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ABSTRACT

This work is motivated by the need for the Australian Defence Force to produce the right number of
trained aircrew in the right place at the right time. This necessitates the development of optimal recruitment
strategies while sustaining squadron capability within some risk tolerance. The challenge is that Defence
Aircrew training environments typically have highly variable failure rates and relatively small numbers
of students. We investigate three receding horizon strategies, each of which use inflated notional targets
with some deterministic assumptions to mitigate risk. The first strategy back-fills expected demand given
fixed targets; the second strategy dynamically chooses targets using Monte Carlo simulations; and the
third strategy incorporates Integer Linear Programming for partial solutions. We show that the first two
strategies scale well and maintain steady states, and that the second strategy successfully incorporates the
risk tolerance, resulting in an efficient and highly scalable strategy for the recruitment problem.

1 INTRODUCTION

Training manpower strategy typically refers to recruitment of new staff/students and scheduling of their
training to deliver expected standards of qualification over a given time period. In the area of training for
highly specialized skills, where the cost of training is high and available infrastructure and human resources
are limited, the problem can become complex.

Optimal recruitment and manpower supply strategies have been studied for a number of decades using
various approaches. Of particular interest is the degree to which Linear Programming models and Markov
Decision Processes are scalable to real Military and Commercial problems.

Our focus is on the efficient generation of trained Australian Defence Force (ADF) pilots, observers
and aircrewman. This problem has a number of unique features, one of which is the requirement that
some graduated students become instructors rather than exclusively supplying manpower for squadrons,
generating a feedback loop in the scheduling process. While instructors external to the ADF are sometimes
available, they are costly, and their exclusive use has other drawbacks. Furthermore, recruitment into all
courses is limited but controllable, student numbers are relatively small, and failure rates are significant
and highly variable. These features, taken together, limit the usefulness of existing manpower planning
and training scheduling approaches in this domain.
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Linear Programming (LP) and Integer Linear Programming (ILP) have been common deterministic
approaches to recruitment/manpower supply optimization. Here the search is for optimal values of a
linear supply model, constrained by linear inequalities. In the ILP formulation, variables are additionally
constrained to be integers. For example, Akinyele (Akinyele 2007) used ILP for the determination of
effective manpower size incorporating global constraints such as production capacity/demand rate and
allowable time-of-operation into the model to take into account differences between different countries’
development times. Azimi (Azimi et al. 2013) used LP to allocate staff within a setting of an Iranian
beverage company. Regarding the computational complexity of linear programming, it has been observed
in practice that the the number of steps required by the simplex method to solve a problem with m equality
constraints in n nonnegative variables is typically a small multiple of m, say 3m (Cottle 2003). Notably,
Borgwardt, Smale and Haimovich have established that the simplex method is on average a linear-time
method in a certain natural probabilistic model (Schrijver 2011). LP has unbounded complexity when
dealing with real numbers (Traub and Woźniakowski 1982). Such results clearly indicate that the suitability
of LP is largely determined by the data types, how the problem is formulated and, in particular, the
number of constraints. Most importantly the LP approach solves the optimization problem in a single
stage. That is, all recruitment, training continuum manpower supply (as in students per course per year)
and instructor constraints collectively delineate the feasible region, which is a convex polyhedron, and the
solution algorithm (typically the simplex method or a variant of Karmarkars algorithm, unless stochastic
formulations are used for varying constraint parameters) performs the optimization in a single process. In
this paper, we overcome the single step process by creating a simulation environment which interacts with
the ILP optimizer.

In previous work, the authors successfully applied ILP approaches to the solution of related ADF
timetabling problems. To simplify these problems, the variability associated with course pass rates was
ignored, the pass rates being replaced by their respective means, i.e., expected values. This rendered the
problems as deterministic and amenable to ILP methods. In particular, we applied, on the one hand, a
novel combination of a standard ILP approach in conjunction with a fast technique for solving inexact
cover problems (Nguyen et al. 2018) and, on the other hand, an advanced ILP method, namely column
generation (Kirszenblat et al. 2017). It is worth noting that in the case where the pass rates are replaced
by their respective means, the solution is referred to as the expected value solution (Birge 2011). One
drawback of the expected value solution is that it may no longer be optimal, let alone feasible, when the
real-world variability of course pass rates is taken into account. For example, in the context of optimizing
recruitment, an unusually low course pass rate could result in a failure to meet target capabilities when
following the expected value solution, whereas an unusually high course pass rate could result in a failure
to respect class capacity constraints in subsequent courses when following the expected value solution.

