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ABSTRACT 

This paper highlights the accomplishments and shared vision between the International Council on Systems 

Engineering (INCOSE) and the Modeling and Simulation community (represented by the Society for 

Modeling and Simulation, International (SCS), and Simulation Interoperability Standards Organization 

(SISO, among others). We describe convergence between the model-based systems engineering initiative 

of the INCOSE community and the model-based simulation developments of the SCS community. The goal 

is not only to highlight the outstanding accomplishments of our time, but also to emphasize the parallels 

and relationships. The paper is intended to enhance communications and facilitate the outreach already in 

motion. Modeling and Simulation (M&S) represents a core capability and need for addressing today’s 

complex and grand challenges. We suggest a collaboration of INCOSE and SCS, as leaders in the systems 

and M&S communities, to solve these challenges complicated by multi-dimensional, hierarchical, and 

uncertain Big Data and propelled by exascale computational platforms.    

1 INTRODUCTION 

Military and defense, smart energy grids, and additive manufacturing are examples of systems that have 

received considerable attention across INCOSE and SCS (we use the designation INCOSE and SCS to 

designate the systems engineering and modeling and simulation (M&S) communities, resp.) Complexity 

and emergence have become the norm for these domains. In the meantime, decision makers want more 

capability, resilience, and predictability at the system and System of Systems levels.  We introduce the 

notion of a noble cause to the community where engineering practices are scaled to “next-level” triumphs: 

 

 These Systems of Systems (SoS) have software components that must increasingly operate on 

large, time-varying, heterogeneous data.  

 Big Data (defined by Volume, Velocity, Variety, and Veracity attributes) determine 1) how these 

systems perform across an indeterminate number of scenarios, 2) how their dynamics are controlled 

in real-time, and 3) their quality of decisions.  

 Adequately understanding, engineering, and operating such systems present challenges that are 

multi-dimensional, hierarchical, and uncertain requiring advanced M&S capabilities.  

 In this paper, we discuss how engineers must increasingly apply advanced M&S techniques and latest 

Information Technology (IT) supported by systems engineering research to address such challenges. We 

give examples of how agile systems engineering combined with system-theory based M&S artifacts can be 

applied to support discovery of system behavior patterns that can help develop solutions to today’s systems 

engineering problems. We discuss how advancements in systems engineering and M&S have evolved, 
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seemingly independently, but great minds are converging to recognize patterns, agility and formalisms as 

the overall roadmap for better engineered solutions. 

 Complex and emerging systems such as ballistic missile defense, smart energy grids, and additive 

manufacturing have become the norm for today’s systems engineering challenges. Moreover, these systems 

continue to increase in complexity as more capability and new features are asked of these systems by society 

and decision makers. At the global enterprise level, INCOSE has recognized these needs. As a result, 

progress has been made on many fronts, but there is still much to do. The authors are practitioners from 

various backgrounds and association with technical societies such as INCOSE and SCS. While 

collaborating on opportunities, we have seen potential for integrating significant work across these 

communities. Complex military, space, energy and manufacturing systems are constantly met with 

changing technology. Figure 1 is one perspective of the many components that influence the environment 

we find ourselves in today.  

 

 

Figure 1: Complexity Drives Need for Advances in Tools and Techniques. 

 A few examples taken from the figure highlight the issues:  
 

 Additive Manufacturing (AM) - large scale and micro AM to enable fabrication at the point of 

need (buildings, equipment, runways). Extreme environment components and parts in aircraft and 

spaceborne applications. 

 Big Data - (defined by Volume, Velocity, Veracity, Variety) feature technologies to advance data 

management and data mining systems within missile defense digital architecture. Digital twins that 

address Cyber Security, complex wargaming, and reduction of exascale volumes of Intelligence 

Surveillance Reconnaissance data. 

