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ABSTRACT

This research is motivated by the expensive cost of scraps because of timelink misses in a semiconductor
manufacturing line due to tool downs. A timelink is a time constraint between defined process steps. This
paper presents a mixed integer programming model (MIP) and a constraint programming model (CP) with
downscaled time constraints. With the assistance of the survival analysis, a safety value will be computed
and included as a constant in the MIP and as a dynamic expression in the CP, to downscale the allowed time
between two specific operations. The MIP and CP models are tested on a realistic production area example
with different problem sizes. The quality of the solution and the performance of these two approaches are
compared with each other. The test results show that the CP model outperforms the MIP and quickly finds
much earlier usable schedules for large problem sizes.

1 INTRODUCTION

The semiconductor manufacturing is one of the most complex and challenging production environments
for scheduling. There are a wide variety of different process steps, multiple products and routes, tool
inhibits, lots with varying priorities, different quantities of wafers, dependencies between products and
processes, lot release dates, unscheduled and scheduled tool downs, production areas with time constraints
between consecutive or concatenated process steps and also concatenated production areas which have time
constraints. Lots which violate time constraints often need to be scrapped, or must be costly reworked. The
ongoing shrinkage of chip size coupled with an increased wafer density has resulted in more and tighter
time constraints, due to unwanted processes like oxidation or particles that have a higher yield impact due
to smaller feature sizes. Therefore, production areas with time constraints have a much higher cost impact
and, because of the intensified cost pressure in semiconductor manufacturing, a greater attention is being
paid to these production areas. That’s the reason why there is a high demand on scheduling applications
that consider timelink areas.
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There is a great number of related work which treats the topic of scheduling. The characteristics for
different objective functions and also different kinds of deterministic scheduling formulations can be found
in Brucker (2007), Garey et al. (1976), Graham et al. (1979) and Jaehn and Pesch (2014). There are
also a few papers which addresses scheduling with time constraints between consecutive process steps in
semiconductor manufacturing. The different constellations of time constraints in a wafer fab are analyzed
by Klemmt and Mönch (2012). They present a MIP model for flow shop scheduling problems with time
constraints. In Klemmt (2012) detailed formulations for numerous problem descriptions in wafer fabs
are presented. A two-stage lot scheduling MIP approach, for small problems sizes with time constraints,
presented by Yu et al. (2013). In Cho et al. (2014) two MIP formulations with the objective to determine
the best gate-keeping decisions, for areas with time constraints are presented and compared with each other.
A gate-keeping decision decides when a lot is allowed to enter a timelink area. The MIP formulations
presented in Cho et al. (2014) were not subjected to strict time conditions. They are based on a reward
and sanction system. The advantage of this approach is that these MIPs are always solvable but the needed
computation time to find good solutions is enormous. The needed computation time to find serviceable
solution is the major problem for solving large scheduling problems. That’s why it is necessary to investigate
other solving approaches, like constraint programming (CP). CP is designed to satisfy constraints so that
feasible solutions can be found faster. This is necessary for the scheduling of production areas. Basic ideas
and how solutions are obtained by CP is described in Vilı́m et al. (2015) and Baptiste et al. (2012). CP
allows to formulate dependencies in production areas and their mathematical generalizations. It is natural
and transparent and outperforms some state-of-the-art MIP solver (Rossi et al. (2006)). Wang et al. (2015)
compare a CP and a MIP approach for scheduling operating theaters. It is a highly constrained problem
which is tested on real life data. It turns out that the CP solution outperforms the MIP while minimizing
the makespan. The presented minimization of a weighted sum shows that the MIP works generally a bit
better, but if the problem gets to complex, the MIP, in contrast to CP, doesn’t find a solution. Nowadays CP
is applied for many different types of optimization problems and most of them are scheduling problems.
A different approach can be found at Topaloglu and Ozkarahan (2011). They observe a medical resident
scheduling problem and compare it with a MIP approach. It results that the MIP only solves problems
witch small instances.

In semiconductor industry only a few papers address scheduling with CP. In Ham et al. (2017) a
diffusion process area with batch processing and in Ham (2018) a Litho area with batch processing are
investigated. They compares a CP with a hybrid model of CP and MIP and also a CP and heuristic approach.
It turns out that for batch processes the CP computes good solutions and the hybrid model of CP and MIP
underperformed the MIP, but the best solutions are obtained by the combination of CP and the heuristic
approach.

