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ABSTRACT

We tackle some of the challenges of optimal recruitment strategies of pilots and other aircrew for Royal
Australian Navy aviation. Aside from financial costs, too many students in the training system can create
bottlenecks and harm morale, while too few poses a risk to delivering operational capability. We propose a
stochastic programming approach that can determine the minimum number of students to recruit and how to
distribute those students amongst the training system, in order to meet a capability target with a prescribed
probability. This approach is parallelizable and reasonably computationally efficient, and utilizes multiple
randomized trials of a greedy method to seek a global minimum. Our work provides insights into the
relationship between minimization of entry recruitment numbers and minimization of total student numbers
in the system, as well as the relationship between risk constraints and convergence to local minima.

1 INTRODUCTION

We aim to find policies for minimal recruitment levels of students to adequately supply and sustain the
Royal Australian Navy (RAN) aviation squadrons. The RAN aviation training continuum is a sequence
of prescribed courses, each with specified pre-requisites, terminating in operational squadrons. Failure
rates in some courses are large and highly variable. Despite this, sufficient pilots are required to graduate
to maintain operational capability in the squadrons. To further complicate the problem, wastage rates of
operational pilots, observers, and aircrewmen are also variable. Too many students in the system can cause
bottlenecks and excessive waiting, can result in loss of morale for the students and, importantly, incur
financial cost. The number of students in the system is a cost that needs to be kept low. The problem we
address is how to keep training system costs as low as possible while limiting the risk of failure to achieve
operational capability to an acceptably low level over a number of years.

We invoke a model based on ideas in stochastic programming (Birge and Louveaux 2011). Failure
rates are modeled by course intake numbers m being mapped probabilistically to the number of passing
students n according to a specified distribution. A similar model is used for wastage from the squadron.
Failure and wastage rate distributions for courses and squadrons can be estimated from historical data; that
process is not discussed in this paper. We assume given transition matrices for all courses and squadrons,
as well as a pre-determined operational capability for each squadron.

In reality, the number of students that can participate are limited. This is particularly so for the kind
of training path discussed here. The instructor-to-student ratio is very low thus emphasizing the pressures
to minimize student numbers. Significant and extensive infrastructure such as aircraft and simulators, are
needed to train pilots.

The dynamics of this training continuum, specified by the transition matrices of course pass-fail rates
and squadron wastage, are controlled at each course and time, by the number of available successful students
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from the preceding course(s). For recruitment into the initial course, it is reasonable to assume that the
number available is unbounded. A later course or squadron, can only recruit from students who have
passed the prerequisites (either in the immediately preceding period or at an earlier time) for that course
or squadron. This number is limited by the stochastic dynamics of the previous assignment and pass rates
of students. The specification of the entry recruitment numbers, and the assignment of available qualified
students from previous courses into each course or squadron comprise the control variables here.

Students successfully passing a given course remain in its buffer until assigned to a succeeding course
or squadron. While in the buffer, a student entails a cost to the system, thereby providing an incentive on
the control process to keep numbers in buffers small. On the other hand, retention of some students in a
buffer reduces the future risk of not having enough students available for assignment. In a sense, a buffer
provides a bank or reservoir to be accessed at future times to mitigate risk.

The control process is based on the current snapshot (state) of the system: numbers of students in
courses and buffers, and pilots in squadrons. Any proposed solution method must predict several years
ahead. Its future predictions are based on unknown future pass-fail rates in the courses and wastage in
the squadrons. Accordingly, the expected cost is optimized. Similarly, the number of operational pilots
is a random variable dependent on wastage rates and numbers of suitably qualified students available for
assignment into the squadron. The control variables are then functions m = φ(n): how many students m are
assigned into the next course/squadron of the (random) number n of available qualified students. Optimal
choice of those functions into the future is based on the current state of the system. The constraint that
operational capability be achieved is treated as a chance constraint. At any time, the number of pilots,
random variable N, is intended to achieve operational capability, C, but we can have no guarantees of this.
Accordingly, we accept a certain level of risk α > 0, and require that Pr(N ≥C)> 1−α . Evidently the
smaller α is, the harder the constraint is to achieve.

