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ABSTRACT 

The problem of determining optimal naval gun firing patterns for engagement of manoeuvring surface 
targets using traditional simulation approaches is computationally intensive, particularly for large salvo 

sizes. A simplified modelling technique based on representing warhead effects using Gaussian function 
approximations calibrated from more detailed modelling is reported here. The simplified model permits the 
parameter space defining lay-down of rounds in a firing pattern to be searched so as to determine optimal 
patterns that maximise salvo probability of kill. The method employs Newton’s method to formulate a 
system of equations defining local extrema, which are then solved using Gaussian elimination. These 
extrema are then searched to obtain the pattern that maximises salvo kill probability. This paper presents 

the underlying theory and gives initial results obtained using the model calibrated for an illustrative example 
from a more detailed model. 

1 INTRODUCTION 

A naval gun system can engage a manoeuvring surface target by firing a salvo of rounds at a predicted 
position of the target. Engagement success is compounded by possible target manoeuvres which occur 
during the fly out of the rounds to their aim points. Target manoeuvres can be countered by adopting a 

firing pattern where the rounds in a salvo are laid across a movement zone defined by possible target 
manoeuvres considered across the flight time of the rounds. A firing pattern is therefore defined as a set of 
aim points laid across a projected movement zone for the target. A problem of interest is to determine aim 
points for individual rounds in a salvo so as to maximise the salvo’s kill probability against a manoeuvring 
target. These aim points can then be employed by a gun fire control system when engaging a target given 
its range, velocity and manoeuvre assumptions. 

 Friedman (2013) provides a general discussion of the employment of firing patterns by navies to combat 
manoeuvring targets. For analysis purposes, Monte Carlo simulations employing models for target tracking, 
projectile ballistics and warhead effects permit investigation of firing patterns given engagement situation 
assumptions. These models can be used to determine firing patterns for employment by naval gun systems. 
A restriction with this approach, however, is the extensive parameter space requiring study so as to 
determine optimal firing patterns, particularly as the problem size grows combinatorically with increase in 

salvo size.  
Analytical techniques offer potential to complement Monte Carlo simulation by helping to rapidly 

explore a large parameter space and identify areas for more detailed study with simulations. As an example, 
Mirshak et al. (2010) used Monte Carlo simulations to determine of probability of kill per burst for ship 
defence against small boat attack. The specific problem of determining round placement within a firing 
pattern for defence against small boat attack has been considered by Young (2017), and it is this work that 

provides the problem context for the analysis presented here. 
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2 PROBLEM DESCRIPTION 

The engagement problem can occur when a ship is defending itself from attack by one or more small 
manoeuvring boats. For a single target the defending ship fires a salvo of rounds from a single gun system 
at a projected target location. The aim point for an individual round aim can be obtained from a ballistics 
solution of the projectile intercepting the target taking into account projected target movement over the fly-
out time of the projectile. Round effectiveness will therefore depend on the tracking accuracy, target 

velocity, range-to-target, projectile ballistics and warhead effects. The problem is further compounded by 
the target manoeuvring after the firing of the round. Salvo fire, with round detonation times staggered by 
the gun firing rate, permit increased engagement success – partly by the increased opportunities to kill the 
target, but also due to a lay down of fire across locations arising from possible target manoeuvres.  
 A general problem description is given in Young (2017), who also presented techniques to obtain salvo 
kill probability by integrating the aim point lethal zone for each round in the salvo across the target 

movement zone. As the rounds detonate sequentially, the target movement zone is updated for each 
consecutive round given the detonation points of the previous rounds. The target movement zone is also 
projected forward in time to the detonation time for the next round. Given the dependence of individual 
round kill probabilities on placement of earlier round aim points, the problem is computationally intensive 
to solve through simulation, solution time growing exponentially as the salvo size increases.  

Figure 1(a), taken from Young (2017), shows the following key aspects of the problem, represented as 

probability distributions, for a 4-round salvo against a target approaching the firing ship: 
 

 Target track distribution at the time the salvo commences to fire, shown in blue. This distribution 
results from target tracking errors and comprises target location, heading and velocity. The mean 
direction of travel for the target in Figure 1(a) is from right to left. 

 Target movement zone, shown in green. This applies target manoeuvre assumptions over the target 

location distribution for the time period of the projectile fly-out following the firing of the gun. The 
movement zone will grow and translate to the left as each subsequent round in the salvo arrives and 
detonates. The zone shown in Figure 1(a) is for the last round of the 4-round salvo. 

 Aim point lethal zone, shown in yellow/orange, laid over a portion of the target movement zone. 
The aim point lethal zone arises from an aggregation of the warhead lethal zone across a probability 
distribution for warhead detonation which results from projectile ballistic dispersion errors given 

an aim point. The warhead lethal zone for a given detonation point comprises target kill 
probabilities across locations relative to the detonation point. The kill probabilities are obtained 
from a warhead fragmentation model. 

