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ABSTRACT 

Advanced transport scheduling for conveyor-based automated material handling systems (AMHS) in 
semiconductor fabricating facilities (wafer fabs) can reduce transport times and thus cycle times. 
Commonly, transport operations of arriving wafer lots at conveyor junctions, such as rotary tables, are 
sequenced ad-hoc by myopic first-come-first-serve policies. In contrast, improved transport schedules for 
the transport operations can be produced ahead of the time in conjunction with the overall production 
schedule for process operations. More precisely, such a transport schedule can either be sequentially 

constructed by fixing one transport after another, or it can be optimized by simultaneously fixing several 
conflicting transports. Hence, two conceptually different transport scheduling methods, which both avoid 
congestions by enforcing a no-wait constraint, are compared with special regard to transport-related 
variability. Furthermore, three different AMHS models that exhibit the typical interbay-intrabay layout are 
used for computational experiments. 

1 INTRODUCTION 

In semiconductor manufacturing, automated material handling systems (AMHS) move the wafer lots from 
one workstation or machine to another, where the wafer lots undergo process operations. Modern AMHS 
fully automatically transport the wafer lots on particular travel paths between the machines. Hence, when 
creating a process operation schedule for the machines, path-dependent travel times need to be considered. 
In most wafer fabricating facilities (fabs), such travel times are estimated either by deriving the minimal, 
ideal, transport time from the length of a path or by averaging observed transport times on a path. Therefore, 

minimal travel times are also called raw transport times. 
Unfortunately, transport time estimates cannot always be adhered to in reality. Instead, transports take 

longer and wafer lots arrive delayed at their destination machines. As a result, subsequent process 
operations will not be executed in time and the corresponding machines will be idle. Such delays can 
propagate within a fab’s overall process operation schedule (fab schedule), so that not just one, but several 
wafer lots exhibit longer cycle times. In summary, wafer lots do not meet their due dates and exit the fab 

delayed. 
The reason for transport delays are transient congestions, which only occur at highly frequented 

intersections and points in time of high traffic loads, e.g., when several batch machines finish process 
operations and then release many wafer lots simultaneously into the AMHS. Therefore, it is necessary to 
accurately model the transport system’s behavior if the transport times shall be estimated more exactly. 
More specifically, the exact progression of wafer lots waiting for other wafer lots needs to be modeled. The 

reason being, AMHS resources are scarce, which creates bottlenecks at conveyor junctions. As a result, 

3502978-1-5386-6572-5/18/$31.00 ©2018 IEEE



Schwenke, Jannasch, and Kabitzsch 
 

congestion effects can be precisely simulated. But most importantly, the succession of transports can be 
optimized so that delays can be avoided or reduced. 

Consequently, we suggest two methods for scheduling transports within conveyor-based AMHS in 
wafer fabs. The first method successively fills an overall transport schedule by inserting one complete wafer 
lot transport after another. Thus, it is called Transport Insertion (TI) method. The second method considers 
several possibly interfering transports at once and optimizes their sequence of passing bottleneck elements 

of the AMHS so that transport-related delays will be reduced. Thus, it is called Transport Optimization 
(TO) method. In contrast to our previous conceptual work on this matter (Schwenke and Kabitzsch 2017), 
we now examine the two novel methods more thoroughly as follows: Firstly, three different AMHS layouts 
are used for the experiments. The two new AMHS models are more generic than the previously used one. 
Secondly, the impact on transport-related variability in cycle times is quantified. Thirdly, the briefly 
introduced TI method is now described in greater detail. Particularly, the conceptual difference to the TO 

method is highlighted by a manageable illustrative example.  
The remainder of this document is structured as follows. Section 2 highlights related work. Section 3 

describes the differences of three AMHS models and the two transports scheduling methods. Accordingly, 
Section 4 validates the two transport scheduling methods using the three described AMHS models. Finally, 
Section 5 draws conclusions. 

2 RELATED WORK 

Modern, highly automated wafer fabs exhibit two levels of operational control. On the superordinate 
production process level, also named as machine level or fab level, a scheduler decides which wafer lots 
will be processed on which machine and when (Mönch et al. 2011). Between the process operations the 
wafer lots must be transported from one machine to another. This happens on the subordinate transport 
level, also named as AMHS level.  