A precise formulation of the problem is given in Section 3 along with a simple example that follows
on from a literature review. Then we describe a specific case that is close to that found in the RAN training
continuum, the approach to its solution, and simulation results. The solution adopted here is, effectively, a
greedy approach with multiple random starts to overcome the local minimum problem. Simulation results
suggest that this approach is both computationally feasible and capable of finding a global minimum
relatively quickly on problem sizes commensurate with the real world problem we address.

It is intended that this optimization method will be integrated with a hybrid discrete event and agent-
based simulator designed to provide strategic decision support to RAN aircrew workforce planners. This
simulation tool allows the RAN aircrew planners to view the transient flow of students through the continuum
and perform what-if scenarios on changes to the training pipeline. The optimization technique described
in this paper is designed to accept information about the state of the system from the simulator and
determine near-optimal student recruitments and assignments that can then be enacted and played-out by
the agent-based dynamics of the simulator. The speed and ease with which planners can perform what-if
scenarios is part of the motivation to make the optimization method run as fast as possible.

2 LITERATURE

Many approaches toward recruitment and manpower supply optimization are centered on mixed integer
linear programming methods or Markov models. Mixed integer linear programming (MILP) has proven to
be a popular technique in supply chain optimization. The objective is to determine optimal values of a linear
supply model constrained by linear inequalities (see, e.g., Vanderbei 1996). It is widely used, but more
closely aligned with our application, Akinyele (2007) used MILP to determine an effective manpower size
while incorporating global constraints such as production capacity, demand rate, and allowable time-of-
operation so as to account for differences between countries’ rates of development. Mokhtari and Dadgar
(2015) applied MILP alongside simulated annealing to a job-shop scheduling problem with time-varying
machine failure rates.
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In previous work, the authors successfully applied MILP to the solution of related Australian Defence
Force (ADF) timetabling problems (Nguyen et al. 2018; Kirszenblat et al. 2017). To simplify these problems,
the uncertainty associated with the exact number of students who pass a particular course was ignored,
and pass rates were replaced by their respective means, i.e., expected values. This simplification made the
problems amenable to MILP methods. In particular, we applied, on the one hand, a novel combination of
a standard MILP in conjunction with a fast technique for solving inexact cover problems (Nguyen et al.
2018) and, on the other hand, MILP column generation (Kirszenblat et al. 2017).

Recruitment and manpower training have been modeled by several authors as stochastic dynamic systems
using Markov models. An early development was that of Bartholomew (1971), in which basic recruitment
and progression-through-training were defined as prior probabilities of being accepted into a program and
progression was defined in terms of Markov transition matrices. This basic model has been applied to a large
number of domains and extended to predict future horizons via Dynamic Programming (Bertsekas 2000)
and to fit with required training continuum numbers (see, e.g., Mehlmann 1980). For example, Udom (2013)
developed a Markov Decision Process (MDP) for optimal control of a Multi-level Hierarchical Manpower
System (MHMS) dealing with departmental transfers and movement of staff through organizations. In
previous work (Suvorova et al. 2018), we provided an elegant MDP solution to a toy version of the aircrew
recruitment problem. In this, both MILP and Dynamic Programming approaches were explored; however,
these did not solve the problem of the real Defence network in any reasonable amount of time. The work
reported here arose in trying to formulate methods that are scalable to the full continuum.