The observed problem in Malapert et al. (2012) is a similar batch processing area like in Ham (2018),
but less complex. Here also CP outperforms the observed MIP and branch and price algorithm. The
challenges to integrate such scheduling methods in a semiconductor fab, is highlighted in Klemmt et al.
(2017).

The related work also shows disadvantages of a CP approach. The optimality of a found solution can
only be proved very hard and the solution quality depends on the used solver (Vilı́m et al. (2015)).

In this research the related work of Maleck and Eckert (2017) and Maleck et al. (2017) will be extended
by a comparison of a MIP and CP approach. The approaches compare the solution quality of a complex
production environment on the basis of three different objective functions, on three different problem sizes.

First the observed scheduling problem with time constraints is described. In subsection 3.1 the used
objective functions and the reliability factors are presented. Then the subsections 3.2 and 3.3 introduces
the observed MIP and CP model. The test environment and its results are presented in section 4. Finally
a short conclusion and outlook is given in section 5.
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2 PROBLEM DESCRIPTION

This section describes the observed general scheduling problem. It represents a simplified production area
in a semiconductor fab with time constraints. This job shop problem has a set of lots, where a sequence
of process steps has to be executed, on a set of single-processing tools. These process steps will also be
referred as jobs in this paper. The time constraints are defined between consecutive or concatenated jobs,
whereby each lot can have multiple time constraints, also called timelink areas.

The mathematical description is as followed, there is a set of lots L := {L1, . . . ,Ln}, n ∈ N that has to
be scheduled after a time t0 ∈ N, which represents the earliest possible scheduling time. Each lot l ∈ L
represents a set of qtyl ∈ N wafers, with a maximal quantity of 25. Lots have a priority weight ωl ∈ N
and each lot l has its own sequence of jobs Jl := {O1, ...,Ool}, ol ∈ N that has to be executed. Each job
Ol,o, o ∈ Jl is associated with exactly one process g(l,o) : Jl → P, where P := {P1, . . . ,Pg}, g ∈ N is a set
of processes.

Furthermore, there is a set of available tools T := {T1, . . . ,Tm}, m∈N. Each tool is a single-tool, which
means that only one job can be performed at any given time on a given tool. In this problem, each process
k ∈ P has its own work center W all

k ⊆ T, W all
k 6= /0,

⋃̇
k∈PW all

k = T with tk = |W all
k | qualified tools for this

process step. These tools must not be necessary identical. Each job Ol,o must be performed on one tool t
in the associated work center t ∈W l

k , where W l
k ⊂W all

k is a subset of allowed tools for a lot l for a process
k = g(l,o).

The processing time of one Wafer pk,t for each operation depends on the given process k = g(l,o) and
the working tool t. The entire process time of a job Ol,o depends also on the quantity of wafers and is
defined as

pl
k,t := pk,t ·qtyl. (1)

Each lot l ∈ L receives a release date rl , which means that it can be scheduled at any point in the future,
after the release date.

Furthermore, there exists a constant transport time ttransport ∈N between two random tools. It is assumed
that ttransport ∈ N is identical for all possible tool combinations

For some lots l there are time constraints t(l,o,q) > 0 between defined consecutive or concatenated jobs
o,q ∈ Jl, o < q, which can be formulated as

sl,q ≤ sl,o + pl
g(l,o),t + t(l,o,q) l ∈ L, (2)

where sl,o is the scheduled start time of job Ol,o and t ∈W l
g(l,o) is the working tool. An example of a Gantt

diagram for a lot with a feasible solution, is shown in Figure 1.

l𝑜𝑜𝑡𝑡1: 

time 

𝑂𝑂𝑙𝑙,1 

scheduled Intervall of a job 

𝒕𝒕𝟎𝟎  

𝑂𝑂𝑙𝑙,2 𝑂𝑂𝑙𝑙,3 

< 𝒕𝒕(𝒍𝒍,𝟏𝟏,𝟑𝟑) 

𝑂𝑂𝑙𝑙,4 𝑂𝑂𝑙𝑙,6 𝑂𝑂𝑙𝑙,5 

𝒑𝒑𝒌𝒌,𝒍𝒍
𝒍𝒍  

< 𝒕𝒕(𝒍𝒍,𝟒𝟒,𝟓𝟓) < 𝒕𝒕(𝒍𝒍,𝟓𝟓,𝟔𝟔) 𝒔𝒔𝒍𝒍,𝟏𝟏  𝒔𝒔𝒍𝒍,𝟑𝟑  

Figure 1: Simplified example of a Gantt diagram of a schedule with possible timelinks of a lot l ∈ L.