 Maximum Probability of Kill (PK_MAX) curves for each round in the salvo. Each curve stretches 
across the breath of the target movement zone at the time of the round’s detonation. Each point on 
a PK_MAX curve represents the optimal lead offset, ahead of the target track (the horizontal direction 

from right to left in Figure 1(a), for the aim point to maximise kill probability given the 
corresponding lateral offset [in the vertical direction of Figure 1(a)]. 

 
Young (2017) demonstrates how to construct the PK_MAX curves numerically and use them to determine 

salvo PK. The dependence of warhead PK’s for each round on lateral distance across its corresponding 
PK_MAX curve is shown in Figure 1(b). Salvo PK is obtained by, in sequence: placing each round at a position 

on its PK_MAX curve, updating the target movement zone to reflect target survivability from the round, 
projecting the movement zone to the detonation time of the next round, and constructing the next round’s 
PK_MAX curve. The PK_MAX curves for the second and subsequent rounds therefore depend on placement of 
earlier rounds. This makes the process computationally intensive for determination of an optimal placement 
of all rounds so as to maximise salvo PK. 
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Figure 1: Four round results from Young (2017): (a) round laydown; (b) warhead PK dependence on lateral 
distance from PK_MAX curves. 

The firing pattern shown in Figure 1(a) was obtained using the following heuristic approach:  
 
 The first and second rounds were placed at offsets corresponding to the peaks of their PK_MAX curves 

so as to maximise their kill probabilities, i.e. 0 m lateral offset for rounds 1 and 2 with 

corresponding PK’s of 0.09750 and 0.06878. 
 A local search about the round 3 PK_MAX curve peak was performed for placement of its aim point 

so as to maximise salvo PK. For each round 3 position considered, the PK_MAX curve for round 4 
was reconstructed and used to position round 4 at its peak. This process yielded offsets of 9.6 m 
and -14 m with PK’s of 0.04706 and 0.03660 for rounds 3 and 4. The resulting salvo PK was 0.24997. 

 

This heuristic approach is not guaranteed to produce a global optimum. For larger salvo sizes a greater 
degree of local search would have to be employed to prevent excessive computer run times, but potentially 
reducing the “goodness” of the solution found. The remainder of this paper outlines an alternative method 
investigated to permit determination of firing patterns which maximise salvo PK. 

A simplified modelling technique is presented which adopts Gaussian function approximations for 
maximum probability of kill curves and warhead effects. The approach permits local extrema defining firing 

patterns that maximise salvo probability of kill to be found. Newton’s method is used to formulate a system 
of equations defining local extrema, which are then solved using Gaussian elimination. This approach, a 
computer implementation and its application for an illustrative example are described below. The 
application involves calibration of the simplified model using outputs taken from Young (2017), which is 
also used to evaluate the results from the simplified model. 

3 CONCEPTUAL BASIS FOR APPROXIMATING WARHEAD EFFECTS 

An inspection of the plots for warhead PK dependence on PK_MAX lateral offset given in Figure 1(b) shows 
that the effects for each round given its lateral offset are to reduce the PK_MAX plot for the next round. This 
is better illustrated by transforming warhead effects for all rounds to the PK_MAX curve for the last round, as 
shown in Figure 2. The ordinate for the plots in Figure 2 is a transformed PK. Corresponding round PK’s 
can be obtained by reversing the transformation back to the round’s PK_MAX curve. For example, a PK of 
0.06685 for round 1 at the peak of its transformed PK_MAX curve in Figure 2 corresponds to an actual PK of 

0.09750 in Figure 1(b). 
The warhead effects for each round are explicitly shown in Figure 2 by taking the difference between 

PK_MAX plots for successive rounds. The difference between the P(K_R1)_max and P(K_R2|R1)_max plots is 
the d1 plot, this reflecting the round 1 warhead effects on killing the target. Plots d2, d3, and d4 are similarly 
defined. 
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Figure 2: Warhead effects for rounds 1 to 4 mapped to PK_MAX curve for round 4. 

Changes in the lateral offset placement of rounds on their PK_MAX curves result in their warhead effects 
plots being translated to the left (for increasing offset) or right (for decreasing offset). Inspection has found 
the warhead effects plots retain their shape as they translate for changing offset. This property is 
investigated below as a mechanism for determining transformed PK plots and using this as a basis for finding 
optimal firing patterns. The approach is illustrated for the four round example by the following: calibration 

of the d1, d2 and d3 plots; direct placement of the d1 plot; update of the P(K_R2|R1)_max plot by subtracting 
the displaced d1 plot from P(K_R1)_max; repeat for rounds 3 and 4 to yield the salvo PK. 

The approach is formalized by adoption of the following notation: 
 
 For a salvo of n = 4 rounds, find 𝑥1, 𝑥2, 𝑥3, 𝑥4 that maximises the salvo probability of kill. 
 𝑝1(𝑥) is the 1st round PK as a function of the variable 𝑥 representing the lateral offset. 

