
Proceedings of the 2018 Winter Simulation Conference
M. Rabe, A.A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds.

IMPLEMENTING A NEW GENETIC ALGORITHM TO SOLVE THE CAPACITY

ALLOCATION PROBLEM IN THE PHOTOLITHOGRAPHY AREA

Amir Ghasemi
Cathal Heavey

Kamil Erkan Kabak

Enterprise Research Center Department of Industrial Engineering

University Of Limerick Izmir University Of Economics

Castletroy Sakarya Caddesi, No:156
Limerick, V94 T9PX, IRELAND Balçova - İzmir, 35330, TURKEY

ABSTRACT

Photolithography plays a key role in semiconductor manufacturing systems. In this paper, we address the

capacity allocation problem in the photolithography area (CAPPA) subject to machine dedication and tool
capability constraints. After proposing the mathematical model of the considered problem, we present a
new genetic algorithm named RGA which was derived from a psychological concept called Reference
Group in society. Finally, to evaluate the efficiency of the algorithm, we solve a real case study problem
from a semiconductor manufacturing company in Ireland and compare the results with one of the genetic
algorithms proposed in the literature. Results show the effectiveness and efficiency of RGA to solve

CAPPA in a reasonable time.

1 INTRODUCTION

Photolithography is one of the most crucial processes in semiconductor manufacturing. It is often regarded
as a bottleneck process due to the layered nature of wafer fabrication, which is attributed to expensive
clustered steppers and high tool utilization requirements. Essentially, the photolithography process includes
three main steps. These steps are coat, expose and develop. Of these three steps, the expose step covers the

masking of the integrated circuit pattern onto the wafer with ultraviolet light Kabak et al. (2008). In this
paper, we consider the capacity allocation and scheduling problem for the photolithography area (CAPPA)
subject to machine dedication and tool capability constraints. As the CAPPA problem is NP-Hard (Chung
et al. 2008) and genetic algorithms are one of the most efficient metaheuristics to solve NP-Hard problems
(Beheshtinia and Ghasemi 2017), first we propose a new mathematical formulation of this problem and
then a new genetic algorithm. To evaluate our algorithm, different sets of real data from a real case data are

solved and compared with the genetic algorithm (GA) proposed by Chen et al. (2016). The rest of paper is
organized as follows: Section 2 provides a literature review on photolithography optimization papers.
Section 3 proposes a mathematical formulation, Section 4 describes our solution methodology, and Section
5 presents numerical solutions. Finally, Section 6 gives the conclusion and future research area.

2 LITERATURE REVIEW

This study addresses the problem of capacity allocation for the photolithography in semiconductor

manufacturing. The problem is commonly referred to as the CAPPA problem (Chung et al. 2008), which
considers both the machine capability and the machine dedication constraints.

The study by Leachman and Carmon (1992) is one of the earliest studies on the capacity allocation
problem considering the machine capability constraints. In this study, they define an `alternative machine
set' to represent a capability for a particular operation. Also, a linear programming (LP) formulation of
revisits of products to process areas requires a huge number of decision variables since the number of

3696978-1-5386-6572-5/18/$31.00 ©2018 IEEE

Ghasemi, Kabak, and Heavey

variables increases as the number of alternative machine types to the power of the number of re-entrant
visits (Leachman and Carmon 1992).

Another version of the CAPPA problem is defined by Toktay and Uzsoy (1998) as a maximum flow
network model. In this formulation, tooling and set-up constraints apart from machine capabilities are
included. The capacity allocation problem is also considered as a sub-problem by Akçah et al. (2001) for a
shift scheduling problem together with the sub-problem of lot sequencing. Different than the other studies,

they use two different sets for machine capabilities, one is for the processing capability of all operations,
and, the other is for the processing capability of a partial set of operations. Hung and Cheng (2002)
introduce a capacity partition generation procedure (CPGP) by relaxing the uniformity assumption applied
by them.

Some earlier studies consider just the machine dedication constraints for the capacity allocation
problem. To illustrate, Akcali and Uzsoy (2000) point out that both the average and variation of the

photolithography cycle time can be reduced significantly with a flexible assignment policy. Pham et al.
(2008) apply a machine dedication constraint using integer programming for the photolithography
scheduling.