In relation to the SEMI E10 standard, which is described at Thomas Pomorski (2009), six basic
equipment states were established. These six equipment states are assigned to basic up or down conditions
for the survival analysis, similar to the approach in Maleck and Eckert (2017). The given set of tools are
all up, but underlies there specific reliability.
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3 MODEL FORMULATIONS

The following notations are used for the CP and MIP formulation:

n ∈ N number of lots
m ∈ N number of tools
g ∈ N number of processes
T := {T1, ...,Tm} set of tools
L := {L1, ...,Ln} set of jobs
P := {P1, ...,Pg} set of processes
qtyl ∈ {1,2, ..,25} quantity of wafers of lot l ∈ L
ol ∈ N number of jobs of lot l ∈ L
Jl := {O1, ...,Ool} set of jobs of lot l ∈ L
jl ∈ Jl latest processed job of a lot l ∈ L
Ol,o ∈ Jl o-th job of lot l ∈ L
g(l,o) : Jl → P process of job Ol,o for l ∈ L
W l

k ⊆Wk ⊆M set of allowed tools for lot l at process k = g(l,o)
Mk,t ∈Wk t-th tool of Wk for k = g(l,o)
pk,t ∈ N process time per wafer of process k = g(l,o) at

tool t ∈ T
pl

k,t ∈ N process time of a job Ol,o at tool t ∈W t
k with

k = g(l,o)
rl ∈ N release date of lot l
t0 ∈ N earliest possible scheduling time
Tl := {(o,q) |1 < o < q≤ ol} set of timelink areas of lot l with o,q ∈ Jl, o < q
T l := {(o,q) |o < jl ≤ q≤ ol} entered timelink area of lot l with o,q∈ Jl, o < q
t(l,o) ∈ N, (l,o) ∈ T l enter time of lot l in a timelink area (o,q) ∈ T l

t(l,o,q) ∈ N, (o,q) ∈ Tl timelink between job Ol,o and job Ol,q, l ∈ L
ωl ∈ N weight of lot l
ttransport∈ N mean transport time between tools
K ∈ N a large positive number

3.1 Objective Function

To investigate, how the performance and solution quality of the MIP and CP model depend on different
optimization targets, three different objective functions were observed. The first objective function is the
minimization of the makespan which is defined as the maximal cycle time of all lots l ∈ L of a schedule.
Whereby the cycle time is the completion time Cl ∈N of a lot minus its release date rl . It is formulated as

z1 = max
l∈L
{Cl− rl} → min . (3)

As second objective function, the normalized weighted cycle time sum, which is abbreviated as NWS,
was used

z2 = ∑
l∈L

(
ωl

qtyl
· (Cl− rl)

)
→ min . (4)

Finally, to get a more practicable and a balanced schedule for semiconductor manufacturing, a weighted
and normalized objective function is used and abbreviated as BNWS. It contains the sum of the normalized
cycle time sum dependent on the number of its jobs and the sum over the time in timelink areas of each
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lot, which weighted by the lot priority and normalized by its given quantity of wafers. These observed
objective is defined as

z3 = ∑
l∈L

(
ωl

qtyl
·

(
(Cl− rl)

|Jl|
+ ∑

(o,q)∈Tl :o> jl

(
sl,q− el,o

)
+ ∑

(o,q)∈T l

(
sl,q− tl,o

)))
→ min (5)

whereby el,o represents the end time of job Ol,o, sl,q represent the start time of job Ol,q and o < q.

3.1.1 Integration of Reliability Factors

To get more robust schedules, as in Maleck et al. (2017), reliability factors are integrated in the CP and MIP
model. Similar to the definitions in Maleck and Eckert (2017) and Maleck et al. (2017), the probability that
a tool will stay up within the interval [t0, t0+∆t], ∆t > 0 can be formulated with the help of the exponential
distribution. So, if in a production area a tool is up at current time t0, then the assumed availability of a
tool for time period ∆t is

νt(t0, t0 +∆t) := P[T > t0 +∆t|T > t0] =
e−λt(t0+∆t)

e−λt t0
= e−λt ∆t . (6)

where T is a single random variable that is continuous and non-negative. It represents the lifetime of a
tool and the expectation value 1/λt is defined as the specific (Mean Time Before Failures) MT BF for tool
t ∈ T . For basic details, see Wienke (2010) or Liu (2012). Since νl(t0, t0 +∆t) does not depend on t0 for
the exponential distribution, it is notated as νt(∆t).