 Systems of Systems (SoS) - Space system and satellite technologies that advance state-of-the-art 

in payloads, subsystems, and mission operations. Naval systems that exploit vast underwater and 

ocean floor opportunities; healthcare systems that require extensive health information sharing 

(Traoré et al. 2018). 

 Artificial Intelligence (AI), Machine Learning, Deep Learning – Transformative data 
technologies that have dramatic consequences for current and future civilian and military systems. 
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A common denominator of the above ideas is Information Technology (IT). The observation is that 

systems, M&S and IT are three essential ingredients needed to advance engineering of complex systems.  

2 DEVELOPMENTS IN SYSTEMS ENGINEERING 

INCOSE promotes the transformation to Model Based Systems Engineering (MBSE) as a strategic 

objective. MBSE techniques are expanding to Pattern Based Systems Engineering (PBSE) and Agile 

Systems Engineering practices are studied, documented and shared globally.  

 The above progress is augmented by INCOSE outreach to other communities and associations such as 

System Science, IEEE, NDIA, and NAFEMS. Authors of this paper met at the 2017 Winter Simulation 

Conference and committed to do our part in connecting communities to raise awareness of activities which 

can further progress. This combination of outreach and collaboration across industry, academic, and 

professional societies is an essential ingredient to development and implementation of new methods, tools, 

techniques that will drive new technical and business models that do not exist today.    

 The INCOSE SE Vision 2020 defines MBSE as “the formalized application of modeling to support 

system requirements, design, analysis, verification and validation activities beginning in the conceptual 

design phase and continuing throughout development and later life cycle phases. MBSE is part of a long-

term trend toward model-centric approaches adopted by other engineering disciplines, including 

mechanical, electrical and software. In particular, MBSE is expected to replace the document-centric 

approach that has been practiced by systems engineers in the past and to influence the future practice of 

systems engineering by being fully integrated into the definition of systems engineering processes.” As 

practitioners, the value in the ideas and concepts behind MBSE allow for a more organized and deliberate 

engineering process. More importantly, MBSE provides the foundation for incorporating the growth in 

computing technology and the introduction of modeling standards such as SysML, UPDM, Modelica, HLA, 

DEVS, and others. MBSE enables integration of diverse models needed to fully specify and analyze 

systems. Figure 2 provides the INCOSE Roadmap for MBSE found at the INCOSE and Object 

Management Group MBSE wiki at http://www.omgwiki.org/MBSE/doku.php (OMGWiki MBSE). 

 

 

Figure 2: INCOSE MBSE Roadmap – Aggressive Steps to 2025 Goals (OMGWiki MBSE). 

 Of special note from the Roadmap is the indication of architecture models integrated with simulation, 

analysis and visualization. This is followed closely by defined theory and formalisms. The Discrete Event 
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Simulation Specification (DEVS) is one of those formalisms described in this paper and of interest to the 

systems and Modeling & Simulation communities.  

 Invariably, complex SoS present engineers, developers, and stakeholders with Big Data challenges. 

Oftentimes, the ability to characterize performance, design, implement or deploy these systems is dependent 

upon advanced modeling and simulation techniques. This reality is due to limitations in testing and 

operating these systems in the diverse and dynamic environments of interest. We simply cannot test the real 

system in order to gain the knowledge needed for decision quality information about the system. Couple 

this with the desire to include AI into system operations and Big Data becomes an overriding consideration. 

Big Data plays heavily in complex systems and SoS.  Five principal characteristics distinguish systems as 

SoS and are formed from the interaction of other complex systems. These five characteristics include:  

operational independence of the components, managerial independence of the components, evolutionary 

development, geographic distribution and emergent behavior (Maier 1998). When employed with 

components that can exhibit intelligent, adaptive, autonomous or semi-autonomous behavior resulting in 

feedback loops across large number of constituent components, they are better characterized as Complex 

Adaptive Systems (CAS) (Rouse 2008). 