The CAPPA problem is tackled with both machine capability and dedication constraints since the
studies by Chung et al. (2008) and Chung et al. (2006). The CAPPA problem is solved by leveling the
capacity utilization rates of the machines using an integer programming model (Chung et al. 2006). The

time complexity of the problem is reported in this study and the need for heuristics is emphasized for large-
scale instances. To overcome the computational issue, Chen and Chen (2010) introduce six modified
heuristics of Sule’s Algorithm (MSAs) and a linear-programming based heuristic algorithm (LPBHA) for
the CAPPA problem. Chen and Chen (2010) also compare five heuristics according to the required number
of machines of each type with capability constraints. These heuristics are two heuristics for capacity and
capability planning of lower bound (CCP-L) and of upper bound (CCP-U), two heuristics for modified

versions of the former (MCCP-L) and latter (MCCP-U) heuristics, and modified capacity and capability
planning of cost ratio (MCCP-CR). The algorithm using the best ratio of production efficiency and
equipment cost to select the machine type with capability constraint results in the least required number of
machines, the highest machine utilization, and the lowest equipment investment. Chen et al. (2010) analyze
the capacity allocation under the infinite capacity planning system (ICPS) framework. They point out that
only a few studies are performed at the back-end part of semiconductor manufacturing when compared to

the studies at the front-end in the literature. Also, they highlight the consideration of dual resources of
equipment and the jig together with capacity and capabilities simultaneously.

Another important factor in scheduling photolithography operations is the availability of reticles which
is considered by Diaz et al. (2005). To show the impacts of the reticle requirements in the production
environment they consider a discrete-event simulation model of the photolithography station and coupled
with a network flow optimization model that optimizes the location of all reticles at 6-hour intervals.

Recently, Chen et al. (2016) apply a genetic algorithm for solving the CAPPA problem considering reticle
constraints apart from machine dedication and capability constraints. Kriett and Grunow (2017) evaluate
linear capacity constraints for unrelated parallel machines by using a procedure that generates an
irredundant set of low-dimensional constraints. That is, the constraints involve one decision variable for
each product type.

3 AN IMPROVED MIXED INTEGER PROGRAMMING MODEL

In this section, the mathematical model of the problem is introduced based on the model proposed by
(Chung et al. 2008). Before introducing the model formulation, the common notation used throughout this
paper is provided below.

Indices:

𝑖 Index of order number, where 𝑖 = 1,2, … , 𝐼

𝑙 Index of layer number, where 𝑙 = 1,2, … , 𝐿𝑖

3697

Ghasemi, Kabak, and Heavey

𝑘 Index of machine number, where 𝑘 = 1,2, … , 𝐾
ℎ Index of processing capability number, where ℎ = 1,2, … , 𝐻
𝑡 Index of the planning period, where 𝑡 = 1,2, … , 𝑇

Parameters:

𝐶ℎ𝑘 If machine 𝑘 has processing capability ℎ, then 𝐶ℎ𝑘 = 1 otherwise 𝐶ℎ𝑘 = 0.

𝐴𝐶𝑘𝑡 Available capacity of the machine 𝑘 in planning period t.
𝐶𝐿𝑖𝑙 If layer 𝑙 of order 𝑖 is a critical layer then 𝐶𝐿𝑖𝑙 = 1 otherwise 𝐶𝐿𝑖𝑙 = 0.
𝐶𝑅𝑖ℎ If the critical layer operations of order 𝑖 requires process capability ℎ then 𝐶𝑅𝑖ℎ = 1

otherwise 𝐶𝑅𝑖ℎ = 0.
𝐶𝑅𝑖𝑙ℎ If layer 𝑙 of order 𝑖 has a load on processing capability ℎ then

𝐶𝑅𝑖𝑙ℎ = 1 other wise 𝐶𝑅𝑖𝑙ℎ = 0.

𝐷𝑀𝐿𝑖𝑡 Loading of critical layer operations of order 𝑖 in period 𝑡.
𝐿𝑖 A number of photolithography operations for order 𝑖.

𝐿𝑇𝑖𝑙𝑡 If layer 𝑙 of order 𝑖 has a load in planning period 𝑡 then, 𝐿𝑇𝑖𝑙𝑡 = 1 otherwise 𝐿𝑇𝑖𝑙𝑡 = 0.

