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ABSTRACT 

For the past decades, Virtual Metrology (VM) has been widely studied and covered in the literature for 
semiconductor industries where cycle time is a critical aspect and the elimination of non-productive 
metrology measurements is expected to significantly contribute to its reduction. A wide variety of 

approaches has been proposed but not effectively implemented. An ideal VM model should be able to 
provide accurate predictions and to reveal the hidden relationship among production/process factors. For 
this aim, we employ the Gaussian Bayesian Network (GBN) to investigate the implicit relationship not only 
between the metrology and the control factors but also among the production/process parameters. Instead 
of working purely as a black-box data-driven methodology, GBN enables the flexibility to integrate domain 
knowledge through the corresponding connected graph. The effectiveness of proposed approach is validated 

using real industrial data from a Chemical-Mechanical Polishing (CMP) process. 

1 INTRODUCTION 

In semiconductor manufacturing, the stability of the process and the corresponding quality of wafer are 
always of primary concern. However, considering the limited metrology tool capacity and restricted wafer 
life cycle, only a few sampled wafers are actually sent for inspection. In order to circumvent these 
limitations of metrology and expand the feasibility of process quality monitoring, virtual metrology (VM) 

approaches have been developed (Chen et al. 2005). Virtual metrology models aim to predict metrology 
measurements of the wafers based on Fault Detection and Classification (FDC) data comprising abundant 
information collected from process machines by embedded sensors, including both physical and chemical 
parameters which reflect the actual state during the process for all wafers. With such process information, 
VM firstly align data with the sampled wafers and identify the relationship between FDC information and 
metrology data by machine learning models. Considering different hidden data properties and model 

characteristics, various modeling methods have been studied and evaluated, such as linear regression, 
partial least squares, neural networks, k-nearest neighbors, regression trees, etc. (Chang et al. 2005; Khan 
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et al. 2007; Kang et al. 2009; Zeng and Spanos 2009). With the VM system in the production line, not only 
the monitoring mechanism can be improved, but also the overall control can be improved, providing 
furthermore valuable information for abnormal wafer detection, run-to-run control, and predictive 
maintenance (Khan et al. 2008; Kang et al. 2011).  

The selection of important factors from the numerous FDC parameters is a crucial task, and therefore 
most studies consider algorithms able to perform feature selection as part of their learning procedure (Chang 

et al. 2005; Khan et al. 2007; Kang et al. 2009; Zeng and Spanos 2009), while other studies consider penalty-
based approaches like Lasso and the Elastic Net (Pampuri et al. 2011; Susto et al. 2013). In this paper, we 
propose to use of Gaussian Bayesian Networks (GBN) as a learning algorithm for VM modeling. This 
methodology present the ability to select features while considering their conditional dependency. In other 
words, GBNs are able to explicitly express the relationship among the variables in a form of the connected 
graph (Heckerman and Geiger 1995; Cowell, R.G. et al. 1999), making the interpretation easier. In recent 

years, GBNs which have been applied in various domains, e.g., in genetics, where GBNs were used to 
explore the conditional dependency among the huge amount of genes (Bühlmann et al. 2010). Quite 
surprisingly, to the best of our knowledge, GBNs have not been used yet to derive VM models for 
semiconductor manufacturing. Therefore, the purpose of this paper is to demonstrate the potential of 
application of this approach in VM applications on semiconductor industry, through a real case study. 

The remainder of the paper is organized with the following structure. In Section 2, the concept of GBN 

and its main properties are presented. In Section 3, we introduce the procedure for VM using GBN. The 
case study is presented in Section 4, illustrating the application of the proposed approach. Finally, the 
conclusions and future work are summarized in Section 5.  

2 GAUSSIAN BAYESIAN NETWORKS 

2.1 Foundations of Gaussian Bayesian Networks 

A Bayesian Network is a probabilistic model expressing the conditional dependencies of a set of variables 

by a directed acyclic graph (DAG) (Spirtes et al 1993). Bayesian Networks can help to investigate the 
cause-effect relationship since the relationship between two variables could be asymmetric, e.g., 𝑋 causes 
𝑌 while 𝑌 cannot cause 𝑋; a directed graph can better describe this relationship by considering 𝑋 as a parent 
node and 𝑌 as a child node (Figure 1).  
 

Gaussian Bayesian Networks (GBN) are a special case of Bayesian Networks, in which all the variables 
are continuous and the joint density function is a multivariate Gaussian distribution. Let us first introduce 
the conditional distribution and then consider the graphic model that schematically describes such 
probability distribution. Let D = [𝑋1, 𝑋2, … , 𝑋𝑞]𝑇  be a 𝑛  by 𝑞  matrix with 𝑛  samples and 𝑞  random 

variables, that follows a multivariate Gaussian distribution, 𝒩(𝜇, Σ) , with mean vector 𝜇 ∈ ℝ𝑞  and 
covariance Σ ∈ ℝ𝑞×𝑞. 