3.2 MIP Formulation

The developed MIP has four types of decision variables:

Cl ∈ N cycle time of lot l ∈ L
wl,o,t ∈ {0,1} assignment from job Ol,o to tool t ∈W l

k , k = g(l,o)
sl,o ∈ {max{rl, t0}, ...,K} starting time of job Ol,o
xOl,o,Oh,q∈ {0,1} 1 if job Ol,o is scheduled before Oh,q, otherwise 0 and (h 6= l)

To integrate the reliability of the tools, a mean availability factor κk of W l
k for process k = g(l,o), l ∈

L, o ∈ Jl is defined as

κk :=
1
|W l

k |
· ∑

t∈W l
k

νt(∆t) , (7)

whereby νt is the with (6) calculated availability of a tool t ∈ T for the interval [t0, t0 +∆t]. The range
∆t ≥ 0 is constant and given. The downscaled time constraint tκ

(l,o,q) with (l,o,q) ∈ T and k = g(l,o) for
all jobs in front of a timelink area is

tκ

(l,o,q) := t(l,o,q) · ∏
i∈o+1,..,q

κg(l,i) ∀l ∈ L, ∀(o,q) ∈ Tl, jl < o , (8)

where ∏i∈o+1,..,q κg(l,i) is the mean survival probability of consecutive or concatenated process steps.
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The objective functions (3), (4) and (5) with el,o := sl,o +∑t∈W l
k

(
wl,o,t · pl

k,t

)
are minimized subject to

sl,ol +wl,ol ,t · p
l
k,t ≤Cl ∀l ∈ L, ∀t ∈W l

k , k = g(l,ol) (9)

sl,o +wl,o,t · pl
k,t + ttransport ≤ sl,o+1 ∀l ∈ L, ∀o ∈ Jl\{Ol,ol}, jl < o, k = g(l,o) (10)

∑
t∈Wk

wl,o,t = 1 ∀l ∈ L, ∀o ∈ Jl, jl < o k = g(l,o) (11)

sl,q− el,o ≤ tκ

(l,o,q) ∀l ∈ L, (o,q) ∈ Tl, jl < o (12)

sl,q− tl,o ≤ t(l,o,q) ∀l ∈ L, (o,q) ∈ T l (13)

K(wl,o,t − xOl,o,Oh,q−1)+ sh,q + ph
g(h,q),t ·wh,q,t ≤ sh,q

∀l,h ∈ L, l < h, ∀t ∈W l
g(l,o)∩W h

g(h,q),

∀o ∈ Jl, o > jl, ∀q ∈ Jh, q > jh
(14)

K(wh,q,t + xOl,o,Oh,q−2)+ sl,o + pl
g(l,o),t ·wl,o,t ≤ sl,o

∀l,h ∈ L, l < h, ∀t ∈W l
g(l,o)∩W h

g(h,q),

∀o ∈ Jl, o > jl, ∀q ∈ Jh, q > jh
(15)

Due to the range of sl,o ∈ {max{rl, t0}, ...,K} it is ensured, that each job is scheduled after t0 and the
lot release date rl . The Constraints (9) and (10) restricts the objective function and consider the sequence
of the process steps of a lot. Equation (11) ensures that each job is executed exactly once by a given
lot. Inequalities (14) and (15) assure that only one lot can be scheduled on a given tool at a given time.
Constraint (12) and (13) represent the time constraints between consecutive or concatenated process steps.

3.3 CP Formulation

An efficient CP model needs to exploit the features of the used CP Optimizer. The IBM ILOG CP Optimizer
provides specialized variables and constraints, which are used to describe the CP model. For further details
of these specialized features please refer to IBM (2017) or the papers of Laborie and Rogerie (2008) and
Laborie (2009). We formulate a parallel singe-processing tool problem with timelink areas into a CP as
followed. First, this CP has three types of decision variables.

interval jobl,o ∈ [max{rl, t0},∞) ∀l ∈ L, ∀o ∈ Jl interval of a job
interval jobt

l,o optional ∈ [max{rl, t0},∞) size pl
k,t ∀l ∈ L, ∀o ∈ Jl, ∀t ∈W l

k job to tool interval
variable ν( jobl,o) ∈ (0.5,1] ∀l ∈ L, ∀o ∈ Jl survival probability

of a job

Because of the range definition of the interval jobl,o it is ensured, that each job is scheduled after t0
and the lot release date rl .