 𝑝2(𝑥|𝑥1) = 𝑝1(𝑥) − 𝑑1(𝑥|𝑥1), i.e. 2nd round PK as a function of 𝑥 given 1st round placed at 𝑥1. 
𝑑1(𝑥|𝑥1) reflects the warhead effects of round 1 on 𝑝1(𝑥1) given its detonation at 𝑥1. 

 𝑝3(𝑥|𝑥1, 𝑥2) = 𝑝2(𝑥|𝑥1) − 𝑑2(𝑥|𝑥1, 𝑥2), i.e. 3rd round PK as a function of 𝑥 given previous rounds 
are placed at 𝑥1, 𝑥2. 𝑑2(𝑥|𝑥1, 𝑥2) reflects the warhead effects of round 2 on 𝑝2(𝑥|𝑥1) given 𝑥1, 𝑥2. 

 𝑝4(𝑥|𝑥1, 𝑥2, 𝑥3) = 𝑝3(𝑥|𝑥1, 𝑥2) − 𝑑3(𝑥|𝑥1, 𝑥2, 𝑥3) , i.e. 4th round PK as a function of 𝑥  given 
previous rounds placed at 𝑥1, 𝑥2, 𝑥3.  𝑑3(𝑥|𝑥1, 𝑥2, 𝑥3) reflects the warhead effects of round 3 on 

𝑝3(𝑥3|𝑥1, 𝑥2) given 𝑥1, 𝑥2, 𝑥3. 
 Placing the 4th round at 𝑥 = 𝑥4 , the salvo PK is then given by: 𝑃(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑝1(𝑥1) +

𝑝2(𝑥2|𝑥1) + 𝑝3(𝑥3|𝑥1, 𝑥2) + 𝑝4(𝑥4|𝑥1, 𝑥2, 𝑥3). 

4 IDEALISED MODEL FOR 2-ROUND SALVO 

Inspection of warhead effects plots has found that they are often Gaussian in nature and constant in size 
across placement of the round on its max PK curve. Also the P(R1)_max plot has an approximate Gaussian 

shape. These observations suggest approximating these aspects as Gaussian functions calibrated from firing 
pattern models, and then exploring techniques to optimise aim point placements using these 
approximations. 

An analytical solution to the 2-round salvo problem using Gaussian function approximations is 
presented here. The 1st round PK is assumed to be the following Gaussian function:  
 

 𝑝1(𝑥) = 𝜅0𝑒
−𝑥2/𝜎0

2
 . (1) 

 
 The warhead effects for this round on 𝑝1(𝑥) given its detonation at 𝑥1 is assumed to be 
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 𝑑1(𝑥|𝑥1) = 𝜅1 𝑒
−(𝑥−𝑥1)2/𝜎1

2
 . (2) 

 
 The constants 𝜅0  and 𝜅1  scale the height while the constants 𝜎0  and 𝜎1  define the breath of the 
Gaussian functions. The 2nd round PK as a function of 𝑥 given placement of the 1st round at 𝑥1 is given by 

 

 𝑝2(𝑥|𝑥1) = 𝑝1(𝑥) − 𝑑1(𝑥|𝑥1) . (3) 

 
 The salvo PK is obtained by adding together the PK’s for the two rounds placed at positions 𝑥1, 𝑥2: 
 

 𝑃(𝑥1, 𝑥2) = 𝑝1(𝑥1) + 𝑝1(𝑥2) − 𝑑1(𝑥2|𝑥1) . (4) 

 
 The positions 𝑥1, 𝑥2 that yield the maximum salvo PK can be obtained through consideration of the 
critical points of 𝑃(𝑥1, 𝑥2), i.e.  

 

 
𝜕𝑃(𝑥1,𝑥2)

𝜕𝑥1
= 0,

𝜕𝑃(𝑥1,𝑥2)

𝜕𝑥2
= 0 . (5) 

 
 These equations have the following solution: 
 

 𝑥2 = −𝑥1 , 𝑥1 = √
𝜎0

2𝜎1
2

4𝜎0
2−𝜎1

2 ln (
2𝜅1𝜎0

2

𝜅0𝜎1
2 )  . (6) 

 
Results are illustrated using 𝜅0 = 0.090520, 𝜎0 = 74.232, 𝜅1 = 0.025868, 𝜎1 = 33.305. The following 

solution is obtained using the above equations: 
 

𝑥1 = 17.456 , 𝑥2 = −𝑥1 = −17.456 , 𝑃(𝑥1, 𝑥2) = 0.16268 . 
 