2.1 Pattern Based Systems Engineering 

Model-based languages, such as SysML, offer a structured way to represent the requirements of SoS 

engineering. However, they fall short in offering a methodology to specify the hierarchical nature of SoS, 

ability to generate system behaviors, and to flexibly explore the ever-expanding design space. The systems 

engineering community is making great strides with MBSE by updating specifications (OMG SysML 

version 2.4) and promoting MBSE throughout the systems community.  Below is a graphic that captures 

key features of MBSE.  

 An exciting extension of MBSE, promoted within INCOSE is the idea of Patterns and Pattern Based 

Systems Engineering (PBSE) (Schindel 2013).  In PBSE, the nature of systems and SoS are investigated 

by using a concept called the S* Metamodel shown in Fig 2. The objective is for understanding the 

functional roles and interactions associated with features of the system under consideration. The 

significance of the S* Metamodel is its use in forming S*Models which can then be organized into Patterns. 

This construct is shown in Figure 3 below.  

 

Figure 3: PBSE Captures Patterns to Address Complexity (Schindel 2013). 
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 System Patterns are configurable, re-usable System Models that allow repeatable and structured 

approaches over a hierarchy of systems and system components. System Patterns can accumulate 

organizational learning and expertise. Because they are configurable and re-usable models of families or 

classes of systems, System Patterns extend the ideas of MBSE and provide a framework for progression of 

the MBSE Roadmap. 

2.2 Agile Systems Engineering  

Agile systems engineering techniques enable us to gain a better understanding of our operational 

environment to create more agile systems. Agile systems are better equipped to handle both internal and 

external environmental forces that are changing (Dove 2017). Agile systems engineering (SE) techniques 

give us an awareness of the interfaces we must consider during development of critical artifacts of M&S 

(to be described in Section 4), so that our system will accommodate for interactions with its environment, 

both internally and externally.  

 The Agile SE CURVE technique helps characterize the problem-space and build agility in our M&S 

artifacts. The CURVE acronym represents the following categories of situational responses: 

 

 Capriciousness Randomness among unknowable possibilities. 

 Uncertainty Randomness among known possibilities with unknowable probabilities. 

 Risk Randomness among known possibilities with knowable probabilities. 

 Variation Randomness among knowable variables and associated variance ranges.  

 Evolution Gradual successive developments.  

 

 From this type of analysis, we gain an awareness that enables our models to better represent the real-

world scenarios they intend to capture. INCOSE and SCS communities seek to show agility in their work.  

CURVE helps us think about the scope and purpose of M&S in systems development. We can consider 

each potential risk item listed above and determine if M&S will help address the issue. If we decide to 

address an issue with M&S, we can consider the combinatorial possibilities of the environment during 

development. We can add the model to a repository and utilize it for co-simulations. This can enable future 

use of the model to inform a larger, hierarchical system of systems. In agile systems engineering, this aligns 

with Reconfigurable-Reusable-Scalable (RRS) design principles (Dove 2017), namely, the Encapsulated 

Modules, Facilitated Interfacing, and Facilitated Reuse principles. 

3 DEVELOPMENTS IN MODELING & SIMULATION AND DEVS  

Such challenges result in high complexity that cannot be easily tackled using classic modeling, simulation, 

and optimization techniques. Recent model-based system engineering has proved inadequate due to lack of 

a full-strength M&S computational substrate (Mittal et al. 2017; Mittal and Martin 2017). Modeling and 

Simulation methodology has been evolving to provide increasing capability to help systems engineers 

develop models of SoS (Zeigler and Sarjoughian 2017). Such simulation models support design and testing 

of mechanisms with learning capabilities to coordinate the interactions of the operationally and 

managerially independent components.  Design of such systems present challenges to the currently 

employed independent use of simplified models for formal verification or brute-force simulations which 

are severely limited in the range of conditions they can test. Modeling and simulation of CAS (and the 

underlying SoS) must have a usable modeling environment that facilitates model validation from the end-

user and a robust simulation infrastructure that can be formally verified to ensure correct model execution. 