The reliability factors for tools in the CP model, are dynamical and the range ∆t depends on the the
end time endO f ( jobt

l,o) of a job-tool interval jobt
l,o and is defined as

νt( jobt
l,o) = e(−λt ·(endO f ( jobt

l,o)−t0)), (16)

where λt =
1

MT BFt
, l ∈ L, o ∈ Jl and t ∈W l

k . The downscaled time constraint tκ

(l,o,q) with (l,o,q) ∈ T and
k = g(l,o) for all jobs in front of timelink is

tκ

(l,o,q) = t(l,o,q) · ∏
i∈o+1,..,q

ν( jobl,o), (17)

where ∏i∈o+1,..,q ν( jobl,o) is the survival probability of consecutive or concatenated process steps.
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The objective functions (3), (4) and (5) with sl,o := startO f ( jobl,o) and el,o := endO f ( jobl,o) are
minimized subject to the constraints

endBe f oreStart ( jobl,o, jobl,o+1, ttransport) ∀l ∈ L, ∀o ∈ Jl : jl < o < last(Jl) (18)

alternative
(

jobl,o,{ jobt
l,o}∀t∈W l

k

)
∀l ∈ L, ∀o ∈ Jl : jl < o, k = g(l,o) (19)

noOverlap
(
{ jobt

l,o}(∀l∈L,∀o∈Jl :t∈W l
k )

)
∀t ∈ T, k = g(l,o) (20)

lengthO f
(

jobt
l,o
)
> 0⇒ ν( jobl,o) == ν( jobt

l,o) ∀l ∈ L, ∀o ∈ Jl : jl < o, ∀t ∈W l
k , k = g(l,o) (21)

startO f ( jobl,q)− endO f ( jobl,o)≤ tκ

(l,o,q) ∀l ∈ L, (o,q) ∈ Tl, jl < o (22)

startO f ( jobl,q)− tl,o ≤ t(l,o,q) ∀l ∈ L, (o,q) ∈ T l (23)

With the help of the predefined function endBeforeStart() constraint (18) assures that the process steps
are executed in the right order, with respected to the transport time. Constraint (19) associates the job
interval with the job-tool interval and together with (20) they ensure that each job is executed exactly once
by a given tool and that only one job can be scheduled on one tool at a given time. If a job is scheduled on
a tool the constraint (21) determines the survival probability of a job. Constraints (22) and (23) represent
the time constraints between consecutive or concatenated process steps.

4 TEST AND RESULTS

In this section, we describe the test environment and compare the performance and solution quality of the
two models. The MIP and CP models are implemented with IBM OPL and solved with the IBM ILOG CP
and CPLEX 12.8.0.0 solver. The results were computed on exact one thread on a cluster computer with
an AMD Ryzen Threadripper 1950X @ 3,4 Ghz and 32Gb RAM.

4.1 Test Environment

The tested production area example is motivated by a semiconductor fab. The CP and MIP approaches
with the three different objective functions, are compared with the scheduling results of this production
area, which is tested for three different problem sizes. The problem sizes depend on the quantities of the
lots. This includes the number of jobs that has to be scheduled per lot and how many tools can operate
a job. The smallest problem size is defined by a 5 lot problem with a sum of 21 jobs with altogether 50
job-tool assignments. The other scheduling problems contain 15 lots with 62 jobs and a total of 139 job-tool
assignments. At last a 30 lot, 118 jobs problem with 266 job-tool assignments is tested. Additionally each
lot can have different prioritys, release dates and quantities of wafers. The detailed lot and job definitions
can be found in Appendix A at table 1. Also each lot can have one or more time constraint definitions
between consecutive or concatenated jobs which is shown in Appendix A at Table 3. The tested examples
have 16 available tools for 5 process steps, whereby the process time for a wafer on each tool, which can
execute this process, not necessarily have to be identical. The detailed tool and process definitions are
shown in the Appendix A at Table 2. Every test environment is solved by the MIP and CP model up to
16 times with the following different time limits: 1s, 3s, 5s, 10s, 20s, 30s, 60s, 90s, 2min, 5min, 10min,
30min, 1h, 2h, 4h and 6h.