A spreadsheet model was implemented to verify this solution. The model permits the salvo PK to be 
calculated for detonation points specified to the nearest integer. Figure 3 shows the PK and warhead effects 

plots from the spreadsheet model for the 2-round example. Plots p1(x) and p2(x|x1) give the PK curves for 
the two rounds while p3(x|x1,x2) gives the remaining kill probability after placement of the rounds (this 
reflects target survivability and would be the PK_MAX curve for a 3rd round, if considered). The following 
solution, in agreement with the above analytical results, was obtained for maximising salvo PK: 
 

𝑥1 = 17, 𝑥2 = −17, 𝑃(𝑥1, 𝑥2) = 0.16267 . 

 

Figure 3: PK and warhead effects plots from the spreadsheet model for the 2-round example. 
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5 NUMERICAL APPROACH FOR LARGER SALVO SIZES 

A salvo consisting of  𝑛 rounds is considered. The detonation points for each round are given by 𝑥𝑖,  𝑖 =
1,… , 𝑛 . 𝑝1(𝑥)  is given by equation (1). Warhead effects functions are assumed to be Gaussian and 
dependent only on the current round, i.e. they are of the form 
 

 𝑑𝑖(𝑥|𝑥𝑖) = 𝜅𝑖 𝑒
−(𝑥−𝑥𝑖)

2/𝜎𝑖
2
, 𝑖 = 1,… , 𝑛 . (7) 

 
 The PK functions for rounds 2 to 𝑛 are given by 
 

 𝑝𝑖(𝑥|𝑥1, … , 𝑥𝑖−1) = 𝑝𝑖−1(𝑥|𝑥1, … , 𝑥𝑖−2) − 𝑑𝑖−1(𝑥|𝑥𝑖−1), 𝑖 = 2,… , 𝑛 . (8) 

 
 The salvo probability of kill for placement of rounds at positions 𝑥𝑖,  𝑖 = 1,… , 𝑛 is given by 
 

 𝑃(𝑥1, 𝑥2, … , 𝑥𝑛) = ∑ 𝑝𝑖(𝑥𝑖|𝑥1, … , 𝑥𝑖−1)
𝑛
𝑖=1  . (9) 

 
 The probability of kill may be maximized by considering the following extrema of P: 
 

 
𝜕𝑃

𝜕𝑥𝑖
= 0 , 𝑖 = 1,… , 𝑛 . (10) 

 

Putting 𝑓𝑖 = 𝜕𝑃/𝜕𝑥𝑖, the system of equations 𝑓𝑖 = 0 must be solved. Expressing this in vector form 
with f=(𝑓1, 𝑓2, … , 𝑓𝑛) and x=(𝑥1, 𝑥2, … , 𝑥𝑛) gives f(x) = 0. Newton’s method is used to find the roots of 
this system of equations, i.e. find x such that f(x) = 0. A Taylor`s expansion of f(x) is given by  
 

 f(x + 𝜹x) = f(x) + 𝐉(x)𝜹x , (11) 

 
where 𝜹x = x𝒌+𝟏 − x𝒌, x𝒌 is the estimate for x at the kth iteration, and 𝐉(x) is the Jacobian defined by  
 

 𝐉(x) =
df

dx
=

[
 
 
 
𝜕𝑓1

𝜕𝑥1
⋯

𝜕𝑓1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛

𝜕𝑥1
…

𝜕𝑓𝑛

𝜕𝑥𝑛]
 
 
 

 . (12) 

 
The solution requires f(x + 𝜹x) = 𝟎 , and therefore 𝐉(x𝒌)𝜹x = −f(x𝒌) . The definition of 𝜹x  then 

permits the estimate x𝒌+𝟏 to be obtained from x𝒌. The following iterative solution procedure is adopted 
until a solution of desired accuracy is obtained: 
 

1. Evaluate f(x𝒌) starting with an initial estimate x𝟎 for k = 0. 
2. Compute 𝐉(x𝒌). 
3. Solve, using Gaussian elimination, the linear system of equations for 𝜹x whose coefficient matrix 

is 𝐉(x𝒌) and RHS is f(x𝒌). From this obtain x𝒌+𝟏. 
4. Iterate until convergence. 

 

Figure 4 presents results for salvo sizes varying from 2 to 20 in steps of 2. Newton’s method finds the 
roots if the initial guess for x is reasonably close, otherwise it diverges unless under-relaxation is employed. 
For n = 2 to 6, the routine converges rapidly, while for n = 16 to 20 it takes 600 to 800 iterations. In all 
cases aim point offset locations are symmetrical about the 𝑥 = 0 axis, which can be expected as the salvo 
sizes considered are all even. Salvos with an odd number of rounds will have the first aim point with zero 
offset, followed by additional aim points having offsets symmetric about the 𝑥 = 0 axis. 
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As the salvo size increases from 𝑖 to 𝑖 + 2, positioning of rounds 1 to 𝑖 contracts towards 𝑥 = 0, while 
positioning of the remaining rounds results in an overall broadening of the firing pattern. The pattern which 
evolves as salvo size is increased was used to predict round positions for larger salvo sizes, these being 
used as initial guesses for the Newton’s method to improve convergence rates. 