A primary concern of this paper is the inclusion of risk in the problem formulation, in particular, the
risk of failing to meet capability targets. As such, it is necessary to incorporate the random elements
(pass rates and squadron attrition rates). Consequently, deterministic approaches such as ILP methods have
been found to be inadequate when used alone. In order to mitigate the risk of failing to meet capability
targets, it is clearly necessary to increase the number of students in the training continuum, which is at
odds with the objective of minimizing the expected number of students in the system. To estimate risk,
we have considered the introduction of probabilistic or chance constraints (Charnes and Cooper 1963) and
Monte Carlo simulations. We have also considered local search and simulated annealing as ingredients of
a stochastic optimization algorithm (Dimitris Bertsimas 1997).

Markov Models, on the other hand, model recruitment and manpower training as a stochastic dynamic
system. One of the earlier developments of this approach is that of Bartholomew (Bartholomew 1971),
where basic recruitment and progression-through-training are defined as prior probabilities of being accepted
into a program and progression defined in terms of Markov transition matrices. This basic model has been
applied to a wide range of domains, using Dynamic Programming (DP), and extended to model required
training continuum numbers (see, for example, Mehlmann (Mehlmann 1980)).
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For example, Udom (Udom 2013) has developed a Markov Decision Process (MDP) for optimal control
of a Multi-level Hierarchical Manpower System (MHMS) dealing with department transfers and related
movement of staff through organizations. The complexity of DP varies with the number of states and
action and the search horizon (Chow and Tsitsiklis 1989). In contrast to LP, DP becomes exponential in
complexity when states are continuous or even fractional. That is, they are best when dealing with in
discrete, often categorical states. However, even with discrete states MDPs are not always scalable. In our
previous work, we provided an elegant MDP solution to a simplified version of the aircrew recruitment
problem. In concurrent work (Pike et al. 2018) we consider a model using Delta matrices.

In this paper we a) describe our modeling of the training continuum; b) consider three solutions to
a full scale, real aviation training optimization problem in the Australian Defence Force; and c) provide
results from experimentation with a demonstration scenario and discuss the relative merits and scalability
of each model. Here, the objective is to minimize the number of recruits and the overall number of students
in the system, subject to attaining squadron capability below a specified level of risk.

2 AIRCREW TRAINING PIPELINES

The Australian Defence Force provides training for various aviation-related personnel including aircrew,
engineers and technicians. Training commences through one of the recruitment agencies such as the
Australian Defence Force Academy (ADFA), the Royal Naval College (RNC), and others including direct
entry. After recruitment, in the case of pilots, applicants undergo initial flight screening to assess their
aptitude for the job. Successful applicants are then officially enrolled in the pilot training stream. In a
temporal sense, the bulk of aircrew training consists of a linear sequence of major courses that constitute
the backbone of the training continuum. In addition, students have to complete a number of mandatory
short courses that are limited in prerequisite structure. Both short and long courses are run repeatedly
throughout a term with a fixed number of repetitions.

The ADF aircrew training pipelines are susceptible to a great deal of variability, from changes to student
intake, through to changing policies and aircraft types. Each change triggers a chain of events that unfold
over terms and years into the future. Taking into account these interdependencies and how to manage
them is critical for planning. The difficulty in managing the aviation training continuum, particularly for
pilots, is further exacerbated by the high and extremely variable course failure rates, making it difficult
to construct reliable predictions of numbers of students feeding into operational squadrons. Given that
adequate resourcing of training schools is crucial to achieving capability, even small fluctuations in supply
can be extremely costly, which makes obtaining an optimal recruitment strategy even more important.