4.2 Computational results

In this subsection the computed results will be presented and compared with each other. First the MIP
approach found, for the smallest problem size of 5 lots, with all objective functions, straightway found
the optimal results and stopped the solving process within one second. For the makespan (3) the optimal
solution was 10630, for the normalized weighted sum NWS (4) 969.2. The objective value of the balanced
normalized weighted sum (BNWS ) (5) was 1205.37. The CP approach only found for the makespan
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immediately the optimal solution and stopped the solving process. For the NWS, CP also delivered the
optimal solution, but was not able to prove it. The CP optimal gap was within one second 0.04% and
within three seconds 0.007%. The CP underperformed with the BNWS (5) as objective function. The first
solution within one second delivered a value of 1237.03 with a gap of 0.065% and within three seconds
a value of 1213.72 with a gap of 0.047%. Even within 4 hours the CP approach doesn’t found a better
solution value as 1212.97 with a gap of 0.046%. The performance of the CP and MIP approaches with the
makespan objective function (3) are shown for the 15 lot scheduling problem in Figure 2 and for the 30
lot scheduling problem in Figure 3. The dashed line depicts the progress of the objective gap (in percent)
regarding to the MIP and CP solutions which were found. The thin line, without points, depicts the best
possible found objective value, which is the lower bound of the optimization problem. The stronger lines
describe the best found solution values within a given calculation time. The MIP approach found, for
the 15 lot problem, the optimal solution within 30 minutes but underperformed in the first 30 seconds in
comparison to the CP approach. Figure 2 provides also the disadvantages of the CP solver. That is that the
CP approach found the optional solution, but was not able to prove it. For the biggest tested problem size,
the CP outperforms the MIP. The MIP found the first solution after 30 seconds whereas the CP found the
first solution within one second and a much better solution within 30 seconds.
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Figure 2: Computational results on the minimization
of the makespan (3) of a 15 lot problem.
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Figure 3: Computational results on the minimization
of the makespan (3) of a 30 lot problem.

The computational results for the minimization of the NWS (4) are shown for the 15 and 30 lot
scheduling problem in Figure 4 and 5. The 15 lot problem delivers for the CP and MIP approach very
similar results. For the larger problem size the solution quality of the MIP is shifted to the right, in
comparison to the CP solution. The results of the BNWS (5) are presented in Figure 6 and 7. It is shown
that the CP found within the first seconds solutions. These solutions are better than the solutions found
by the MIP approach. But within five seconds the MIP delivers for the 15 lot scheduling problem similar
solutions as the CP. For the larger problem size, the MIP found its first solution only after 30 seconds, but
this solution is a little bit better than the best solution found with the whole CP approach. Additionally
within the next given computation times the MIP outperforms the CP. Based on this results, it is suggested
to combine the CP and MIP approach, whereby in the first stage the CP should compute a start solution
and in the second stage the MIP should use the objective BNWS. A combination of CP, with a computation
time of 5 seconds, and MIP model, with a computation time at minimum 5 seconds, is also shown in Figure
7. It turns out that the combination of CP and MIP outperforms the single CP and MIP models. After 10
seconds it computes a better solution than the MIP alone only after 90 seconds.
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Figure 4: Computational results on the minimization
of the NWS (4) of a 15 lot problem.
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Figure 5: Computational results on the minimization
of the NWS (4) of a 30 lot problem.
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Figure 7: Computational results of the minimization
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5 CONCLUSION AND OUTLOOK

In this paper, a MIP and CP approach with time constraints was presented which was tested with three
different objective functions for three different problem sizes. It turns out that the CP outperforms the MIP
with the makespan objective function. For larger problem sizes the CP model finds immediately solutions
in contrast to the MIP approach. The test results have been shown that the MIP can prove the optimality
much faster than the CP. They also showed that the MIP computes better solutions for more complex
objective functions which consist weighted sums, under the restriction that there is enough computation
time available. It is advisable for large scheduling problems with makespan optimization problem to use a
CP approach or for a weighted sum optimization problem to use the presented combination of CP and MIP.
For further investigations the CP and MIP combination should be tested on a more realistic fab environment
with over 300 lots containing more than 1000 jobs. Additionally the robustness of such schedules and a
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long-term simulations study, based on real production environments, should be investigated. For this case,
the hybrid model, which is presented in Maleck et al. (2017), seems to be suitable.
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A APPENDIX