 

Figure 4: Aim point offset locations for salvos with sizes from 2 to 20 in steps of 2. 

6 INCORPORATION OF NONLINEAR EFFECTS 

The assumptions introduced above, Gaussian function approximations and dependence of warhead effects 
functions only on the current round, severely restrict application of the method to the actual firing patterns 
and must be relaxed.  

Simple approximations using single Gaussian functions may not be sufficient for representation of the 
PK plot for the first round and the warhead effects plots for all rounds – this is clearly evident in Figure 1(b). 
Improved approximations may be obtained using series of orthogonal polynomials, e.g. Hermite 

polynomials with Gaussian weighting function (Szegö 1975), or a simple summation of Gaussian functions 
(Calcaterra and Boldt 2008 for constant variance, Benoudjit et al. 2002 for non-constant variance). The 
latter approach has been adopted here. 

The PK function for the 1st round can be represented using the following summation of Gaussian 
functions:  
 

 𝑝1(𝑥) = ∑ 𝜅0,𝑖 𝑒
−(𝑥−𝑏0,𝑖)

2
/𝜎0,𝑖

2𝑁
𝑖=1  , (13) 

 
where 𝜅0,𝑖, 𝑏0,𝑖 and 𝜎0,𝑖, 𝑖 = 1,… ,𝑁, are constants chosen to minimise the residue of the approximation. 

For the 4-round firing pattern example considered above, Figure 5(a) shows the errors when a single 
Gaussian function is used to approximate the PK function for the first round. The Gaussian function was 
chosen to minimise errors near the peak of the PK function, but introduces significant errors on the sides. 
Two additional Gaussian functions are introduced in Figure 5(b) which correct for these errors, with the 
overall error reduced with a maximum of 0.0018. As shown in Calcaterra and Boldt (2008), further 
Gaussian functions can be included to reduce the overall error to a desired level. Initial testing has found 

an additional eight Gaussian functions in approximating p1(x) in Figure 5 will reduce the maximum error 
to 0.0002. 

This approach has also been adopted for approximating the warhead effects functions 𝑑𝑖, 𝑖 = 1,… , 𝑛. 
Investigation of these functions from the computational model of Young (2017), however, shows that the 
parameters 𝜅𝑖, 𝑖 = 1,… , 𝑛 − 1, in equation (7) are not constant but are functions of 𝑥𝑖. This dependence on 
𝑥𝑖, 𝑖 = 1,2,3, for the first three rounds is shown in Figure 6(a) for the 4-round example. This graph shows 

calculation of 𝜅𝑖 for warhead effects PK transformed to the PK_MAX for the 4th movement zone, each plot 
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being for the warhead in isolation. The results show the plots to be similar. The 1st round plot has higher 𝜅1 
(and therefore PK) nearer 𝑥1 = 0 , this becoming lower as |𝑥1|  increases. This reflects the 1st round 
movement zone being more condensed near 𝑥 = 0, while movement zones for subsequent rounds have 
increasing expansion about 𝑥 = 0. 

  

Figure 5: Approximations to 4-round Max PK curve: (a) Single Gaussian function; (b) Sum of three 
Gaussian functions. 

The results from Figure 6(a) suggest 𝜅𝑖 can be represented using the Gaussian function approximation  
 

 𝜅𝑖(𝑥𝑖) = 𝛼𝑖𝑒
−𝑥𝑖

2/𝛽𝑖
2
 , (14) 

 
with the constants 𝛼𝑖, 𝛽𝑖 obtained through a calibration from numerical results. 

The plots in Figure 6(b) show the translation in the maximum point of the PK plots from the PK_MAX 
curves for the rounds originating movement zone to the movement zone for round 4. This translation 
accompanies the PK transformation described above for Figure 2, which results when aligning the PK_MAX 

curves for all rounds at the detonation time for the last round. For round 3, the plot is fairly linear indicating 
the translation has small impact, which can be expected as the translation is done for only one time step, 
the difference in detonation times from round 4 to round 3. For round 1, the plot becomes nonlinear away 
from 𝑥1 = 0, indicating greater impact of the transformation of the round 1 PK plot from movement zone 1 
to movement zone 4. These “dilation” effects have to be taken into account when mapping backwards from 
the last movement zone, where the firing pattern optimisation is performed, to earlier movement zones for 

salvo PK calculation. 
A final aspect that needs to be better represented is the dependence of warhead effects functions 𝑑𝑖, 

𝑖 = 1,… , 𝑛, on placement of earlier rounds. Figure 7(a) shows for the 4-round example how 𝜅2(𝑥2), which 
relates to round 2 PK, varies with placement of round 2 at 𝑥2 for previous placements of round 1 at locations 
𝑥1 = 0,±10,±20. The graph shows a strong dependence which can be better understood by plotting Figure 
7(a) results using abscissa 𝑥2 − 𝑥1 + 𝑐2,1(𝑥2), where 𝑐2,1(𝑥2) is determined empirically to align the curves. 