Given the limitations of MILP when it comes to handling the random elements inherent to the
problem, i.e. course pass rates, we choose to adopt in this paper an approach that is based on ideas in
stochastic programming. Stochastic programming approaches have been applied with success to military
applications, e.g., to manpower planning for the Canadian Armed Forces (Martel and Price 1981). Stochastic
control methods (Bertsekas and Shreve 1996) have been utilized for controlling risk in an e-commerce
warehouse staff planning problem (Wruck et al. 2016). In considering limits on the amount of risk
for failing to meet capability targets, we incorporate probabilistic or chance constraints into the problem
formulation (Charnes and Cooper 1963). Because of the often large search space of stochastic programming
models in similar problems such as job-shop scheduling (Tavakkoli-Moghaddam et al. 2005), stochastic
local search methods (Spall 2005; Hoos and Stützle 2004) are often used to obtain sufficiently good solutions
to these problems.

In order to consider these stochastic elements for a scalable optimization method, the authors developed
two different strategies in parallel. The first is described in this paper in Section 3 and 4. The second (Hill
et al. 2018) utilizes a technique of back-filling demand from squadron targets. These targets are then
dynamically chosen using Monte Carlo simulations to introduce risk into the model and to determine the
required levels of recruitment and student assignment.

3 PROBLEM FORMULATION

A directed graph G = (V,E) is used to describe the course structure with prerequisites. Each node is a
course, and an arrow e ∈ E from course ci to course c j, means that course ci is an immediate prerequisite
of course c j. The head and tail of an arrow e ∈ E are denoted by h(e) and t(e), respectively. For simplicity,
and in keeping with the particular course structure to be modeled, we assume that the graph is “layered”;
that is, V =

⋃R
r=0Vr+k, where k ≥ 1. Here, Vr are disjoint subsets of V , and for every e ∈ E, there exists

r such that t(e) ∈ Vr and h(e) ∈ Vr+k. We will use the notation cr j to mean a node at layer r, and cr if
there is only one such node. A further simplification that may not, ultimately, be necessary, is that every
node c is one of the following types (see Figure 1): continuation, with one arrow entering and one exiting;
branching, with one entry node and several exit nodes; and joining, with one exit node and several entry
nodes.

At each node (course) c is specified a transition matrix P(c) = (p(c)nm), where p(c)nm is the probability that
if m students enter the course, n will pass. As stated in the Introduction, these are assumed known, having
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(a) Example of a branching node structure. (b) Example of a joining node structure.

Figure 1: Two different node structures.

been estimated from historical records. A reasonable assumption is that the number of passing students
at different nodes are mutually independent, conditioned on the number entering each course. Squadron
nodes s, similarly, have transition matrices P(s) = (p(s)nm) denoting the probability that of the m current pilots,
n will remain at the end of the current time period and m− n will leave. Again this random process is
assumed to be independent of the course pass-fail processes. Each course node has a buffer that retains all
passing students from that node until they are assigned into a subsequent course or squadron. Thus, each
node c has attached a number of students sc and a number in the buffer, bc.

There may be multiple initial nodes from which it is possible to recruit students. Also there will be
multiple final nodes — squadrons. A key feature of this problem is that, at each of these squadrons, it
is important to retain an operational capability: there need to be enough pilots to perform the required
functions of the squadron. We assume an operational capability of Ns for s ∈ S.

It is assumed, again for simplicity, that the exiting of students from courses into buffers and assignment
into buffers from prior courses are synchronous across the entire graph.

Students in the system are a cost to be minimized while, of course, maintaining capability over several
years. We assume, again for simplicity, that each student imposes the same cost on the system, no matter
their level of progress through the training continuum, however, this could easily be modified. We also
assume, that once a student fails, they are no longer a part of training continuum.

Maintenance of operational capability, of course, cannot be guaranteed. For instance, it is possible,
though improbable, for all students in a given course to fail. Accordingly, rather than an infeasible requirement
that operational capability is achieved, we impose the softer constraint, chance constraint (Charnes and
Cooper 1963), that the probability of achieving capability is at least 1−α , where 0 < α < 1. Evidently
the smaller α , the harder this constraint is to achieve.