We model the ADF training continuum as a directed pseudo-graph G = (V,A) where the vertices are
made up of intake pools (P), courses (C) and squadrons (Q), and the set of arcs (A) defines the possible
progressions of each of the recruit types (R) through the program (see Figure 1).

Here, the intake pools are assumed to have an unlimited number of recruits available at any time. Each
course repetition constitutes a session (s ∈ S), where session start/end times (σs,εs), maximum capacities
(Ms), and further capacity limits per recruit type (Ms,r) are predefined known quantities. The number of
enrolled students who pass is sampled from a Beta-Binomial distribution with mean µi and variance fitted
to historical data. If recruits pass the course, they enter a waiting buffer, otherwise they leave the system.

Each squadron has a target manpower (Ov), where dropping below this target is considered a failure
to meet capability. To reduce the probability of this event, the target may be increased (by βv) to form a
notional target. Squadrons are subject to random annual attrition of proportion ξv on average.

We define risk as the probability of a squadron going below the capability target in a given year; and
the risk tolerance ρ∗ as the acceptable risk of this event in each year over the horizon (Y = 10 years /
T = 120 months). Therefore, the objective is to determine the minimum number of recruits, along with
optimal movements of recruits throughout the continuum, such that the risk tolerance is attained by all
squadrons. A solution is found for the full 10 years but presented as a 12 month schedule of movements
for each arc in the graph (X t

a,r). An updated solution is created each year, forming a receding horizon.
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Figure 1: Example of a training continuum.

A real world concern is to support individual morale of recruits in training by preventing situations in
which they spend large amounts of time waiting between courses. Since our model represents people in
aggregate, this concern does not feature explicitly in our model; instead it is addressed indirectly via the
minimization of recruits in the system. We also exclude consideration of individuals’ eligibility to leave the
system, and their individual likelihood of leaving based on rank, demography and other factors; instead we
ensure that known attrition rates are attained on average over the horizon. This excludes the possibility of
using a higher fidelity attrition model, but facilitates modeling numbers in aggregate - a key simplification.

3 THREE MODELS

In this paper we propose three models for solving the recruitment problem:

1. The Proportional Back-Filling (PBF) algorithm rapidly back-propagates expected demand, based on
mean pass rates and mean attrition rates, given session capacities and initial recruits in the system.
No risk calculation is performed, instead a predefined inflation figure determines the notional targets.

2. The Proportional Back-Filling — with Risk (PBF-R) strategy utilizes the PBF algorithm, but replaces
the hard coded target inflation figure with a dynamic value, determined by estimating risk via Monte
Carlo simulation against the risk tolerance ρ∗.

3. The Integer Linear Programming — with Risk (ILP-R) algorithm employs PBF for the preliminary
region of the graph, and solves the remainder using Integer Linear Programming. Notional targets
are determined dynamically in the same manner as PBF-R.

3.1 Proportional Back-Filling (PBF)

The PBF algorithm back-propagates expected demand at each node, at each time-step. This is computed
in a single pass across the training graph, from squadrons to intake pools, along a reverse topological sort.

Each squadron’s demand for recruits is modeled on mean attrition rates, with a notional target inflated
by η = 10%. The squadron’s current state (below/at/exceeding target) influences the initial demand in
order to correct the difference from the notional target.

Demand is back-propagated along the courses, temporally offset according to session lengths, and in
accordance with session capacities. The preference is to satisfy outgoing demand using recruits already in
the waiting buffers, or currently in training. Otherwise, enrollments in future sessions are scheduled, and
demand is pushed back to earlier nodes.

The demand eventually calculated for the intake pools represents the numbers of new recruits to
introduce into the training continuum at each time-step.