This is done in Figure 7(b), the round 2 PK’s being normalized to the maximum values as given in Figure 
6(a) for round 2. This process aligns all plots describing dependence of round 2 effects on placement of 
round 1, although asymmetric effects become prominent as |𝑥2| increases from 10 to 20. Figure 7(b) results 
provide a modifier to apply for round 2 PK calculation given round 1 placement. For round 1 placement 
directly in line with round 2 (with the 𝑐2,1 adjustment), the modifier value 0.775 decreases the round 2 PK. 
The modifier takes on values of 1 when the round 1 placement is sufficiently away from round 2, i.e. round 

2 PK is unaffected by the round 1 placement for |𝑥2 − 𝑥1 + 𝑐2,1| > 30. 
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Figure 6: Dependence of warhead effects distribution on lateral offset: (a)  Variation in PK; (b) Lateral offset 
translation to time point 4. 

 

Figure 7: Dependence of round 2 max P(K) distribution on round 1 placement: (a) Variation in round 2 PK; 
(b) Modifier to round 2 PK. 

A modified form of equation (7) which incorporates a Gaussian series approximation and modifiers to 
account for the above influences on warhead effects is given in (15). The modifiers 𝜅𝑖(𝑥𝑖) are defined in 

(14). The modifiers 𝑚𝑖,𝑘 are defined in (16) and capture the effects depicted in Figure 7(a) applied across 
all pair-wise combinations of current round-earlier round. The constants 𝑤𝑖,𝑘 , 𝜑𝑖,𝑘 are obtained through a 
calibration from numerical results. 
 

 𝑑𝑖(𝑥|𝑥𝑖 , … , 𝑥𝑖) = 𝜅𝑖(𝑥𝑖) (∑ 𝜅𝑖,𝑗 𝑒
−(𝑥−𝑏𝑖,𝑗−𝑥𝑖)

2
/𝜎𝑖,𝑗

2𝑁
𝑗=1 )∏ (1 − ∏ 𝑚𝑖+1−𝑗,𝑘+1−𝑗

𝑘
𝑗=1 ) .𝑖−1

𝑘=1  (15) 

 

 𝑚𝑖,𝑘 = 𝑤𝑖,𝑘𝑒−(𝑥𝑖−𝑥𝑘+𝑐𝑖,𝑘)
2
/𝜑𝑖,𝑘

2
 . (16) 

 
These equations in conjunction with equations (8), (9) and (13) constitute a simplified firing pattern 

model whose data inputs can be calibrated from a more detailed model.  

7 COMPUTER IMPLEMENTATION 

The simplified firing pattern model and optimisation method based on Newton’s search with Gaussian 
elimination for finding local extrema have been implemented in a computer model using Dolphin Smalltalk 
(2016). The model employs an object-oriented design. Object classes are defined for the basic function 
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components which make up equations (8), (9) and (13) to (16), including generic function operators for 
summation and multiplication. An object structure is constructed for the functions in equations (13) and 
(15). These function objects are used for generating derivative values through the chain rule for an input 
set of round offsets needed for evaluating equations (10) and (12). An algorithm employing Gaussian 
elimination is then used to solve (11) from which an updated set of round positions can be obtained. This 
process is repeated iteratively until convergence to a desired accuracy is obtained. 

Testing has shown the optimisation method to be stable with rapid convergence requiring no under-
relaxation when the initial positions of the rounds are sufficiently close to a local extrema, e.g. from less 
than 10 to 250 iterations. Under-relaxation is required for initial positions further away from local extrema. 
The method has been complemented by a sparse exhaustive search across the full parameter space to enable 
identification of areas containing local extrema. These areas are then run through the optimiser to find the 
local extrema, from which a global maximum can then be obtained. 

 Data inputs for the model include all parameters defining the Gaussian functions and modifiers used 
for equations (13) and (15). These parameters are obtained through calibration of outputs from a more 
detailed model, such as that given in Young (1027). The calibration process parallels the analysis outlined 
above for Figures 5 to 7. 

A performance comparison of the optimiser with the detailed model of Young (2017) is given in Table 
1 for the 4-round and 6-round firing patterns considered in the next section. The models were executed on 

an Intel Core i5-5200U processor with 12 GB of memory. The optimiser results are for a calibrated model, 
the calibration involving a one-time initialisation of the detailed model with post-analysis to produce the 
required inputs. The initialisation, which involves construction of the PK_MAX curves for each round, is also 
required by the detailed model for it to perform single assessments. From Table 1 the optimiser is seen to 
be 30,000 times faster than the detailed model for a single 4-round pattern assessment, decreasing to 7,000 
times for the 6-round pattern. Results in the following section show the optimiser is able to arrive at a firing 

pattern with local maximum PK within 250 iterations, the execution time for this being significantly faster 
than a single assessment of the detailed model. 