At our disposal to control the system are the number of students recruited from outside into the initial
course, and the assignment of students from earlier courses into later ones. These are the control variables.
A control policy requires, for each arrow e in the graph, and each year t, a function φ t

e that assigns for each
number of available students in t(e), including both passing students and those in the buffer, a number to
be assigned to the following course h(e). At an initial node, c, the control variable is a single number mt

c
at each time t, representing the number of recruits entering the initial courses of the training continuum.

The control problem is posed as a minimization of the total number of students conditioned on
achievement of operational capability with probability 1−α . Initial values B0

c , N0
c , N0

s of students/pilots
in buffers, courses, and squadrons are assumed known. A policy in terms of initial recruitments mc for
c ∈V0 and functions φ t

e for e ∈ E, to plan T years ahead is to be designed. Let Ep denote the mathematical
expectation with respect to the parameter vector p of variable pass rates pc

nm. Formally, with N denoting
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the non-negative integers,

min
φ t

e,mc0

E
[ T

∑
t=1

∑
c∈V

bt
c +mt

c
]

subject to Pr(nt
s ≥ Ns)≥ 1−α

where:

mt
c = ∑

e:h(e)=c
φ

t
e(b

t−1
t(e) +nt−1

t(e)),

bt
c = bt−1

c +nt
c− ∑

e:c=t(e)
φ

t
e(b

t−1
c +nt

c),

P(c)(nt
c = n|mt−1

c = m) = p(c)nm,

b0
c = B0

c , n0
c = N0

c , n0
s = N0

s ,b
t
c,n

T
c ,m

t
c ∈ N,(c0 ∈V0, e ∈ E, c,s ∈V, t = 1,2, . . . ,T ).

(1)

The control functions φ t
e assigned to edge e at time t are implemented as (sparse) 0−1 matrices ∆t,e = (δ t,e

r,k ):

δ
t,e
r,k =

{
1 if φ(r) = k
0 otherwise.

(2)

As a result of the non-negativity of buffer sizes, Equation (1) enforces a flow conservation constraint on
the δ -matrices associated with all edges leaving a given course c:

∑
e:c=t(e)

∑
k

δ
t,e
r,k k ≤ r, (3)

so that the number of students from a given buffer cannot exceed the number in the buffer together with
newly graduating students from the preceding course. While, in theory, these δ -matrices are infinite, they
are constrained by reasonable numbers of students in the system, restrictions on course sizes and the (finite)
time horizon, so that buffer sizes are limited.

3.1 Continuation Type

If there is just a linear progression of courses c leading from initial recruitment to deployment in a
squadron, then a simple calculation using independence of pass-fails between courses yields that the
operational capability constraint and the expected cost for a single year and three courses, as shown in
Figure 2 are given by the following equations:

1−α ≥ P(3)(n3|m3)∆2,3(m3,n2)P(2)(n2|m2)∆1,2(m2,n1)P(1)(n1|m1)

Y = m1 +∑m2∆1,2(m2,n1)P(1)(n1|m1)+∑m3∆2,3(m3,n2)P(2)(n2|m2)∆1,2(m2,n1)P(1)(n1|m1)
(4)

where Y is the cost as the expected number of students in the system. It can be seen that for the linear
case, the chance constraint is computed from a Markov Chain with interspersed δ -matrices.

3.2 Branching Type

To handle course structures with branching pathways, as shown in Figure 1a, a similar formulation to
that in (4) can be used but it must include the flow conservation constraint given in (3). In this way, the
δ -matrices of the branching must be chosen such that, for a given input mt

c (corresponding to the rows of
the δ -matrices), the summation of the output of students into each branch (corresponding to the column
index of the one in the mt

c row of the δ -matrices) does not exceed mt
c. The matrices are lower triangular

reflecting the impossibility of sending more students out than the number coming in.
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(a) Probability transition and δ -matrices representation.

(b) Students in courses and buffers representation.
(c) Legend for course
structure diagrams.

Figure 2: Example of three course linear structure.