The back-propagation is computed using incoming demand vectors (φ(v)) and outgoing demand vectors
(ψ(v)) for nodes, and demand vectors λ (a) for arcs. Pseudo-code for the PBF algorithm is provided in
Algorithm 1, and full details of the demand vector calculations are provided in Appendix A.
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Input: P,C,Q,A,s0 (the initial state)
Output: φ ,ψ,λ
for q ∈ Q do

ψ(q)← calculateSquadronOutgoingDemand(λ ′)
φ(q)← calculateSquadronIncomingDemand(ψ(q),s0)
{λ (a1), . . . ,λ (an)}← calculateArcDemandApportionment(φ(q),π), for ai ∈ in(q)

end
for c ∈ reverse(toplogicalOrder(C,A)) do

ψ(c)← ∑a∈out(c) λ (a)
φ(c)← calculateCourseIncomingDemand(c,ψ(c),s0)
{λ (a1), . . . ,λ (an)}← calculateArcDemandApportionment(φ(c),π), for ai ∈ in(c)

end
for p ∈ P do

ψ(p)← ∑a∈out(p) λ (a)
end
return φ ,ψ,λ

Algorithm 1: Pseudo-code of PBF algorithm.

3.2 Proportional Backfilling with risk (PBF-R)

The PBF-R model replaces the fixed inflationary value of PBF (η) with a dynamically determined notional
target specific to each squadron. These notional targets are determined by estimating squadron risk via
Monte Carlo simulation, then incrementing the notional targets for squadrons still at risk. This is repeated
until all squadrons satisfy the risk tolerance, or a maximum number of iterations is reached. Full details
of the risk estimation and notional target incrementing are provided in Appendix C.

During risk estimation, within each Monte Carlo run, the PBF algorithm is rerun each year. This leads
to greater responsiveness to the realization of stochastic events, and a more accurate risk estimate.

Aside from the dynamically determined notional targets, PBF-R is identical to PBF. In situations where
the notional targets have been precomputed for a given graph, it is sufficient to run the PBF algorithm with
those notional targets fixed.

3.3 Integer Linear Programming with risk (ILP-R)

The training graph can be divided into two subgraphs: the region in which the subgraphs for the individual
recruit types each form a tree structure (which includes the squadrons), and the remainder of the graph
(which includes the intake pools).

We formulate an ILP model which solves the optimal movements across the tree part of the graph. The
objective function minimizes the number of recruits in the system, subject to satisfying the session timings,
capacities, the initial state the system, and squadron notional targets. Squadron attrition is modeled based
on average yearly attrition. Since it is sometimes unavoidable that squadrons are below target, squadron
target constraints are implemented as soft constraints, where dropping below target is heavily penalized.
The full formulation of the ILP is provided in Appendix B.

A solution to the ILP model yields expected demand at the midpoints of the graph onwards, forming
a partial plan. From there, the PBF algorithm is used to back-propagate the demand to the initial intake
pools, augmenting the ILP solution to form a complete plan.

ILP-R incorporates risk in the same manner as PBF-R, by estimating risk, and incrementing notional
targets, as described in Appendix C. However, the computational cost of solving the ILP makes it infeasible
to re-plan each year within each Monte Carlo run during risk estimation. Note, however, that ILP-R is still
re-run each year (as per receding horizon model) when evaluating the strategy in the simulator.
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4 RESULTS

4.1 Simulation engine

A purpose built simulation engine written in Java 1.8 forecasts the results of following each strategy.
One stochastic element is the random pass rates for each session of each course. This may naturally be

modeled with a Binomial distribution with mean pass rate µi estimated from previous sessions. However,
an analysis of historical data revealed that the actual pass rates exhibited greater variance than the Binomial
distribution. So instead, we model pass rates with a Beta Binomial distribution where α,β are fitted to
historical data using Maximum Likelihood Estimation and Method of Moments where necessary. This
method still attains the mean historical pass rate, but with increased overall variance, since µi is sampled
from a Beta(α,β ) distribution each time.

The other stochastic element is squadron attrition. In the real world scenario, there are constraints on
when individuals can leave based on individual deployments and minimum time spent in the system. Since
the simulator models recruits in aggregate, we instead model attrition according to a Poisson distribution
with parameter λ = ξvB(t)

v /12 at time t, which attains the mean yearly attrition ξv observed in historical
data. To counteract squadron attrition, newly trained recruits are sent to squadrons immediately. In the
case where multiple squadrons draw from the same terminal waiting buffer, we calculate the target delta
∆v = B(t)

v −Ov for each squadron, and send each newly trained recruit to the squadron with the least ∆v.
This ensures that squadrons most significantly below target have priority for new recruits, and also results
in a fair distribution when squadrons are above target.