The graph 𝒢 = (V, E), is composed by the set V = {𝑉1, 𝑉2, … , 𝑉𝑞} of nodes (vertices): each 𝑉𝑘 ∈ V , for 
𝑘 = 1, … , 𝑞, indicates one of the random variables in D. Here, a random variable 𝑋𝑘  is also referred to the 
node 𝑉𝑘 in graph 𝒢. E is the set of directed edges and each ℯ ∈ 𝐸 indicates the link between two nodes. 
Absence of an edge represents the existence of conditional independence between the corresponding 

variables. The global distribution of 𝒢 can be decomposed into the local distribution of individual variables 
𝑋𝑘  as 𝑝(𝑋1, 𝑋2, … , 𝑋𝑞) = ∏ 𝑝(𝑋𝑘|𝑋𝑝𝑎(𝑘))

𝑞
𝑘=1 , where 𝑝(𝑋𝑘|𝑋𝑝𝑎(𝑘)) is the conditional probability of 𝑋𝑘 

given its parent nodes 𝑋𝑝𝑎(𝑘).  

Figure 1: An example of directed graph. 
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GBNs present the Markov property. Let 𝑚𝑏(𝑋𝑘) denotes the Markov blanket of node 𝑋𝑘 which is the 
set that includes its parent nodes, its child nodes and the parent nodes of its child nodes (Cowell, R.G. et al. 
1999). The Markov blanket of 𝑋𝑘  contains all variables that shield 𝑋𝑘 from the rest of nodes, which means 
that 𝑚𝑏(𝑋𝑘) is the only knowledge needed to predict the behavior of 𝑋𝑘.  

2.2 Structure Learning 

In practice, the structure of a Bayesian network can either be provided by a domain expert or be extracted 

from data. As our objective in this study is to reveal the hidden structure of variables, a data-driven structure 
learning approach will be adopted. 

Learning the structure of DAGs can be difficult and computational intensive, because the set of possible 
DAGs is enormous. There are two main categories of approaches to learn the graphical structure from data: 
constraint-based and score-based (Scutari 2010). The constraint-based algorithms identify the conditional 
independencies of all variables with statistical tests to determine if each edge exists. Note that the outcome 

of this method is affected by the order of testing.  
The score-based algorithms firstly score each possible graphical structure based on how well it 

describes the observed data, and then search for the graphical structure with the highest score. Considering 
a set of models 𝒢𝑠, each model 𝒢 ∈ 𝒢𝑠 indicates a possible network structure. The probability of model 𝒢 
given data 𝒟 can be written as  

 

𝑝(𝒢|𝒟) =
𝑝(𝒟|𝒢)𝑝(𝒢)

𝑝(𝒟)
, 

(1) 

since 𝑝(𝒟) is independent of model 𝒢, we can say 𝑝(𝒢|𝒟) ∝  𝑝(𝒟|𝒢)𝑝(𝒢).  
A Bayesian score is defined as 𝑆𝑐𝑜𝑟𝑒𝐵(𝒢, 𝒟) =  log 𝑝(𝒟|𝒢) + log 𝑝(𝒢). Generally, we assume 𝑝(𝒢) 

is a uniform distribution and it can be ignored in this expression. From a Bayesian learning point of view, 
the parameters are random variables denoted as 𝜃𝒢, therefore, the marginal probability in Bayesian scores 
can be rewritten as 𝑝(𝒟|𝒢) = ∫ 𝑝(𝒟|𝒢, 𝜃𝒢)𝑝𝒢(𝜃𝒢)𝑑𝜃𝒢, where 𝑝𝒢(𝜃𝒢) is prior distribution for its parameter 

𝜃𝒢. Some suggestions of prior distributions are given in literature (Cowell, R.G. et al. 1999).  
The computation of the marginal likelihood is not simple because there is no closed form expression 

for it. The Bayesian information criterion (BIC) can be considered as an alternative which approximates 
the logarithm of 𝑝(𝒟|𝒢) , by 𝑆𝑐𝑜𝑟𝑒𝐵𝐼𝐶(𝒢, 𝒟) = −log (�̂�) −

1

2
𝑑𝒢 log 𝑛 , where �̂� = 𝑝(𝒟|𝒢, 𝜃𝒢)  is the 

maximum value of likelihood function, 𝜃𝒢 is the maximum likelihood estimate, 𝑑𝒢  is the model complexity 
and 𝑛 is sample size (Cowell, R.G. et al. 1999).  