3.3 Joining Type

To handle course structures with joining pathways, shown in Figure 1b, multiple functions φ t
e are needed

to express the number assigned from ci (via ei) into c at time t. We reduce the complexity by effectively
constructing a virtual buffer to retain the qualified but as yet unassigned students from all of the courses
ci. Then we only need one function, or equivalently, δ -matrix to control assignment from all of ci into
c. In order to effect this virtual buffer scheme, it is useful to combine the probability transition matrices
at the various nodes ci into a single one. This is accomplished through a convolution of the probability
transition matrices from each node, which for a two node join is given by Equation (5).

P(1) ∗P(2) =
n

∑
r=0

P(1)(r|n1)P(2)(n− r|n2) (5)

The convolution probability transition matrix must account for every possible input from all edges ei
leading into the join and account for every possible output from the sum of those inputs. Therefore, the
new probability transition matrix is multi-dimensional, with a dimension for the input of students ni from
each edge ei, and a single dimension for the output. It is also larger than the size of the incoming matrices,
as it must account for the summation of the largest inputs from ni.

3.4 Multiple Time Periods

The model described so far only handles a single time period. To move the simple formulation into multiple
time periods, we repeat the course structure by the number of periods and join the course structures for each
time period by buffer arrows. An example of this is shown in Figure 3. Here, Figure 3a is the part of the
training continuum actually being analyzed. Figure 3b is a yearly temporal representation. For instance,
the students that are in the buffer directly following the first course in the first year, can either be held in
the buffer until the second year or they can proceed with the next course (Course 2) in the same year (Year
1). The joining structures in this case are slightly different to those for joining course pathways. There are
no probability transition matrices between the buffers, so the convolution is performed with the transition
matrix of course node c and an identity matrix representing the lack of stochasticity from buffer b.

3.5 Specific Case

To test the validity and performance of the model, a part of the RAN course structure as shown in Figure 3a
was used to run simulations, performed over a three year period on the representative course structure given
in Figure 3b. This case involves the first two node types and joining buffer types over multiple years.
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(a) Single year structure.

(b) Three year structure.

Figure 3: Part of the RAN course structure with a 3 year representation depicting the action of the buffers.

4 APPROACH

Our aim is to produce an algorithm to give close to optimal solutions to the problem described in (1), with
given current buffer numbers, operational capability, and risk of achievement of the latter. This computation
needs to be done in a relatively short time (a few minutes). Computation of the global optimal choice of
matrices ∆t,e over a reasonably large sized graph over even a few years is infeasible here. Instead, we resort
to a suboptimal approach, referred to as the Delta-Cycling Algorithm (DCA). This first involves cycling
through the nodes and their δ -matrices, of which there are many different ways as illustrated in Figure 4.

(a) Time boustrophedon. (b) Progress boustrophedon.

Figure 4: Methods of cycling through courses.

For each δ -matrix, the algorithm starts at the bottom row and determines the change in cost for
increasing or decreasing the output by one for a given input. In terms of the values of the δ -matrix, this
means shifting the 1 in that row either to the left or to the right, and calculating the cost change associated
with doing so, here on out referred to as one-shifting. As such, this part of the algorithm is effectively
performing a descent local search. A one-shift that violates the chance constraint is considered to have an
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infinitely high cost. The one-shift that generates the greatest reduction in the cost function is the one-shift
that is performed on that row of the δ -matrix. If both one-shifting left and right increases the cost, then
neither one-shift is performed. The process is then repeated with the next row above and so on. Once the
top row has been completed, the process is restarted from the bottom row and repeated, until there is no
one-shift that can be actioned to decrease the cost without violating the constraints. This process is shown
in Figure 5.

Figure 5: One-shifting within a single δ -matrix.

Importantly, the flow conservation constraint described in (3) must be adhered to for every one-shift in
the δ -matrices. Each one-shift — or change in the output — in the δ -matrices must correspond to an equal
and opposite one-shift in one of the dependent matrices (which correspond to the other branches at that
node) in order to preserve the number of students. Thus, when calculating the cost change for a one-shift,
it must be summed with the smallest increase (or largest decrease) in cost for the opposite one-shift in one
of the dependent δ -matrices.