4.2 Scenario Description

Due to the sensitivity of the real world data, we present a simplified demonstration scenario with 4 recruit
types, 2 pools, 10 courses and 4 squadrons, shown in Figure 1. Average pass rates range between 50%-100%,
and squadron average attrition rates range from 10% - 15% per year. The initial state is determined by
filling each ongoing session to 50% capacity, and waiting buffers at 50% of the most recently completed
session capacity. Squadrons are initialized at varying levels below, at, and above their respective targets.

Each of the strategies PBF, PBF-R, and ILP-R are run for 20 Monte Carlo runs with a risk tolerance
of ρ∗ = 10%. The squadron sizes over time, relative to the target, are recorded, along with the average
size across the Monte Carlo runs. This scenario is also used to explore the effect of modifying the risk
tolerance in the range 1%−50%, when using the PBF-R algorithm.

4.3 Scenario Results and Discussion

The results for each strategy at 10% risk tolerance can be seen in Figure 2, showing the individual and
average sizes for each squadron/type over the horizon, relative to the target number.

At the 10% risk tolerance, the PBF and PBF-R algorithms achieve a steady state for all squadrons.
Subsequent experimentation showed that this steady state is maintained over longer horizons up to 30
years. The buffer created on average by PBF is indeed approximately 10% higher than the target, as per
the η parameter used. It is unclear whether the positions of the steady states attained by PBF-R differ
significantly from those of PBF, despite the notional targets being dynamically determined.

In contrast, the ILP-R results show significantly greater variability, and higher numbers on average,
and it is unclear whether steady states are achieved within the horizon. We suggest two possible reasons:

1. The risk estimation method used by ILP-R does not re-plan within each Monte Carlo run, instead
following a fixed plan over the 10 year horizon. When stochastic events are realized, it is harder to
stay above target when constrained by a fixed plan, compared to regular re-planning. Hence, ILP-R
will tend to produce higher risk estimates compared to PBF-R (which re-plans yearly, within each
Monte Carlo run), and aim for higher notional targets, as appears to be the case in these results.
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Figure 2: Squadron numbers relative to target for PBF, PBF-R, ILP-R at 10% risk. Thin lines are individual
play outs, thick line are the averages, and the thick dotted lines represent the operational targets.

2. The augmenting of the ILP solution with the PBF solution for the earlier region of the graph can
invalidate the assumptions of the ILP solution - in particular, the number of recruits available at
the midpoint at each time-step may be limited by the number currently in the pipeline, a factor
ignored in the ILP model. This may explain some of the increased variability in the ILP-R results.

Furthermore, when testing ILP-R on larger scenarios (eg. 100+ nodes), we found that the time taken to
solve the ILP (using CPLEX 12.7 on an i7 machine) varied significantly depending on the initial conditions,
with computation times ranging from 5-120 seconds. This cost is incurred multiple times in each year,
in each simulation run. In a practical context, this would necessitate an ILP optimality gap tolerance,
or time limit, either of which would weaken the optimality of the solution. In contrast, the PBF and
PBF-R strategies perform single passes through the training continuum, resulting in an approximately
linear increase in computation time as the graph grows.

The models can be differentiated based on their relative responses to the risk tolerance. Where PBF
ignores the risk tolerance (aiming for a fixed inflation of the notional target), and ILP-R overestimates
risk and notional targets (for the reasons given above), PBF-R dynamically chooses the minimum notional
targets which are expected to attain the risk tolerance over the horizon, on the assumption that regular
re-planning occurs.