Together, they enable exhaustive parameter evaluation and advanced experimentation. Model-based 

methods which support traditional systems engineering need to be augmented with simulation-based 

methodologies to ensure they support complex systems engineering that integrate discrete and continuous 

systems for complex hybrid systems. CAS engineering will not become possible unless the undesired 
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emergent behaviors are completely removed from a computational environment or are known a priori so 

that they can be knowledgeably eliminated. A computational simulation-based environment provides 

experimentation opportunities to validate a CAS model, such that it becomes predictable and eventually 

useful (Mittal and Martin 2017).   

The task of integrating various simulators to perform together as a composite simulation, termed as co-

simulation, involves weaving the time series behavior and data exchanges accurately, failure of which, will 

yield inaccurate simulation results. As elaborated by Mittal and Zeigler (2017), every such hybrid system 

would require a dedicated effort to build a co-simulation environment.  Bringing various simulators together 

is much more than a typical software engineering integration exercise.  

 A solution gaining increased acceptance is offered by the DEVS formalism with a holistic construct 

called the Modeling and Simulation Framework (MSF). In a brief review, we  say that the framework 

defines the entities and their relationships of the enterprise of M&S and includes the relation between 

detailed models and their abstractions (Zeigler et al. 2018). The framework is based on mathematical 

systems theory and recognizes that the complexity of a model can be measured objectively by its resource 

usage in time and space relative to a particular simulator, or class of simulators. Furthermore, properties 

intrinsic to the model are often strongly correlated with complexity independently of the underlying 

simulator. Successful modeling can then be seen as valid simplification, i.e., reduction of complexity to 

enable a model to be executed on resource-limited simulators and at the same time, creating morphisms 

that preserve behavior and/or structural properties, at some level of resolution, and within some 

experimental frame of interest.  Indeed, according to the framework, there is always a pair of models 

involved call them the base and lumped models. 

The DEVS formalism is formulated within MSF and formally specifies the internal behavior of the 

system as well as macro behavior of the overall system due to its closure under coupling property. This 

robustness in both structural and behavioral description ensures that the unwanted holistic behaviors, also 

known as negative emergent behaviors are explicitly avoided, along with the guaranteed manifestation of 

the desired (or positive) emergent behaviors  (Mittal 2013; Mittal and Martin 2013; Zeigler and Nutaro 

2015). The DEVS super-formalism provides a foundation (Mittal and Zeigler 2017) that specifies an 

abstract simulation protocol between the model and the simulator (Zeigler et al. 2018). Thus, a requirement 

for M&S of CAS is to employ the principles of the Parallel DEVS simulation protocol (as illustrated by the 

hybrid approach of Camus et al. (2018), for example) to support the required robust co-simulation. 

3.1 MBSE, DEVS and CAS: Towards Unification 

We have seen that MBSE and PBSE call for formalized models to replace documents as the fundamental 

building blocks of systems engineering and that practicality demands that such models eventually support 

all the activities typically associated with the simulation discipline. However, as suggested current MBSE 

formalisms stop well short of this capability. One approach to bridging this gap is to enable mappings to be 

defined that precisely specify simulation models that realize their behaviors. Taken to practical limits, this 

approach entails building more capability into such a formalism so that it eventually replicates all 

capabilities associated with traditional simulation methodology. Although there are attempts to achieve this 

goal (Bocciarelli et al. 2018; Amissah et al. 2018), there are also fundamental reasons why it is not attainable 

(Aliyu et al. 2016; Abdurrahman and Sarjoughian 2018). An approach that we hypothesize to work is to tie 

MBSE models with informal but well documented links. Further, as experience grows with such cross-

linkages it might eventually become feasible to formalize these associations.  