This process is performed for all δ -matrices. The algorithm will also cycle through the entire course
structure and continue to do so until no more one-shifts are possible. It is evident that this approach will
only find a local cost minimum. The greedy nature of the one-shift selection, means that one-shifting in a
single row of a single δ -matrix may limit choices of one-shifting in another by dint of hitting the limits
of the chance constraint. As a result, the initialization of the δ -matrices and the order in which they are
optimized becomes very important. Techniques such as simulated annealing instead of descent could be
used to avoid becoming stuck in a local minimum. We have resorted to a simpler approach, as the descent
method is relatively computationally quick. We randomly seed the greedy search by choosing a number
of random, but viable, initializations of the δ -matrices. The Delta-Cycling Algorithm is applied for each
of these initial random seeds and the optimal among them chosen.

To perform several trials with different initializations, the algorithm must compute quickly. Its speed
is governed by the size of the δ -matrices, which may be very large if student and buffer numbers are large.
Efficiency is increased by only optimizing the δ -matrices for a small bounded viable number of rows and
columns (region), excluding inputs or outputs that are either too low or far exceed what is needed to meet
the required capability, as shown in Figure 6.

To determine these δ -matrix bounds, worst-case and best-case scenarios are considered. For the
minimum bound, the best-case at each squadron of Pr(nT

s ≥ Ns) = 1−α is first calculated. The input mt
s to

achieve this is determined from a lookup table of the course probability distribution. The process is repeated
for the preceding course node and continues moving backward through the directed graph, calculating new
values of mt

c and nt
c, where the probability of obtaining the required output is always 1−α . This best-case

scenario, underestimates assignment/recruitment numbers as the risk at an individual node will have to
be larger than 1−α so as to meet the chance constraint Pr(nt

s ≥ 1−α) because of compounding of risk
(multiplication of probabilities). The mt

c and nt
c values then serve as the lower bounds for the viable region

of each δ -matrix.
Likewise, upper bounds are found by the same method, but for an individual course probability of 1−ε

where ε is a much smaller number. This use of ε > 0 prevents an infinite output of students that arises
from certainty of achieving capability. These bounds along with the flow constraint (unable to have a larger
output than input) describe a smaller viable region to be optimized for each δ -matrix. As the worst-case and
best-case scenarios are unlikely to occur, a tolerance can be specified to tighten these bounds as desired.
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Figure 6: The viable region for optimizing a δ -matrix.

5 SIMULATION RESULTS

The Delta-Cycling Algorithm was implemented in Python for the course structure given in Figure 3b. The
distributions were Binomial with a parameter p of 0.8 for course pass rates and 0.95 for squadron wastage.
A yearly squadron target of four was desired with 80% probability of meeting capability.

Twelve trials were conducted with randomized initial δ -matrices that adhered to the flow conservation
constraint. The optimization order was that given in Figure 4b and individual δ -matrices were optimized
from bottom to top (greatest input to least input). The initial number of students in the system (including
in the buffers) was initialized to zero.

The simulation was run on an Intel Core i7 7500U processor with 16GB of RAM. The total simulation
time for all twelve trials was 501.04 seconds (8.35 minutes) with an average of 41.75 seconds per trial.
Along with the main simulation results, computation speed trials were conducted to determine the scalability
of the algorithm with regards to the number of time periods and size of matrices. These times are given
in Table 1.

Table 1: Computational speed for varying time steps and matrix sizes (minutes).

10 20 30 40 50 60 70
2 Years 0.05 0.20 0.41 0.54 0.81 1.16 1.80
3 Years 0.08 0.27 0.71 1.08 1.65 2.28 3.22
4 Years 0.18 0.44 1.12 1.85 2.66 3.73 5.15
5 Years 0.34 0.69 1.71 2.87 4.44 7.14 9.30

6 RESULTS & DISCUSSION

Figure 7a and 7b depict the total expected number of students entering each course and the minimum
number of recruits required to meet capability for a given risk, respectively. These are shown for δ -
matrix one-shifting iterations ranging from 0 to 2500. Each line represents a different random δ -matrix
initialization.