In this study, the most fundamental score-based search algorithm, Hill-Climbing, is employed to 
provide a greedy search on the feasible space of the directed graphs with BIC as a scoring function. 
Generally, Hill-Climbing starts from either an empty, full or random network, and then considers every 
possible movement of the current network, including to add an edge, to remove an edge, or to alter the 
direction of an edge; the movement with the highest score is selected and the procedure is repeated. The 
learning procedure stops when no improvement can be achieved by changing any single edge. In addition 

to identifying the direction of edges from data, the algorithm also provides the flexibility to integrate pre-
defined directions for some specific edges; thus, we will include some rules based on the domain knowledge 
so that the model can fit properly.  

3 APPLYING GBN TO VIRTUAL METROLOGY 

3.1 Data Preprocessing 

There are two types of datasets under analysis in this work: FDC and Metrology. Since these datasets 

present different levels of granularity, data preprocessing is surely needed and should be the very first step 
to begin with. 
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Multiple sensors embedded in the process equipment can collect real-time signals with high resolution. 
In order to transform temporal FDC data into wafer-based data, the conventional approach is to summarize 
the observations in each step by descriptive statistics. In this study, sample averages and variances were 
selected to be the summarizing indicators of each FDC parameter. Therefore, n wafers are processed and r 
parameters, for each one of the s steps, are collected by equipment sensors, leading to 𝑝 = 𝑠 × 𝑟 ×
2 indicators to be generated and denoted by 𝑥𝑖𝑗, where 𝑖 = 1, . . , 𝑛 and 𝑗 = 1, … , 𝑝. 

To maintain production efficiency, only a few wafers will be sampled to take the measurements, such 
as thickness and depth, so that the process quality can be evaluated and monitored. We denote 𝑦𝑗as the 
measurement variable for wafer 𝑖 = 1, … , 𝑛. 

The two types of data are consolidated at the wafer level. All p FDC variables are put together with the 
metrology in a (𝑝 + 1)  by 𝑛  matrix 𝐷 = [𝑋1, 𝑋2, … , 𝑋𝑝, 𝑌],  which follows a multivariate Gaussian 
distribution 𝒩(𝜇, Σ), where 𝑛 is the number of wafers. 

3.2 GBN for Dependency Exposure and Prediction 

The first objective of the proposed approach is to build a GBN to better express the relationship between 
product quality (metrology) and equipment conditions (FDC). Here, instead of purely data-driven modeling, 
we would like to integrate some domain knowledge so that this model can describe the real phenomenon 
better. Considering the direction of edges in GBN indicate the causal effects between the variables, we 
should carefully exclude some edges which impossibly exist. As the measurement data can be considered 

as the output of the process, which means that those FDC parameters might be the cause of metrology, 
while metrology cannot be the cause of FDC parameters. Those can be done by setting up some rules in 
blacklist to specify the block directed edges. In other words, all directed edges from metrology to FDC 
parameters would be put in blacklist. 

With the dataset and a pre-defined blacklist, we obtained a GBN 𝒢(𝒟)  by a heuristic learning 
algorithm, which expresses all pairwise conditional dependency for each node. With an example in Figure 

2, we can clarify how those FDC parameters correlated to each other and identify the direct and indirect 
impact to metrology. 

 
Then, we choose the metrology variable 𝑦 as a starting point and extract its corresponding Markov 

blanket, denoted as 𝑚𝑏(𝑌). As variables belong to 𝑚𝑏(𝑌) include the knowledge needed to predict 𝑌, we 
thus have, �̂� = 𝑓𝑌(𝑥𝑚), where 𝑋𝑚 ∈ 𝑚𝑏(𝑌) (Figure 3).  

Figure 2: An example of Gaussian Bayesian Network. 

Figure 3: Markov blanket of variable Y. 
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4 CASE STUDY 

To validate the proposed approach, a case study conducted on real data was carried out. The dataset includes 
FDC data from the Chemical–Mechanical Polishing (CMP) process and the metrology measurements after 
the process.  

The typical CMP tools include a rotating platen with a pad, a carrier that holds wafer upside-down, a 
head to press the wafer against the pad, and a pad conditioner (Figure 4). Through the chemical slurry and 

mechanical force, unwanted materials on the wafer can be removed and the surface of the wafer will be 
smooth. 

4.1  Data Description and Preprocessing 

The FDC parameters in the dataset cover the platen usage, the head speed, the conditioning pressure, etc. 
A deterministic sampling policy was put in practice for the CMP progress. Two wafers per lot are sampled 
to take the metrology measurements, which are the thicknesses of post-polishing oxidation in association 
with the target 𝑇. Furthermore, it is known that the performance of the processes before CMP will inevitably 
influence the output of CMP. Two pre-CMP measurements, the post-etching depth and post-CVD 
thickness, denoted as 𝑍1 and 𝑍2, are also included in the variable set. 