Table 1: Set of jobs o ∈ Jl of each lot l ∈ L.
lot jl qty j rl ω j sequence id: (k, W l

k ), k = g(l,o)
1 0 22 0 1 { 1: (1 {1 2 3}), 2: (3 {5 6}), 3: (5 {9}), 4: (6 {12 13 14 15 16}) }
2 0 25 20 2 { 1: (2 {3 4}), 2: (3 {5}), 3: (5 {9 10}), 4: (6 {12 13 14 15 16}) }
3 0 25 0 2 { 1: (1 {1 3}), 2: (3 {5 6}), 3: (4 {7}), 4: (5 {9 11}), 5: (7 {12 13}) }
4 0 14 30 4 { 1: (1 {1 2 3 4}), 2: (4 {8}), 3: (5 {10 11}), 4: (6 {12 13 14 15 16}) }
5 0 25 0 2 { 1: (3 {6}), 2: (4 {7 8}), 3: (5 {10 11}), 4: (8 {14 15 16}) }
6 0 3 85 5 { 1: (2 {1 2 3}), 2: (3 {5 6}), 3: (5 {9}), 4: (8 {14 15 16}) }
7 0 15 20 2 { 1: (1 {3 4}), 2: (3 {5}), 3: (5 {9 10}), 4: (6 {12 13 14 15}) }
8 0 25 0 4 { 1: (2 {1 3}), 2: (3 {5 6}), 3: (4 {7}), 4: (5 {9 11}), 5: (8 {14 15}) }
9 0 25 10 2 { 1: (1 {1 2 3 4}), 2: (4 {8}), 3: (5 {10 11}), 4: (6 {12 13 14 15 16}) }

10 0 23 10 2 { 1: (3 {6}), 2: (4 {7 8}), 3: (5 {10 11}), 4: (7 {12 13}) }
11 0 25 0 2 { 1: (1 {1 2 3}), 2: (3 {5 6}), 3: (5 {9}), 4: (7 {12 13}) }
12 0 25 90 2 { 1: (1 {3 4}), 2: (3 {5}), 3: (5 {9 10}), 4: (6 {12 13 14 15 16}) }
13 0 23 0 2 { 1: (2 {1 2 3}), 2: (3 {5 6}), 3: (5 {9}), 4: (9 {15 16}) }
14 0 14 200 6 { 1: (2 {3 4}), 2: (3 {5}), 3: (5 {9 10}), 4: (8 {15 16}) }
15 0 25 0 2 { 1: (3 {6}), 2: (4 {7 8}), 3: (5 {10 11}), 4: (6 {12 13 14 15 16}) }
16 0 25 30 2 { 1: (1 {1 3}), 2: (3 {5 6}), 3: (4 {7}), 4: (5 {9 11}), 5: (9 {14 15 16}) }
17 0 23 0 2 { 1: (2 {1 3}), 2: (3 {5 6}), 3: (4 {7}), 4: (5 {9 11}), 5: (8 {14 15 16}) }
18 0 23 10 4 { 1: (2 {3 4}), 2: (3 {5}), 3: (5 {9 10}), 4: (7 {12 13}) }
19 0 16 15 4 { 1: (1 {1 2 3 4}), 2: (4 {8}), 3: (5 {10 11}), 4: (6 {12 13 14 15 16}) }
20 1 14 10 4 { 1: (2 {1 3}), 2: (3 {5 6}), 3: (4 {7}), 4: (5 {9 11}), 5: (6 {12 13 14 15 16}) }
21 2 25 5 2 { 1: (1 {1 2 3}), 2: (5 {9 10}), 3: (4 {8}), 4: (3 {5 6}), 5: (6 {12 13 14 15 16}) }
22 1 25 90 2 { 1: (2 {1 3}), 2: (5 {9 10}), 3: (4 {8}), 4: (3 {5 6}), 5: (9 {14 15}) }
23 2 23 0 2 { 1: (2 {1 2 3 4}), 2: (5 {9 11}), 3: (4 {7}), 4: (3 {5 6}), 5: (8 {14 15}) }
24 2 19 200 6 { 1: (2 {1 2 3}), 2: (5 {9 11}), 3: (4 {7 8}), 4: (3 {5 6}), 5: (6 {13 14 15 16}) }
25 1 23 30 2 { 1: (2 {1 2}), 2: (3 {5 6}), 3: (4 {7}), 4: (6 {12 13 14 15}) }
26 2 15 30 2 { 1: (2 {1 3}), 2: (3 {5 6}), 3: (4 {7 8}), 4: (7 {12 13}) }
27 1 23 0 2 { 1: (2 {1 3 4}), 2: (3 {5 6}), 3: (4 {7 8}), 4: (6 {12 13 14 15}) }
28 1 23 10 4 { 1: (2 {1 4}), 2: (3 {5 6}), 3: (4 {7 8}), 4: (5 {9 11}), 5: (8 {14 15 16}) }
29 1 19 15 4 { 1: (2 {1 2 4}), 2: (3 {5 6}), 3: (4 {7 8}), 4: (5 {9 11}), 5: (8 {14 15 16}) }
30 2 14 10 4 { 1: (2 {1 3}), 2: (3 {5 6}), 3: (4 {7 8}), 4: (5 {9 11}), 5: (6 {12 13 14 15 16}) }