𝑝𝑖𝑙 Processing time for layer 𝑙 of order 𝑖.

Decision variables:

𝑑𝑚𝑖𝑘 If the first critical layer of order 𝑖 is assigned to machine k then, 𝑑𝑚𝑖𝑘 = 1 otherwise
𝑑𝑚𝑖𝑘 = 0.

𝑥𝑖𝑙𝑘 If layer 𝑙 of order 𝑖 is assigned to machine 𝑘, then 𝑥𝑖𝑙𝑘 = 1 otherwise 𝑥𝑖𝑙𝑘 = 0.

𝑀𝐿𝑡 The maximum loading level among machines in the planning period 𝑡.

Objective function:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑀𝐿𝑡

𝑡

 (1)

Subject to:

∑ ∑ ∑ ∑ 𝑥𝑖𝑙𝑘𝐶ℎ𝑘𝐶𝑅𝑖𝑙ℎ𝐿𝑇𝑖𝑙𝑡

𝑙ℎ𝑘𝑡

= ∑ ∑ ∑ 𝐶𝑅𝑖𝑙ℎ𝐿𝑇𝑖𝑙𝑡

𝑙ℎ𝑡

 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 (2)

∑ 𝑥𝑖𝑙𝑘

𝑘

= 1 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑙 (3)

∑ ∑ ∑(𝑥𝑖𝑙𝑘𝐶𝑙𝑖𝑙𝐶𝑅𝑖𝑙ℎ𝐿𝑇𝑖𝑙𝑡)

𝑙ℎ𝑡

= 𝑑𝑚𝑖𝑘 ∗ ∑ ∑ ∑(𝐶𝑙𝑖𝑙𝐶𝑅𝑖𝑙ℎ𝐿𝑇𝑖𝑙𝑡)

𝑙ℎ𝑡

 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑘 (4)

∑ ∑ ∑(𝑥𝑖𝑙𝑘𝑝𝑖𝑙𝐶ℎ𝑘𝐶𝑅𝑖𝑙ℎ𝐿𝑇𝑖𝑙𝑡)

ℎ𝑙𝑖

≤ 𝑀𝐿𝑡 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 (5)

𝑥𝑖𝑙𝑘 , 𝑑𝑚𝑖𝑘 ∈ {0, 1} 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑙, 𝑘 (6)

𝑀𝐿𝑡 ≥ 0 (7)

The objective function (1) is to minimize the sum of 𝑀𝐿𝑡, the maximum loading level among machines

in plannithe ng period t. Lower amounts of 𝑀𝐿𝑡 would guarantee better work flow between machines
during weeks so by minimizing the sum of 𝑀𝐿𝑡, the results tend to balance the load among machines.

3698

Ghasemi, Kabak, and Heavey

Constraint (2) ensures that each layer of an order, including new released orders and WIP orders, must be
assigned to a machine k if it has a capacity request in this planning horizon. In the machine assignment, the
process window constraint must be considered. Constraint (3) is to make sure that each layer of an order
can only be assigned to a single machine. Constraint (4) indicates the machine dedication control. Note that
the orders in a planning horizon can either be orders planned to be released or WIP orders that were released
to the shop floor in the previous planning horizon. Therefore, 𝑑𝑚𝑖𝑘 is a decision variable if the order is a

planned-to-release order or a WIP order for which its first critical layer has not been assigned to a particular
machine in the previous planning horizon; otherwise, 𝑑𝑚𝑖𝑘 is a known parameter. Constraint (5) ensures
that capacity loading of each machine in a period must be smaller than or equal to the maximum loading
among machines in that planning period, 𝑀𝑙𝑡. Constraint (6) mentions the type of decision variables and
constraint (7) that ensures the positivity of 𝑀𝑙𝑡 values.

4 PROBLEM-SOLVING

The genetic algorithm (GA) is one of the most frequently used algorithms in the capacity allocation and
scheduling problems (Beheshtinia et al. 2018). In GA, the initial population is obtained from randomly
generated chromosomes. Then, the initial population is improved through GA operators such as crossover,
mutation, and selection. Research in GA presents various versions of algorithms. Qu et al. (2013) combine
an improved genetic algorithm (GA) with a co-evolution mechanism to solve the global path-planning
problem for multiple mobile robots. Li et al. (2015) use a combination of GA and simulated annealing (SA)

to forecast vessel traffic flow by robust v-support vector regression model. In this paper, a new GA derived
from sociological theory is presented. The sociological theory used in the algorithm is the theory of social
role models.