Table 1: Performance comparison of the optimiser with the detailed model of Young (2017). 

Firing Pattern Detailed Model Optimiser 

 Initialisation Single Assessment Single Assessment  250 Iterations 

4-Round 617 s 22.9 s 0.00075 s 0.19 s 

6-Round 1007 s 34.3 s 0.0048 s 1.2 s 

8 APPLICATION TO 4-ROUND AND 6-ROUND FIRING PATTERNS 

Initial results are presented here for the 4-round firing pattern given in Figure 1 and an expanded 6-round 
example using the same data inputs. The model and input data from Young (2017) for the 4-round firing 
pattern were used to provide the calibration inputs for the optimiser. Only a partial calibration was 
performed at this time, in particular, round 1 interactions on round 2, captured in modifier 𝑚2,1, were also 
applied for round 1 interactions on round 3, and round 2 on 3, i.e. 𝑚3,2 = 𝑚3,1 = 𝑚2,1. Additionally, the 
parameters 𝑐𝑖,𝑘  in modifiers 𝑚𝑖,𝑘  have not yet been implemented. Dilation effects are accounted for in 

mapping round positions from the final movement zone, used by the optimiser, to the movement zones for 
individual rounds, used by the detailed model. 

Preliminary results are summarised in Table 2. Case 1.a shows the results reported in Young (2017), 
obtained using a heuristic search approach for defining round offsets 𝑥𝑖 (first two rounds positioned at peaks 
of PK_MAX curves, local search for 𝑥3 with 𝑥4 computed from its resulting PK_MAX curve). Case 1.b shows 
results obtained during further testing of the model from Young (2017), these having the maximum PK 

obtained over all cases considered. Cases 1.c and 1.d show results from the optimisation model with round 
positions mapped back into the individual round movement zones, based on their detonation times, and 
then evaluated using the model from Young (2017). 
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Table 2: Comparison of PK results for round offsets obtained from the firing pattern optimizer. 

Case Firing Pattern Method 𝒙𝟏, …, 𝒙𝒏 PK Iterations 

1.a 4-Round Detailed Model: Heuristic 0, 0, 9.6, -14 0.24997 ~250 

1.b 4-Round Detailed Model: Testing 4, -4, 10, -14 0.25022 ~250 

1.c 4-Round Optimiser: Local Max 1, 2, 14, -14 0.24940 220 

1.d 4-Round Optimiser: Local Max 8, -15, 5, -6 0.24670 209 

2.a 6-Round Optimiser: Local Max 0, -1, 15, -15, 50, -54 0.30808 226 

2.b 6-Round Detailed Model: Local Max 0, 0, 10, -11, 46, -50 0.31400 25 

 
Case 1.c used the initial position from Case 1.a for the optimisation run. The resulting position after 

execution of the optimiser was (1, 2, 14, -14), which then yielded a PK of 0.24940 when considered back in 
the detailed model. This is a slight decrease of 0.23% in PK and shift in position from the results of Case 

1.a. Case 1.c results were also obtained when the initial position from Case 1.b was used, i.e. the two 
separate initial positions from Cases 1.a and 1.b both converged to the same solution in the optimiser. 

Case 1.d results were obtained by the optimiser when the initial value (12.2, -22.5, 7.1, -7.0) was used. 
This position was obtained from a sparse exhaustive search of the simplified model across the parameter 
space for round offsets. For this situation the optimiser found a second local extrema with a slightly reduced 
PK from that found for Case 1.c. 

Initial 6-round results are presented in Case 2.a for the optimiser and Case 2.b for the detailed model. 
The optimiser used the calibrations obtained for the 4-round example, noting that extrapolation was used 
to extend the position translations given in Figure 6(b) for the additional two time points and wider breath 
of the 6-round firing pattern. Case 2.b results were obtained using a limited local search with the detailed 
model about the Case 2.a position. This found a nearby position with PK increased by 2%. 

The results in Table 2 indicate the optimiser is successful in finding firing patterns with maximum salvo 

PK’s that approach those obtained from the more detailed model. This is done in significantly faster 
execution time, given the times per iteration (single assessment) from Table 1. It should be noted that all 
PK results in Table 2 were obtained from the detailed model of Young (2017), only the round positions used 
for Cases 1.c, 1.d and 2.a were obtained from the optimiser. These results indicate a generally flat structure 
of the salvo PK surface, with respect to the parameter space defined by round offsets. This flatness results 
in the optimiser finding different local extrema, based on the initial positions used. Further investigation 

using the models is required to understand the topology of the salvo PK surface and dependence on errors, 
such as those introduced by the Gaussian approximation for 𝑝1(𝑥) in equation (13). 