Table 2: Tool t ∈ T definitions and set of their process times.
t MT BF {(k: pk,t in s), k ∈ P} t MT BF {(k: pk,t in s), k ∈ P}
1 170842 {(1: 70), (2: 90)} 9 129253 {(5: 90)}
2 129253 {(1: 85), (2: 55)} 10 140808 {(5: 110)}
3 170842 {(1: 75), (2: 62)} 11 154462 {(5: 100)}
4 154462 {(1: 58), (2: 95)} 12 215875 {(6: 110), (7: 110)}
5 154462 {(3: 50)} 13 154462 {(6: 100), (7: 100)}
6 190859 {(3: 80)} 14 350923 {(6: 94), (8: 70), (9: 89)}
7 350923 {(4: 40)} 15 215875 {(6: 100), (8: 87), (9: 110)}
8 248034 {(4: 50)} 16 154462 {(6: 80), (8: 107), (9: 100)}

Table 3: Set of timelink areas of each lot l ∈ L.
l {(o→ q : tl,o,q in s), ∀(o,q) ∈ T l} l {(o→ q : tl,o,q in s), ∀(o,q) ∈ T l}
1 {(1→ 3: 8600)} 16 {(1→ 3: 9600), (3→ 4: 9600), (4→ 5: 15600)}
2 {(1→ 2: 6600), (2→ 3: 6600)} 17 {(1→ 3: 9600), (3→ 4: 8600), (4→ 5: 15600)}
3 {(1→ 2: 6600), (2→ 3: 5600), (3→ 4: 5600), (4→ 5: 15600)} 18 {(1→ 3: 8600), (3→ 4: 10600)}
4 {(2→ 3: 16600), (3→ 4: 15600)} 19 {(1→ 3: 9600), (3→ 4: 86400),
5 {(1→ 2: 5600), (2→ 3: 4400)} 20 {(1→ 2: 5600), (2→ 3: 4600), (3→ 4: 6600), (4→ 5: 15600)}
6 {(1→ 3: 8600), (3→ 4: 16600)} 21 {(1→ 2: 6600), (2→ 3: 8600), (3→ 5: 86400)}
7 {(1→ 2: 9600), (2→ 3: 5600)} 22 {(1→ 2: 3600), (2→ 3: 8600), (3→ 5: 86400)}
8 {(1→ 2: 6600), (2→ 3: 8600), (3→ 4: 6600), (4→ 5: 15600)} 23 {(1→ 2: 5600), (2→ 3: 8600), (3→ 5: 16600)}
9 {(2→ 3: 9600), (3→ 4: 86400)} 24 {(1→ 2: 6600), (2→ 3: 8600), (3→ 5: 18600)}

10 {(1→ 2: 8900), (3→ 4: 86400)} 25 {(1→ 2: 3600), (2→ 3: 8600), (3→ 4: 8600)}
11 {(1→ 2: 5600), (3→ 4: 86400)} 26 {(1→ 2: 3600), (2→ 3: 8600), (3→ 4: 8600)}
12 {(1→ 2: 4900), (3→ 4: 86400)} 27 {(1→ 2: 3600), (2→ 3: 9600), (3→ 4: 8600)}
13 {(1→ 2: 5600), (2→ 3: 4600), (3→ 4: 86400)} 28 {(1→ 2: 3600), (2→ 3: 6600), (3→ 5: 86400)}
14 {(1→ 2: 6600), (2→ 3: 7600), (3→ 4: 86400)} 29 {(1→ 2: 3600), (2→ 3: 8600), (3→ 5: 86400)}
15 {(1→ 2: 8600), (2→ 3: 8600), (3→ 4: 86400)} 30 {(1→ 2: 3600), (2→ 3: 6600), (3→ 5: 86400)}
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