Figure 1: Mechanism of RGA.

The concept of reference groups in society is presented by Merton (1957). He believed that people like
heroes or entertainment artists, whom he calls role models, influence other members of every society. This
concept is employed in the proposed GA, namely Reference Group Genetic Algorithm (RGA).

In RGA, a list of good chromosomes having the best fitness functions and a list of bad chromosomes
with the worst fitness functions are saved in two separate sets. RGA uses these lists in the algorithm

operators like a mutation to achieve an optimal solution. Figure 1 (last page) illustrates the mechanism of
RGA. This algorithm is introduced by Beheshtinia et al. (2018). They call their algorithm as RGGA and

3699

Ghasemi, Kabak, and Heavey

apply it to a supply chain delivery planning problem. Here, this algorithm is adapted and applied to the
CAPPA problem, where new chromosome types and update algorithm parameters are used.

4.1 Chromosomes Structure

A random-key genetic algorithm is an evolutionary metaheuristic for discrete and global optimization. Each
solution is encoded as an array of n random keys where a random key is a real number, randomly generated,
in the continuous interval. A decoder maps each array of random keys to a solution of the optimization

problem being solved and computes its cost. The algorithm starts with a population of p arrays of random
keys (Ruiz et al. (2015)). The RGA chromosomes have a bi-level random key structure. The first level
defines the orders and related layers (i, j), and the second level addresses allocation and sequencing of order
layers to machines.

Example 1- Assume that there are 3 orders with their specified number of layers planned to be produced
in each week. In this period, Figure 2 determines the chromosome structure of an arbitrary production plan

answer for a week. The string is composed of 6 numbers (each number is related to an order and its layer).
The numbers of the string are randomly generated from the continuous distribution U[1, Nm+1]; in which
Nm is the number of machines. The integer part of each number indicates the selected machine to process
the related order. The sequence of assigned orders to a machine is obtained by sorting them by the decimal
part of each number. It is worth mentioning here that machine dedication and process window constraints
are considered when the random numbers are generated. Therefore, Figure 2 shows the assignment of order

2 with layer 3, order 1 with layer 1, order 3 with layer 1 and order 3 with layer 3 to the first machine,
respectively. Order 2 with layer 2 and order 3 with layer 2 are assigned to the second machine. The
sequence of assigned orders to a machine is obtained by sorting them by the decimal part of each number.
For example, in figure 2 1st layer of order 1 assigned to the first machine the same as a 3rd layer of order 2
and because the decimal part of the 3rd layer of order 2 is smaller than the 1st layer of order 1 it should be
produced first.

i, j
Assignment

1,1 1,2 2,3 3,1 3,2 3,3

1.25 2.17 1.13 1.47 2.29 1.57

Figure 2: A feasible chromosome.

4.2 Calculation of a Chromosome

In the remaining elements of the algorithm, it is required to calculate the objective function of newly
obtained chromosomes. In each chromosome, different layers of orders assigned to the machines and their
processing priority are determined. The objective function of each chromosome is calculated as follows:

 Step 1- Schedule the layers of orders based on their assignment to the machines and processing
priority by considering machine dedication and process window constraints.

 Step 2- Calculate the loading time for each machine in the specified week.
 Step 3- Calculate the cumulative loading time for all weeks and machines.

4.3 Crossover and Mutation

Two sub procedures named imitation procedure and distinguish procedure are used in crossover and
mutation operators.

Imitation procedure: There are two chromosomes in the imitation procedure; one of them as the

influencer, and the other one as the influenced. Influenced chromosome inherits a number of the influencer
chromosome features. In this procedure, a gene from the influenced chromosome is selected randomly. It
is checked whether the corresponding gene on the influencer chromosome is equal to it or not. If the value

3700

Ghasemi, Kabak, and Heavey

is not equal, then the value of the gene in the influenced chromosome turns into the influencer one. If the
value of the gene in the influenced chromosome is similar to the influencer one, no change is needed. The
overall structure of this procedure is shown in Figure 3.