Before proceeding to model construction, a stationary check of metrology data indicated that this series 
is autocorrelated. Thus, a pseudo-variable that is lagged by one period of 𝑌 will be included in the variable 
set.  

After pre-processing and consolidation of data granularity, 545 wafers with 149 variables are ready for 
analyzing. The data matrix can be written as 𝐷 = [𝑋1(𝑡), … , 𝑋145(𝑡), 𝑌(𝑡), 𝑌(𝑡−1), 𝑍1(𝑡), 𝑍2(𝑡)] where 𝑌(𝑡−1) 
are denoted as the metrology from the previous wafer. As discussed in the previous section, we should 

combine domain knowledge to set up the rules to prevent the unreasonable result. Firstly, metrology at 
time 𝑡 cannot be the cause of other variable at time 𝑡 − 1; Similarly, pre-CMP measurement and FDC 
variables at time 𝑡 cannot be the cause of metrology at time 𝑡 − 1. Those rules were listed in a blacklist as 
shown in Table 1. 

Table 1: Blacklist of edge for GBN. 

From To #edges 

𝑌(𝑡) 𝑌(𝑡−1), 𝑋(𝑡), 𝑍1(𝑡), 𝑍2(𝑡) 148 

{𝑋(𝑡), 𝑍1(𝑡), 𝑍2(𝑡)} 𝑌(𝑡−1) 147 

𝑋(𝑡) 𝑍1(𝑡), 𝑍2(𝑡) 290 

Figure 4: A typical CMP tool. 
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4.2  Model Evaluation 

The dataset has been ordered by process time, the first 80% wafers are labeled as training set and the 
remaining 20% are labeled as testing set. Then based on the training set and the blacklist setting, we obtain 
the model 𝒢(𝒟). Following we extract the Markov blanket 𝑚𝑏(𝑌) as shown in Figure 5. This graph clearly 
depicts the relationship between the process variables and the metrology (Y). Both of the pre-CMP 
measurements, i.e., 𝑍1 and 𝑍2, have the direct impact on the metrology. Other nine variables also contribute 

to explain the variation within the metrology. The comparison of observed metrology and predicted 
metrology for both training set and testing set is presented in Figure 6. 

   

   
Here, we evaluate the performance of the model with the index – Mean Absolute Percentage Error 

(MAPE). The MAPE of the training set and testing set are 0.467% and 0.562%, respectively. 
 

 
𝑀𝐴𝑃𝐸% =

100

𝑛
∑ |

𝑟�̂� − 𝑟𝑖

𝑟𝑖

|

𝑛

𝑖=1

 (2) 

We compare the result with other algorithms as Table 2, the performance of GBN, stepwise regression 

and Lasso regression are similar, but if we consider the number of selected variables, it seems like that 
GBN more capable of targeting efficiently crucial variables while maintaining the competitive predictive 
ability. Moreover, explicit cause-effect among variables enables process engineers to evaluate this VM 
model from a physical point of view. 

Figure 5: Markov blanket of metrology 𝒀(𝒕) in the fitted GBN. 

Figure 6: Compare the observed values and predicted values of the GBN model. Training set and testing set 
are separated by dash line. 
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Table 2: The performance evaluation of different models. 

MAPE% GBN 
Stepwise 

Regression 

Lasso 

Regression 

Regression 

Trees 

Random 

Forest 

Training Set 0.467% 0.460% 0.506% 0.410% 0.379% 

Testing Set 0.562% 0.558% 0.582% 0.635% 0.663% 

#variables 12 21 16 70 -- 

5 CONCLUSION 

In this paper, we introduce the Gaussian Bayesian Network (GBN) as a learning algorithm for VM 
modeling. GBN not only investigates the relationship between the metrology measurements and the control 
factors, but also provides an overall connection among the production/process parameters. Through a 

practical case study, we demonstrated that the model is capable of providing accurate predictions and, at 
the same time, clarifying the causal-effect among all the variables.  

There are still remained works to be studied in the future. For example, employing a mixed graphical 
model which is able to deal with both discrete and continuous variables so that information, such as product 
type, recipe etc., can be taken into account. Additionally, comparing various learning algorithms and 
selecting the appropriate one for the purpose of virtual metrology should be well evaluated. 

As Virtual Metrology is an important subject for process control, we firstly consider to apply GBN to 
this application as a starting point. However, there are various applications related to process control and 
should be considered simultaneously, such as run-to-run control, predictive maintenance. Instead of 
individual models, GBN shall be able to combine multiple applications in single learning model. Therefore, 
we will focus on applying GBN to global process control for the further study. 
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