The effect of reducing the risk tolerance with PBF-R can be observed in Figure 3, depicting the average
numbers for SQN C (nav-2) for risk tolerances of 50%, 10%, 5% and 1%. In general, the more stringent
the risk tolerance, the higher the notional target must be to stay above capability target with the specified
probability. At 50% risk tolerance we expect the average to be close to the target, which is observed in
these results. Lowering the risk tolerance to 10% and 5% result in an average buffer around 25%-30%
above the target. At the 1% tolerance level, an average buffer around 40% above the target is maintained.
Comparable responses are observed with the other squadron/types. Although a comparison of target vs.
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observed risk is required to fully validate the risk estimation of the PBF-R strategy, these results show
correct and reasonable adjustments of behavior to a tightening of the risk tolerance.

Figure 3: How PBF-R responds to reductions of the risk tolerance (for SQN C, nav-2).

5 SUMMARY

In this paper we have considered the problem of estimating minimum recruitment required to maintain
squadron capability with a specified risk tolerance, over a 10 year horizon. Building on lessons from
previous research efforts using LP and MDP, we have focused on heuristic and simulation-optimization
(ILP) solutions which are capable of scaling up to large problems, while retaining the full set of constraints.
The PBF strategy back-propagates expected demand using mean attrition and mean pass rates, with fixed
notional targets. PBF-R incorporates a specified risk tolerance by dynamically determining notional targets
via risk estimation and Monte Carlo sampling. ILP-R introduces an ILP model to find partial solutions.

Regarding computation time: each of the strategies efficiently computes a solution for the demonstration
scenario (PBF: 1-2ms, PBF-R: 1-2 seconds, ILP-R: 2-5 seconds). However, we find significant differences
when applied to the full scenario, where PBF and PBF-R computational times increase linearly, and ILP-R
computation times become highly variable (PBF: 5-10ms, PBF-R: 5-10 seconds, ILP-R: 5-120 seconds).

Regarding quality of solutions: while we have optimality guarantees for ILP in general, we conclude
that the value of this in the ILP-R strategy is undermined by the incompleteness of the solution, plus the
significant computation cost preventing re-planning during risk estimation. By contrast, PBF-R provides a
complete solution, where, critically, the risk estimation phase accommodates the assumption of re-planning.
We observe that PBF and PBF-R successfully maintain steady states which are close to the desired notional
targets on average, and that PBF-R effectively incorporates the desired risk tolerance by responding with
proportional elevations of the notional targets.

In summary, we conclude that PBF-R constitutes a reasonable and efficient heuristic strategy for
controlling the flow of recruits through a training continuum, subject to risk tolerances defined for the
squadron targets. Finally, we note that if PBF-R is used to pre-compute the optimal notional targets, then
it is sufficient to run PBF with those targets fixed, resulting in an extremely efficient and highly scalable
optimization strategy for the recruitment problem.
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APPENDIX A: Calculation of Demand Vectors in PBF Algorithm

The calculation of incoming and outgoing demand vectors is dependent on the node type (squadron/course/pool).
Calculating outgoing demand (squadron) : Let αv = dY ·Ov ·ξve approximate the total

number of recruits who leave squadron v over the horizon. The departures are spread evenly throughout
the outgoing demand vector at times ti =

⌊
i T

αq,r

⌋
+1, for i ∈ {0, . . . ,αv−1}, so ψt(v) := 1.

Calculating incoming demand (squadron) : Initialize the incoming demand to equal the
outgoing demand, φ(v) := ψ(v). Denote the notional target as O′v = Ov +βv, and denote the difference
been current number and notional target as ∆v = O′v−B(0)

v . If ∆v > 0, the squadron is currently below the
notional target, and the gap is added to the incoming demand vector: φ1(v) := φ1(v)+∆v. If ∆v < 0, the
squadron is above the notional target, and the incoming demand for the first |∆v| attrition events is reset
to 0, satisfied instead by the existing excess of members.

Calculating arc demand: When arcs a1, . . . ,an enter node v, then the incoming proportional
branching constants πai given in configuration determine the demand allocated to each arc: λi(a j) :=
[πa j φi(v)]. Some fair integer apportionment logic and random tie breaking is used to avoid fractional
amounts without bias. When a node has a single incoming arc, πai = 1, so λ (a) := φ(v).