1.13 2.17 2.54 2.19 1.18 1.16 Influencer

1.27 1.45 1.93 2.11 2.19 2.27 Influenced

1.27 2.17 1.93 2.11 1.18 2.27

New chromosome

Figure 3: Imitation procedure.

Distinguish procedure: There are two chromosomes in the distinguish procedure, one of them as the
influencer, and the other one as the influenced. In this procedure, the influenced chromosome wants to be
different from the influencer in some features. In this procedure, a gene from the influenced chromosome
is selected randomly. It is checked whether the integer part of the gene on the influencer chromosome is

equal to it or not. If the value is equal, then the value of the gene in the influencer chromosome is replaced
by a new random number. If the value of the gene in the influenced chromosome is not similar to the
influencer one, no change is needed.

The crossover and mutation operators of the algorithm are as follows:

 Mutation: Some people in the community are known as good models, and some are known as bad

models. People like to imitate good models and avoid the bad models. To perform a mutation
operator in RGA, a chromosome from the population is considered as the influenced. Then, the
mutation operator is employed in two steps. In the first step, a chromosome is selected from the
good chromosomes set and an imitation procedure occurs between them. In the second step, a
chromosome is selected from the bad chromosomes set and a distinguish procedure occurs between
them. The mutation is done for all population members one by one.

 Crossover: People affect each other in society. In the crossover operator, two chromosomes are
chosen randomly from the population. One of them is considered as the influenced and another as
the influencer and an imitation procedure occurs between them.

It is worth mentioning here that as the first population generated completely feasible, during

implementing mutation and crossover operators’ solutions will remain in the feasible area. In other words,

in RGA operators change the order assignments from one machine to another one and because all
assignments generated for orders in the first generation are feasible just two feasible assignments will be
changed.

4.4 The Algorithm Steps

The steps of the algorithm are as follows:

Step 1- Create an initial population: create popsize random chromosomes as following steps (popsize
is one of the parameters of the algorithm that determines the size of the population.)

3701

Ghasemi, Kabak, and Heavey

o Step 1-1- create chromosome: create a string each of which having No array (gene). The
value of each array in the string should be a random number from the uniform distribution
U[1, Nm+1].

o Step 1-2- Calculate the objective function value of each chromosome

Step 2- Create the set of good and bad chromosomes: assign the number of Num_Good chromosomes

with the best objective function to the good chromosomes set and the number of Num_Bad
chromosomes with the worst objective function to the bad chromosomes set.

Step 3- Perform crossover: the number of crossover operations in each iteration is constant and
determined by a coefficient of popsize named cross_rate that is one of the parameters of the genetic
algorithm. Perform crossover as follows:

o Step 3-1- Choose the chromosomes: selecting two chromosomes randomly and name them
P1 and P2.

o Step 3-2- Perform the imitation procedure between P1 and P2: choose a random gene of
P1 and copy its value to the related gene on chromosome P2. Likewise, select a random
gene of P2 and copy its value to P1.

o Step 3-3- Calculate the objective function and replace the chromosomes: calculate the
objective function new value of chromosomes P1 and P2, and replace the previous
chromosomes with the new ones.

Step 4- Mutation: the number of mutations in each iteration is constant and determined by the
coefficient of popsize named mut_rate that is one of the parameters of the algorithm. The mutation

mechanism is as follows:

o Step 4-1- Select a chromosome for the mutation, a good and a bad chromosome: select a
random chromosome from the population, a random chromosome from the good
chromosomes set and a random chromosome from the bad chromosomes set and name
them as C, GC, and BC, respectively.

o Step 4-2- Imitate from the good chromosome: select a random gene from GC and copy its
value to its corresponding gene in C.

o Step 4-3- Avoid the bad chromosome: choose a random gene from C and consider its value
as VC, and its corresponding value in BC as VBC. If the integer parts of both numbers are
identical, change the integer part of VC. (Do this for the decimal part of the number, too).

o Step 4-4- Calculate the objective function and replace chromosome: calculate the objective

function for the new chromosome C and replace the previous chromosome C with the new
one.

Step 5- Check the termination criterion: If the best chromosomes objective function value does not
improve in several consecutive generations, terminate the algorithm. The number of these consecutive
repetitions is showed by ter_num, and it is a parameter of the algorithm. If the termination criteria is

not achieved, go to step 6.

