demonstrated variability in behavior. INS-VT has the least demonstrated variability in behavior,
but the highest overhead. APP-VT is less than a factor of two times slower than original TimeKeeper, has
significantly better repeatability, but requires significantly more work on the part of the modeler to advance
virtual time than either original TimeKeeper or INS-VT. The modeller is thus ultimately left with a choice
to trade-off overhead with ease of implementation. In future work, we would explore the possibility of
creating simple and easy to use APP-VT interfaces and reduce overheads associated with INS-VT.

ACKNOWLEDGEMENT

This work was supported in part by the Siebel Energy Institute, in part by the Boeing Corporation, and
in part by Department of Energy under Award Number DE-OE0000780. Disclaimer: This report was
prepared as an account of work sponsored by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views and

3823

Babu and Nicol

opinions of authors expressed herein do not necessarily state or reflect those of the United States Government
or any agency thereof.

REFERENCES

Ahrenholz, J., C. Danilov, T. R. Henderson, and J. H. Kim. 2008. “CORE: A Real-time Network Emulator”.
In Military Communications Conference, 2008. MILCOM 2008., 1-7. IEEE.

Babu, V., and D. M. Nicol. 2016. “Emulation/Simulation of PLC networks with the S3F network simulator”.
In In Proceedings of the 2016 Winter Simulation Conference, edited by T. M. K. Roeder et al., 1475-1486.
Piscataway, New Jersey: IEEE.

Erazo, M. A., Y. Li, and J. Liu. 2009. “SVEET! a Scalable Virtualized Evaluation Environment for TCP”. In
Testbeds and Research Infrastructures for the Development of Networks & Communities and Workshops,
TridentCom 2009., 1-10. IEEE.

Gupta, D., K. Yocum, M. McNett, A. C. Snoeren, A. Vahdat, and G. M. Voelker. 2005. “To Infinity and
Beyond: Time Warped Network Emulation”. In Proceedings of the Twentieth ACM Symposium on
Operating Systems Principles, 1-2. Brighton, United Kingdom: ACM.

Jin, D., and D. M. Nicol. 2015, December. “Parallel Simulation and Virtual-Machine-Based Emulation of
Software-Defined Networks”. ACM Transactions on Modelling and Computer Simulation 26(1):8:1—
8:27.

Lamps, J., D. M. Nicol, and M. Caesar. 2014. “TimeKeeper: A lightweight Virtual Time System for
Linux”. In Proceedings of the 2nd ACM SIGSIM/PADS conference on Principles of Advanced Discrete
Simulation, 179—-186. Denver, Colarado: ACM.

Lamps, J., V. Babu, D. M. Nicol, V. Adam, and R. Kumar. 2018. “Temporal Integration of Emulation
and Network Simulators on Linux Multiprocessors”. ACM Transactions on Modeling and Computer
Simulation (TOMACS) 28(1):1-25.

NRL 2010. “Emane - Extendable Mobile AdHoc Network Emulator”. http://www.nrl.navy.mil/itd/ncs/
products/emane.

ONF 2016. “Mininet- An Instant Virtual Network on your Laptop”. http://mininet.org/.

Yan, J., and D. Jin. 2017. “A lightweight Container-based Virtual Time System for Software Defined
Network Emulation”. Journal of Simulation 11(3):253-266.

Zheng, Y., D. Nicol, D. Jin, and N. Tanaka. 2012. “A Virtual Time System for Virtualization-based Network
Emulations and Simulations”. Journal of Simulation 6(3):205-213.

AUTHOR BIOGRAPHIES

VIGNESH BABU is currently a Graduate student and Research Assistant in Electrical and Computer
Engineering at the University of Illinois at Urbana-Champaign. His research is primarily focused on
modelling and analysis of cyber security issues in the Smart Grid. His email address is babu3 @illinois.edu.

DAVID M. NICOL is the Franklin W. Woeltge Professor of Electrical and Computer Engineering at
the University of Illinois at Urbana-Champaign, and Director of the Information Trust Institute. He is the PI
for two national centers for infrastructure resilience: the DHS-funded Critical Infrastructure Reliance Insti-
tute, and the DoE funded Cyber Resilient Energy Delivery Consortium. His research interests include trust
analysis of networks and software, analytic modeling, and parallelized discrete-event simulation,research
which has lead to the founding of startup company Network Perception, and election as Fellow of the IEEE
and Fellow of the ACM. He is the inaugural recipient of the ACM SIGSIM Outstanding Contributions
award. He received the M.S. (1983) and Ph.D. (1985) degrees in computer science from the University
of Virginia, and the B.A. degree in mathematics (1979) from Carleton College. His email address is
dmnicol @illinois.edu.

3824