Going beyond MBSE to PBSE, an emerging paradigm is to look for patterns that can be provided by 

PBSE that can be invariant to changes as a CAS evolves. Familiar patterns can be reused as new noble 
causes are encountered. More specifically, PBSE plays into CAS in the following way.  If we create the 
smallest possible model of many system components, these components can be combined into any number 
of CASs. The result is that we have many components we can draw from over time. This saves modeling 
time spent on common components allowing us to get at unique CAS model components. We want to 

3747



Zeigler, Marvin, and Cadigan 
 

reduce time to model by reusing components and patterns where possible. This is an important form of 
knowledge accumulation and a major consideration for decision makers who don’t have the time nor 
resources to dedicate for modeling activities.   

3.2 Architecture and workflow for M&S working within MBSE 

Figure 4 outlines an architecture and workflow for M&S working toward production of models for use in 

MBSE. The process starts with the development (or reuse) of a System Entity Structure (SES) that organizes 

a family of simulation models for the current application of interest. SES is an ontology, a language with 

syntax and semantics to represent declarative knowledge (Pawletta et al. 2016). The SES is a knowledge 

representation scheme that structures the search for a subset of models that are of particular concern under 

criteria that relate essentially to their behavior and can’t be defined in the first instance by their structural 

properties. Indeed, the behavior generated under simulation is observed within the Experimental Frame that 

characterizes the criteria defining the subset of interest. Roughly, an experimental frame (EF), as defined 

within the MSF, is a specification of the conditions under which the system is observed or experimented 

with. As such, experimental frames are the operational formulation of the criteria that motivate the M&S-

based pursuit of the models of interest. In an example of defense interest, types and placements of launch 

sites that collectively create high damage may be the focus of interest while employing a model-base of 

suitable missile defense system models. 

 

Figure 4: Architecture and Workflow for M&S working within MBSE.  

 The SES includes coupling information that directs the compositions of hierarchical models from 

components in the model-base. The combination of coupling opportunities for options for selection from 

specializations and aspects, leads to a very high combinatorial search space. Since an SES describes a 

number of system configurations, the SES tree needs to be pruned to get one particular configuration, which 

is called Pruned Entity Structure (PES).  Pruning operations factor out a particular model specification 

which can then be transformed automatically into a coupled model with components from the model base. 

Such components are either DEVS models or have been wrapped in a DEVS interface for DEVS 

compliance and amenability to the coupling specified by the SES. Simulation of such a model, eventually 

on a high-performance platform using parallel simulations of multiple models under test for reasonable 

execution times, generates the behavior of the model and produces results in the experimental frame of 
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interest. These results measure the extent to which the governing criteria are satisfied and are analyzed for 

guidance to direct the pruning toward a larger percentage of models that fully satisfy the criteria. At this 

point AI is useful to help analyze the results and predict which new prunings of the SES should performed 

at the next iteration. Built into the iteration loop is a second cycle of transition between base and lumped 

models where the lumped model can greatly accelerate the search for high-value models by enabling faster 

runs that provide useful information for the more detailed base model. Some fundamental distinctions 

between base and lumped models concern objectives, representation, entity attributes and variables, 

interaction processes, timing mechanisms, and computational complexity (Zeigler et al. 2018). 

As illustrated in Figure 3, the architecture envisions a collaboration between human and AI agents. The 

Human modeler develops the SES and the DEVS model base to span configuration space that encompasses 

the subset of interest. The AI agent, under control of the user, analyses the results and generates new 

prunings in order to increase percentage of models of interest.  Human modeler develops valid 

simplification morphisms for the DEVS base and lumped models and decides when and how to iterate 

between the levels of resolution in order to accelerate the overall process (Zeigler and Nutaro 2015). 