Step 6- Updating the set of good and bad chromosomes: In the current population, if there are
chromosomes that their objective function is better (or worse) than good chromosomes (bad
chromosomes) set, place it in the good (bad) chromosomes set and delete the worst (best) chromosome
from the list.

3702

Ghasemi, Kabak, and Heavey

We empirically found that the values of 0.8 for cross_rate, 0.2 for mut_rate, 50 for population size, 10
for Num_Good and Num_Bad and 20 for ter_num give good results in a reasonable time.

5 NUMERICAL EXPERIMENTS

To evaluate the performance of RGA, we compared it with the GA proposed by Chen et al. (2016) using a
set of real case gathered from a semiconductor manufacturing fab in Ireland. To illustrate the input an
example of a data set is shown in Tables 1 and 2. It includes 2 orders and different layers features besides

the capability of different 9 machines in addition to Processing time (h), load occurrence time (week),
required process capability, whether a critical layer operation is included or not (1: critical layer operation;
0: non-critical layer operation), respectively. In Table 2, 1 means that the machine has this certain process
capability; 0 means that the machine does not have this certain process capability. The full real data sets
can be found at data sets for CAPPA in Winter Simulation Conference 2018, last accessed August 18, 2018.

Table 1: Example of real data input sets.

Order Layer 1 2 3 4 5 6

1

Process time 42 36 44 43 38 44

week 1 1 1 1 1 1

capability 9 10 3 1 5 9

critical 0 1 0 0 0 0

2

Process time 40 41 40 45 42 38

week 1 1 1 1 1 1

capability 7 3 8 7 10 11

critical 0 0 1 0 0 0

Table 2: Example of machine features in the input data sets.

 cap1 cap2 cap3 cap4 cap5

m1 1 1 0 1 1

m2 1 1 1 0 1

m3 0 0 0 0 1

m4 0 1 1 0 1

m5 1 1 1 1 1

m6 1 1 1 0 1

m7 1 0 1 0 1

m8 1 0 1 1 1

m9 1 1 0 0 1

5.1 Computational Results

The generated test data sets are solved by RGA and the GA proposed by Chen et al. (2016). All algorithms
are coded in MATLAB and run on a PC with an Intel Core i7, 1.80 GHz CPU with 8 GB of Ram. Based

on our real case, there are 85 orders with a different number of layers in 3 weeks for each order and the
number of machines is 9 with the different production. Table 3 shows the results of the algorithms in solving

3703

Ghasemi, Kabak, and Heavey

the problem. Results are based on different loading levels for each machine during 3 weeks with the
objective function of maximum loading for each week based on different allocations of algorithms and
finally, the cumulative amount of maximum loadings is considered.

Table 3: Results of algorithms applied to CAPPA real case.

 Machine loading Maximum loading CPU time
 RGA GA RGA GA RGA GA

week1

m1 3842 3703

5200 5824

1373.2 1758.5

m2 4184 4104

m3 3101 2700

m4 2764 3344

m5 5200 5824

m6 4705 4693

m7 3157 2946

m8 4075 4849

m9 4117 2982

week2

m1 4480 4262

4480 5639

m2 4375 4120

m3 4320 2141

m4 2870 3415

m5 4440 5639

m6 4407 4509

m7 3541 4355

m8 3293 4182

m9 4412 3515

week3

m1 4010 3053

4189 5142

m2 4187 4359

m3 4153 4274

m4 3454 3204

m5 4189 4027

m6 4142 5095

m7 3748 2423

m8 3281 3734

m9 4147 5142

Total 13869 16605

5.2 Results Discussion

One of the most challenging problems in the photolithography process is to have a constant flow between
machines which means planning not to have some machines idle and some others working during the whole

planning period. Preventing such issues can increase the efficiency of the production line (Chen et al. 2016).
In Table 3, there is a considerable difference between the loading levels of RGA and GA with lower loading

3704

Ghasemi, Kabak, and Heavey

levels given by RGA. This has a direct influence on maximum loading during each week as we can see the
maximum loading levels for the first week are 5200 and 5824 for RGA and GA, respectively. The other
point worth mentioning here is that the CPU time to solve the problem using RGA is considerably less than
GA which relates to special features of RGA.