Calculating outgoing demand (course/pool): The outgoing demand for courses and pools
is simply the sum of the demand vectors of the outgoing arcs: ψi(v) := ∑a∈out(v) λi(a)

Calculating incoming demand (course): The incoming demand for a course is computed
from the outgoing demand, combined with the current state, with a preference for using existing people in
the course over pushing demand back. Each time-step t = 1 . . .T is considered in turn, and the outgoing
demand ψt(v) is met according to the following preference order:

1. Reserve people currently in the waiting buffer
2. Reserve people currently enrolled in ongoing session s, if εs < t
3. Enrol people in future session s (where εs < t), if s has spare capacity (prefer later sessions)
4. Enrol people in future session s (where εs ≥ t), if s has spare capacity (prefer early sessions)

For (2), (3), (4), the mean pass rate is used to estimate the number emerging from each session.
(3) and (4) ensure that when there are insufficient people currently in the course to satisfy outgoing

demand, we will meet the demand either in time, or, as soon as possible afterwards. Only in cases (3)
and (4) is the incoming demand vector modified φσs(v) := φσs(v)+n, where n is the number of additional
enrollments estimated to satisfy the demand at t. Hence, when demand is back-propagated, it is offset in
time depending on the lengths and timings of the selected sessions.

In general, the demand at time t may be satisfied by via a combination of (1)-(4), and by creating
enrollments across multiple sessions. If (4) occurs often, or (1)-(4) are exhausted altogether, this indicates
a bottleneck in the training continuum, and the scenario may be infeasible.

Solution: The actions for 1≤ t ≤ 12 are extracted from λ as follows: X (t)
a,r := λt(a),∀a ∈ A

APPENDIX B: ILP Formulation

Variables: All decision variables are in Z≥.
B(t)

v,r recruits in v (session, waiting buffer, squadron) of type r at time t
X (t)

a,r recruits moved along arc a of type r at time t
Ls,r loss from session s of type r, (i.e. failed students)

G(t)[δ ]
q,r δ ’th degree gap - the gap between squadron number and notional target, offset by δ

The B variables for courses represent the waiting buffers. The B variables for sessions are defined
only for the first time-step of the session, since session enrollment numbers do not change. The following
variables are for notational convenience only, aggregating the incoming and outgoing flow respectively:
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X (t)
→v,r = ∑

a∈in(v)
X (t)

a,r , X (t)
v→,r = ∑

a∈out(v)
X (t)

a,r ,

Objective: The ILP objective is to minimize the number of recruits in the system, calculated as the
incoming number, plus the number in waiting buffers, sessions and squadrons, integrated over the horizon:

γr =
T

∑
t=1

[
∑
p∈P

∑
r∈R(p)

X (t)
p→,r + ∑

c∈C
∑

r∈R(c)
B(t)

c,r + ∑
q∈Q

∑
r∈R(q)

B(t)
q,r

]
+∑

s∈S
∑

r∈R(s)
(εs−σs +1)B(σs)

s,r (1)

The sum of the gap variables approximates a quadratic function of the actual gap, up to some degree
∆, and a large cost (k = 1000) is attached:

γs =
T

∑
t=1

∑
q∈Q

∑
r∈R(q)

∑
δ∈{0...∆}

G(t)[δ ]
q,r (2)

So the objective function is simply the weighted combination: minγr + kγs
Constraints: All B0

∗,∗ variables are constrained by equality according to the initial state of the system,
given as input, where each pool has a sufficiently large number to meet intake over the horizon (eg. 1000).
Movements are defined for t ∈ {1, . . . ,T} only.