6.1 Local Minima

From Figure 7a and 7b it is clear that both the expected number of students in the system (the cost) and
recruitment numbers converge to local minima — different initializations leading to different minima. This
is expected as the algorithm uses a greedy descent method. By running many trials with different δ -matrix
initializations, different local minima are accessed and compared to give a close-to-optimal recruitment and
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(a) The expected number of students of the system for
increasing numbers of δ -matrix one-shifting iterations.
The different colored lines represent different random
initializations of the δ -matrices.

(b) The minimum recruitment required to meet a given
risk for increasing numbers of δ -matrix one-shifting
iterations. The different colored lines represent different
random initializations of the δ -matrices.

Figure 7: Simulation results of the Delta-Cycling Algorithm for different random initializations.

form an upper bound on the global minimum. We expect that as the number of trials increases eventually
the global minimum will be found, even if it cannot be determined that it has been achieved. Each trial
takes a reasonably short time to converge as shown in Table 1, though, the trials take longer for larger
recruitment sizes and more time periods. Importantly, this process is highly parallelizable as each trial can
be generated from a random δ -matrix initialization seed. Inspection of the δ -matrices and using brute force
on small cases, indicates that the δ -matrices have a regular pattern between student inputs and outputs
which opens up future possibilities to explore this structure to more carefully find the functions φ explicitly,
but further analysis will need to be conducted to confirm this.

6.2 Minimizing Recruitment vs. Minimizing Students in the System

Comparison of Figures 7a and 7b yields noticeable similarities. Firstly, both plots exhibit a convergent
decreasing trend. The δ -matrix initializations that provide the least expected number of students at each
course are also the initializations that provide the least entry recruitment number (light-blue line). The
converse is also true as exhibited by the yellow and brown lines. Secondly, large decreases in cost occur
in the same iterations as large decreases in entry recruitment number. These two similarities are to be
expected, as decreases in the entry recruitment number have both a direct and indirect effect on cost as
given in (1). It appears then that one-shifts in the δ -matrices that lead to a reduction in entry recruitment
number are the ones that have the greatest impact in reducing cost. This, albeit phenomenological feature,
might be used to improve the Delta Cycling Algorithm by targeting rows that drive reduction in recruitment
first.

Interestingly however, the minimum recruitment number does not necessarily correspond to the minimum
value of the cost function. For instance, the gray line in Figure 7a has a consistent cost of approximately
112, greater than other initializations. Yet it has the lowest (along with the light-blue line) recruitment
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number. The relationship between recruitment number and the expected number of students in the system
is not always monotonic. That being said, the two values appear to correlate with one another to an extent.

7 CONCLUSION

We have described a stochastic programming model for the optimization of expected costs while minimizing
risk of failure to achieve operational capability in the context of the Royal Australian Navy aircrew training
continuum. The Delta-Cycling Method, for determining the minimum number of students to recruit for
RAN training as well as how to assign those students amongst the different courses, has proved to be a
reasonably efficient computational approach to solution of this optimization problem. Multiple trials of the
algorithm can be performed quickly to obtain a reasonable estimate of the recruitment number. It has been
found that the greedy Delta-Cycling Method causes rapid convergence of the expected number of students
in the system to local minima. This, combined with random seeding, has been seen to yield improvements
to what appear from simulations to be global minima. Other factors observed in simulations indicate the
possibility of using initial recruitment, which correlates well, though not perfectly with the overall expected
cost, as a ”first pass” cost to speed up computation, as well as bounds on course assignment numbers to
reduce the search space. Finally patterns observed in the δ -matrices used for controlling student assignment
provide a hint that alternative and less computationally expensive approaches will be achievable in future.
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