5.2.1 Special Features of RGA in Solving CAPPA

To clarify why RGA can be more efficient in solving CAPPA here we describe some of its special features

and compare it with GA:

 The imitation operator in RGA enables it to just search in the feasible area. In other words, the first

population for both algorithms is from feasible solutions then the algorithm operators play a key
role in remaining in the feasible solution. In the RGA the imitation operator changes allocations
for a specific gene of each chromosome in two solutions, where the feasible allocation of layers

from one solution is copied into another one, therefore, it guarantees the feasibility for the new
solution. However, in the mutation procedure of GA, some infeasible allocations result in penalties
which reduces the quality of solutions.

 RGA algorithm saves a set of best and worst obtained solutions in the good chromosomes set and
the bad chromosomes set lists, respectively. However, GA loses this information.

 In RGA to perform a mutation operator, we need three chromosomes: an ordinary chromosome, a

chromosome from good chromosomes set and another from bad chromosomes set. While in the
GA the mutation operator needs a randomly selected chromosome.

6 CONCLUSION AND FUTURE RESEARCH

As the demand for semiconductor products increases, along with the changes in wafer technology,
semiconductor manufacturers find it increasingly difficult to schedule their capacity efficiently. This study
provides a solution to the issue of loading balance among photolithography machines. To solve this problem

we proposed a new genetic algorithm named RGA which combines some psychological approaches into
the classical GA. To examine our approach we gathered data from a semiconductor company in Ireland to
solve the CAPPA problem. Results show the quality of RGA in finding efficient solutions for CAPPA in
comparison with GA provided by Chen et al. (2016).

In this paper, the production planning problem is not considered and each layer of an order previously
planned to be produced in specified weeks which can be a new research area to integrate production

planning and capacity allocation together. In addition, all variables and parameters are deterministic,
however, in real cases, the order volumes are highly stochastic. Considering order due dates and new
objective functions like total tardiness would enable CAPPA to be more realistic.

ACKNOWLEDGMENTS

This project named Productive 4.0 has received funding from the Electronic Component Systems for
European Leadership Joint Undertaking under grant agreement No 737459. This Joint Undertaking

receives support from the European Union’s Horizon 2020 research and innovation program and Germany,
Austria, France, Czech Republic, Netherlands, Belgium, Spain, Greece, Sweden, Italy, Ireland, Poland,
Hungary, Portugal, Denmark, Finland, Luxembourg, Norway, Turkey.

REFERENCES

Akcali, E. and R. Uzsoy. 2000. “A Sequential Solution Methodology for Capacity Allocation and Lot

Scheduling Problems for Photolithography”. In Proceedings of the 26th IEEE/CPMT International
Electronics Manufacturing Technology Symposium, 374-381.

3705

Ghasemi, Kabak, and Heavey

Akçah, E., K. Nemoto, and R. Uzsoy. 2001. “Cycle-time Improvements for Photolithography Process in
Semiconductor Manufacturing”. IEEE Transactions on Semiconductor Manufacturing 14(1):48-56.

Beheshtinia, M. A. and A. Ghasemi. 2018. “A Multi-objective and Integrated Model for Supply Chain
Scheduling Optimization in a Multi-site Manufacturing System”. Engineering Optimization 50(9):
1415-1433.

Beheshtinia, M. A., A. Ghasemi, and M. Farokhnia. 2018. “Supply Chain Scheduling and Routing in Multi-
site Manufacturing System (Case Study: A Drug Manufacturing Company)”. Journal of Modelling in
Management 13(1):27-49.

Chen, J. C. and C. W. Chen. 2010. “Capacity Planning of Serial and Batch Machines with Capability
Constraints for Wafer Fabrication Plants”. International Journal of Production Research 48(11):3207-
3223.

Chen, J. C., L. Su, Ch. J. Sun, and M. F. Hsu. 2010. “Infinite Capacity Planning for IC Packaging Plants”.
International Journal of Production Research 48(19): 5729-5748.

Chen, J.C., Y. Y. Chen, and Y. Liang. 2016. “Application of a Genetic Algorithm in Solving the Capacity
Allocation Problem with Machine Dedication in the Photolithography Area”. Journal of Manufacturing
Systems 41(1):165–177.

Chung, S. H., C. Y. Huang, and A. H. I. Lee. 2006. “Capacity Allocation Model for Photolithography
Workstation with the Constraints of Process Window and Machine Dedication”. Production Planning
and Control 17(7): 678-688.