9 CONCLUDING REMARKS 

A theoretical model based on Gaussian function approximations for warhead effects has been developed 
for analysis of firing patterns in context of a single engagement assessment. A calibration of the model 
using results from Young (2017) and its computer implementation have demonstrated the model can be 

used to rapidly explore a parameter space using optimisation techniques for identification of firing patterns 
which maximise salvo kill probability. The results indicate the model is able to find “near optimal” solutions 
in a much faster run time, noting that not all aspects of the model have been calibrated and its accuracy can 
be improved. Further work has been identified to expand and increase the accuracy of the calibration of the 
simplified model, and continue testing and cross-model validation for larger salvo sizes, for which the 
performance difference between the simplified and detailed models will become more pronounced. 

The simplified model offers potential to support development of firing patterns by complementing more 
detailed and robust modelling with high fidelity Monte Carlo simulations, or using methods such as that 
presented in Young (2017). Outputs from analysis using these techniques can then be used for tactics 
development and to define firing doctrine for a gun control system, either through lookup tables based on 
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characteristics defining engagement situations, or using fast running meta-models, such as that presented 
by the simplified model. 

The simplified model also has potential to support firing pattern selection, with associated round 
expenditure, and engagement assessment within higher level models, such as those presented in Mirshak et 
al. (2010). The current analysis has focused on assessment of a single engagement, i.e. firing of a single 
salvo against a single target for a specified range and particular target manoeuvre assumptions. Range and 

manoeuvre assumptions would vary as the target closes on the defending ship using a weaving path. Young 
(2017) presents analysis of how firing patterns would vary for different target ranges and manoeuvre 
assumptions. Each one of these situations would require changes in the calibration inputs to the simplified 
model. The model complemented by high fidelity simulations could then be used to investigate firing 
strategies for engagement of multiple threats concurrently attacking one or more defending ships.  

A further application of simplified models as presented here and in Mirshak et al. (2010) is to support 

development of automated battle planning systems for combat simulations, e.g. Harder et al. (2017), or 
provide assessment algorithms for naval combat management systems, see Benaskeur et al. (2008). For 
both applications the simplified models offer means to perform rapid engagement assessments for providing 
inputs into autonomous/semi-autonomous decision making processes. 

REFERENCES 

Friedman, N. 2013. Naval Anti-Aircraft Guns and Gunnery. Barnsley, U.K: Seaforth Publishing. 

Mirshak, R., M. West, and P. Chircop. 2010. “Risk Models for Maritime Security, Area and Port Force 
Protection”. In Proceedings of the 2010 International Waterside Security Conference, November 3rd – 
5th. Carrara, Italy, 1-8. https://ieeexplore.ieee.org/document/5730263. 

Young, P.J. 2017. “Determination of Naval Gun System Firing Patterns to Combat Manoeuvring Surface 
Targets”. In Proceedings of the 34th International Symposium on Military Operational Research, July 
18th – 21st. London, United Kingdom, 1-21. http://www.ismor.com/ismor2017_papers.shtml. 

Szegö, G. 1975. Orthogonal Polynomials. 4th ed. New York, US: American Mathematical Society. 
Calcaterra, C. and A. Boldt. 2008. “Approximating with Gaussians”. arXiv preprint arXiv:0805.3795. 

https://arxiv.org/pdf/0805.3795.pdf, accessed Mar. 28, 2018. 
Benoudjit, N., C. Archambeau, A. Lendasse, J. Lee, and M. Verleysen, M. 2002. “Width Optimization of 

the Gaussian Kernels in Radial Basis Function Networks”. In Proceedings of the 2002 European 
Symposium on Artificial Neural Networks, April 24th – 26th. Bruges, Belgium, 425-432. 

https://www.elen.ucl.ac.be/esann/proceedings/papers.php?ann=2002. 
Dolphin Smalltalk. 2016. Object Arts. http://www.object-arts.com/dolphin7.html, accessed Mar. 28, 2018. 
Harder, B., C. Blais, and I. Balogh. 2017. “Conceptual Framework for an Automated Battle Planning 

System in Combat Simulations”. In Proceedings of the 2017 Winter Simulation Conference, edited by 
W. K. V. Chan et al., 4141–4152. Piscataway, New Jersey: IEEE. 

Benaskeur, A., E. Bosse, and D. Blodgett. 2008. “Multi-agent Coordination Techniques for Naval Tactical 

Combat Resources Management”. DRDC Valcartier TR 2006-784. Defence Research and 
Development Canada, Valcartier, Canada. 

AUTHOR BIOGRAPHY 

PETER J. YOUNG is a Defence Scientist with the Centre for Operational Research and Analysis, Defence 
Research and Development Canada. He is currently assigned to the Operational Research Team with the 
Canadian Forces Maritime Warfare Centre supporting the Above Water Battlespace. He holds a Ph.D. in 

Applied Mathematics from the University of Western Ontario. His research interests include simulation 
and numerical analysis applied to problems in military operational research. His email address is 
peter.young2@forces.gc.ca. 

3788