4 CONCLUSIONS: CONVERGENCE TOWARD NOBLE CAUSES 

We have identified Big Challenges where engineering practices are scaled to “next-level” triumphs: 

software defined systems that must increasingly operate on large, time-varying, heterogeneous data.  Big 

Data enables and requires that these systems perform across an enormous variety of operating conditions 

presenting engineers with multi-dimensional, hierarchical, uncertain and critical control and decision 

challenges. Recent work has begun to address these challenges. Kavak et al. (2018) offer a structured 

modeling approach to produce agents or parts thereof directly from data that focuses on individual-level 

data to generate agent behavioral rules and parameter values  Generalizing from the approach that recently 

enabled the AlphaGo program to defeat the world’s top ranked human Go player, Wang et al. (2018) 

envision an AlphaGo-like computation platform  to enable artificial systems to model and evaluate complex 

systems, and through the virtual-real system interaction, realize effective control and management over the 

complex systems.  

 Here we have taken a more fundamental perspective on the Big Challenges. Based on Systems thinking, 

concepts, theory, modeling, and simulation we have identified a convergence in motion between the model-

based systems engineering initiative of the INCOSE community and the model -based simulation 

developments of the SCS community. The trends toward replacing documents with models as the basis for 

knowledge accumulation, supported by the identification of Patterns for reuse align with similar trends 

toward DEVS-based simulation. Moreover, the Agile/CURVE framework that enables models to better 

represent the real-world scenarios offers an approach to M&S to deepen the capabilities of its simulation 

models that enable more extensive and validated exploration virtual-test.  The architecture of Figure 3 offers 

a generic workflow that supports Wang’s et al. (2018) vision of AlphaGo-like computational strength for 

future M&S-based systems engineering and management. The Modeling and Simulation Framework 

(Zeigler et al. 2018), and in particular its system specification hierarchy for acquiring levels of knowledge 

about an observed system, provide a solid basis for inference of structures from the volumes of Big Data 

envisioned by Kovak et al. (2018). 

Once the framework has been built, it becomes easier for the integration of specialty engineering all 

the way out to the users. For future work, we recommend developing tool sets that expand out to include  
dealing with the “illities” of systems engineering (reliability, availability, etc.). The goal is to make it easier 
for designers to deal holistically with complex adaptive systems of systems, including maintaining round 
trip  design  consistency and keeping patterns/models valid as evolution proceeds. Once such  tools become 
common, it will be possible to include more of the human elements (doctrine, tactics, procedures, 
governance) and stakeholders (users, partners, regular people, soldiers) directly in the process.  

We have mentioned the goal of trying to manage the bad aspects of emergence while preserving its 
good qualities. A reviewer points out that this is reminiscent of Whitehead and Russell’s attempts to control 
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self-reference in Formal Mathematics in the Principia Mathematica which they eventually proved to 
paradoxical in nature. Principia’s solution of hierarchical set constructions may suggest a way forward in 
the SoS case and the DEVS formalism offers a ready-made solution for hierarchical model construction 
justified by closure under coupling (Zeigler et al. 2018).   

It seems clear that we need to get a better handle on the whole SoS life-cycle with a more deliberate 
combined MBSE/DEVS approach. This will help us focus on the problem and  better understand the five 

attributes of SoS that underlie and interact to induce emergence. 
Still we should recognize enormous obstacles that must be overcome to achieve these visions.  Progress 

may require new ways of thinking about systems that truly enable them to be developed with reusable 

components. We must become able to identify the limitations in dealing with Big Data and limitations in 

dealing with its multi-dimensional, hierarchical, and uncertain nature. Along these lines, Zeigler et al. 

(2018) have identified strong requirements that must be satisfied to enable DEVS-based M&S to be 

practiced at its most productive level.  These prerequisites for best practice include: a) developing an 

effective operational ontology, b) enabling the ontology to support combinatorial model compositions, c) 

including the major facets to ensure representation of all levels (macro, meso, and micro) of behavior, d) 

curation of a large spectrum of models for combinatorial composition, and perhaps most critically, e) 

instrumenting the complex SoS to support acquisition of on-going high quality data (Mittal and Martin 

2013). Working to put the infrastructure in place to meet these requirements will move both systems and 

M&S communities along realistic paths toward the convergence to noble causes that we all envision. 
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