Chung, S. H., C. Y. Huang, and A. H. I. Lee. 2008. “Heuristic Algorithms to Solve the Capacity Allocation
Problem in Photolithography Area (CAPPA)”. OR Spectrum 30(3): 431-452.

Diaz, S. L. M., J. W. Fowler, M. E. Pfund, G. T. Mackulak, and M. Hickie. 2005. “Evaluating the Impacts
of Reticle Requirements in Semiconductor Wafer Fabrication”. IEEE Transactions on Semiconductor
Manufacturing 18(4):622–632.

Hung, Y. F. and G. J. Cheng. 2002. “Hybrid Capacity Modeling for Alternative Machine Types in Linear
Programming Production Planning”. IIE Transactions 34(2): 157-165.

Kabak, K. E., C. Heavey, and V. Corbett. 2008. “Analysis of Multiple Process Flows in an Asic Fab with
a Detailed Photolithography Area Model”. In Proceedings of Winter Simulation Conference, edited by:
S. J. Mason et al., 2185-2193. Miami, FL: Informs.

Kriett, P. O. and M. Grunow. 2017. “Generation of Low-Dimensional Capacity Constraints for Parallel
Machines”. IISE Transactions 49(12): 1189-1205.

Leachman, R. C. and T. F. Carmon. 1992. “On Capacity Modeling for Production Planning with Alternative
Machine Types”. IIE Transactions 24(4): 62-72.

Li, M. W., D. F. Han, and W. Wang. 2015. “Vessel Traffic Flow Forecasting by RSVR with Chaotic Cloud
Simulated Annealing Genetic Algorithm and KPCA”. Neurocomputing 157(1): 243-255.

Merton, R. K. 1957. “The Role-Set: Problems in Sociological Theory”. The British Journal of Sociology
8(2): 106-120.

Pham, H., A. Shr, P. P. Chen, and A. Liu. 2008. “Scheduling for Dedicated Machine Constraint Using
Integer Programming”. In 20th IEEE International Conference on Tools with Artificial Intelligence,
499-506.

Qu, H., K. Xing, and T. Alexander. 2013. “An Improved Genetic Algorithm with Co-Evolutionary Strategy
for Global Path Planning of Multiple Mobile Robots”. Neurocomputing 120(1): 509-517.

Ruiz, E., M. Albareda-Sambola, E. Fernández, M. G. C. Resende. 2015. “A Biased Random-Key Genetic
Algorithm for the Capacitated Minimum Spanning Tree Problem”. Computers & Operations Research
57(1):95–108.

Toktay, L. B. and R. Uzsoy. 1998. “A Capacity Allocation Problem with Integer Side Constraints”.
European Journal of Operational Research 109(1): 170-182.

AUTHOR BIOGRAPHIES

AMIR GHASEMI is a Ph.D. researcher in the School of Engineering at the University of Limerick. He is
an Industrial Engineering graduate of the Semnan University, Iran and holds an MSc and BSc there. He

3706

Ghasemi, Kabak, and Heavey

published papers in the field of supply chain scheduling and planning using optimization algorithms. His
research interests include optimization algorithms, simulation optimization methods applied to production
planning problems and supply chain planning. His email address is amir.ghasemi@ul.ie.

KAMIL ERKAN KABAK is an Assistant Professor in the Department of Industrial Engineering, Izmir
University of Economics. He received the Bachelor ’s degree from the Middle East Technical University

in Ankara, Turkey, the Master’s degree from the Department of Industrial Engineering, Dokuz Eylul
University, Izmir, Turkey, and the Ph.D. degree from the Department of Design and Manufacturing
Technology, University of Limerick, Limerick, Ireland. His research interests include combinatorial
optimization, data analytics, simulation modeling and decision support systems. His email address is
erkan.kabak@ieu.edu.tr.

CATHAL HEAVEY is an Associate Professor in the School of Engineering at the University of Limerick.
He is an Industrial Engineering graduate of the National University of Ireland (University College Galway)
and holds an M. Eng.Sc. and Ph.D. from the same University. He has published in the areas of queuing and
simulation modeling. His research interests include simulation modeling of discrete-event systems;
modeling and analysis of supply chains and manufacturing systems; process modeling; and decision
support systems. His email address is cathal.heavey@ul.ie.

3707