The in/out flow constraint for pools, waiting buffers and squadrons:

B(t)
v,r = B(t−1)

v,r +X (t)
→v,r−X (t)

v→,r ∀v ∈ P∪C∪Q,r ∈ R(v),1≤ t ≤ T (3)

Session enrollment numbers:

B(σs)
s,r = X (σs)

→s,r ∀s ∈ S,r ∈ R(s) (4)

The transfer from session s to waiting buffer c incurs a loss of Ls,r students, where Ls,r is the rounded
result of the enrolled number multiplied by the mean failure rate. The parameter ζ ∈ (0,1] determines the
direction of rounding, and ζ = 0.5 was used in our model for midpoint rounding:

(1−µc)B
(σs)
s,r +(ζ −0.999)≤ Ls,r ≤ ζ +B(σs)

s,r (1−µc) ∀s ∈ S,r ∈ R(s) (5)

X (εs)
s→c,r = B(σs)

s,r −Ls,r ∀s ∈ S,r ∈ R(s) (6)

The overall and type-specific session capacities respectively:

B(σs)
s,r ≤Ms,r ∀s ∈ S,r ∈ R(s) (7)

∑
r∈R(s)

B(σs)
s,r ≤Ms ∀s ∈ S,r ∈ R(s) (8)

The following constraints calculate the gap variables. Since the gaps are minimized in the objective function,
all gap values will be zero when the squadron is at or above the notional target.

B(t)
q,r +G(t)[0]

q,r ≥ Oq,r +βq,r ∀q ∈ Q,r ∈ R(q),1≤ t ≤ T (9)

G(t)[δ ]
q,r ≥ G(t)[δ−1]

q,r −1 ∀q ∈ Q,r ∈ R(q),δ ∈ {1, . . . ,∆},1≤ t ≤ T (10)
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Finally, a vector A(q,r) of average attrition over the horizon is computed for each squadron/type, identical
to the outgoing demand vector ψ(v) of PBF-R. This defines the squadron outflows to a null node /0:

X (t)
q→ /0,r = At(q,r) ∀q ∈ Q,r ∈ R(a),1≤ t ≤ T (11)

Solution: The one year action plan is taken directly from the decision variables, X (t)
a,r , for 1≤ t ≤ 12.

APPENDIX C: Risk Estimation and Determination of Dynamic Notional Target

PBF-R and ILP-R use the same procedure to estimate squadron risk each year, conditional on the strategy:

1. Run N = 1000 Monte Carlo runs, each following the strategy
2. For each squadron/type v:

(a) For each year y ∈ {1, . . . ,Y}, count the number of runs f (y)v in which the squadron fell below
the target for any duration in the year (i.e. failed)

(b) Estimate the risk of each v in each year as ρ̂
(y)
v = f (y)v /N

(c) Estimate the overall risk of v over the horizon ρ̂v as the arithmetic mean of the yearly risks
3. Compute the maximum estimated risk of any squadron/type, ρ̂ = max{ρ̂v, . . .}

Note that a solution is considered acceptable when ρ̂ ≤ ρ∗. Step (1) can be sped up considerably with
halting conditions based on confidence intervals around squadron risk. The choice of arithmetic mean to
aggregate the squadron risk over the horizon in step (2c) ensures that high risk during the initial period (often
unavoidable given the initial state) does not render the problem infeasible. However, other aggregation
functions such as the maximum risk, or weighted linear combinations of the years, may be reasonable.

To determine the ideal target inflation βv for each squadron/type, an iterative process is used, where risk
is estimated, and notional target incremented, until all squadrons satisfy the risk tolerance (or maximum
iterations reached - in our demonstration scenario, we set this to 10):

1. Initialize all βv = 0
2. Until risk tolerance is attained by all squadrons (or maximum iterations reached):

(a) Estimate the risk of each squadron, given the current strategy and βv boosts
(b) Identify which squadrons are above the risk tolerance - F = {v : ρ̂v > ρ∗}
(c) If |F |= 0, return the current plan as the solution
(d) Otherwise, for each v ∈ F , increment the target boost value: βv := βv +1

3. If maximum iterations reached, select the solution from the iteration with the best risk result

Regarding Step (3): it is not the case in general that the final iteration produces the best risk result. To
select among the iterations, we define a risk vector for each iteration containing the ordered risks of each
squadron, [ρ̂(1) ≥ ρ̂(2) ≥ . . .≥ ρ̂(n)]. The iteration with the lexicographically least risk spectrum is selected.
However, other approaches may be reasonable such as the minimax risk, the minimum mean risk, etc.
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