On the superordinate fab level, in many wafer fabs, the wafer lots are scheduled using dispatch methods 

(Scholl et al. 2011). For more efficient production schedules, shifting bottleneck heuristics (Mason et al. 
2002), decomposition techniques (Ovacik and Uzsoy 1997) or metaheuristics can be applied (Sourirajan 
and Uzsoy 2007) to solve complex job shop scheduling problems (JSSP). In general, such fab level 
scheduling methods all seek to solve conflicts of wafer lots competing for scarce resources such as 
bottleneck machines. However, most such fab scheduling methods ignore the resource conflicts on the 
subordinate transport level. Overcoming this disadvantage, Drießel and Mönch (2012) optimized large-

scale complex wafer lot scheduling problems consisting of process operations and transport operations 
using an extended disjunctive graph specialized for vehicle-based systems. Alternatively, Schmaler et al. 
(2017) simulate dispatch rules to forecast and schedule vehicle-based transports. 

In contrast, we focus on conveyor-based systems as they may be considered for future 450 mm wafer 
production and as they are already successfully in operation in some 200 mm wafer fabs (Scholl et al. 2011). 
Nevertheless, few work exists on dispatching conveyor-based systems using production priorities (Wang 

et al. 2016). Alternatively, there exists work on simulating (Arzt and Bulcke 1999) or analytically 
estimating average material flows in conveyor-based AMHS (Nazzal et al. 2010). But most work on AMHS 
ignores the superordinate fab level. Instead, given traffic is assumed, i.e., arbitrarily set arrival rates of 
transport jobs. Overviews of AMHS technologies and layouts are provided by (Agrawal and Heragu 2006) 
and (Montoya-Torres 2006). Several comparative studies evaluate the benefits of conveyor-based AMHS 
in contrast to vehicle-based systems, e.g., (Brain et al. 1999; Temponi et al. 2012; Tung et al. 2013). These 

studies assume given average traffic as well. 
Positioning this study, it can be concluded that most existing simulation work on conveyor-based 

AMHS assumes that wafer lots are served in a first-come-first-served (FCFS) manner when the wafer lots 
arrive at conveyor conjunctions such as rotary tables. But very few existing work regards the superordinate 
fab schedule when scheduling the transports within the AMHS. Hence, we introduced a transport 
scheduling problem and suggested two different novel concepts for scheduling the wafer lot transports, 

namely TI and TO (Schwenke and Kabitzsch 2017). The TO method exploits slacks from fab level, which 
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indicate how much a process operation can be delayed without delaying the completion time of any (other) 
job in the fab schedule. For computing such slacks the critical path method (CPM) can be used. In this 
document we further investigate both methods using two new AMHS models that fit the fab model SET2, 
which was provided by the Measurement and Improvement of Manufacturing Capacity (MIMAC) project 
(Fowler and Robinson 1995). More importantly, we also investigate the resulting variability in transport-
related delays because variability is a negative feature of wafer fabs.  

In wafer fabs, variability is the quality of nonuniformity in the overall production (Hopp and Spearman 
2011). For example, there is nonuniformity in inter arrival times of wafer lots and in process times as well 
as in transport times. Altogether, these portions of nonuniformity make individual cycle times of wafer lots 
variable and increase their average. Crucially, we solely focus on transport-related variability because 
transport scheduling methods can only influence or reduce transport-related delays. In general, variability 
needs to be combatted because it drives up average cycle times and inventory levels in a fab. The reason 

for this are propagating delays, which can never be recovered anymore. Moreover, a delayed wafer lot will 
drag this delay throughout its entire remaining process route and hold up many other subsequent wafer lots 
on downstream machines. Thus, one of the main objectives of this study is to quantify variability in 
transport times. 

3 METHODS 

3.1 Design of AMHS Models 

The MIMAC project provided seven reference models of wafer fabs. These so-called MIMAC models 
resemble the typical settings and behavior of semiconductor manufacturing very well. Thus, the MIMAC 
models are widely used by researchers to simulate new dispatch rules or to investigate optimization 
problems of wafer fabs. Unfortunately, the MIMAC models do not contain AMHS elements. Instead, they 
focus on the fab scheduling level, and accordingly they provide, e.g., product mixes, release rates, wafer 
lot routes using machine groups and capacities of machine groups. Hence, in order to resemble transport-

related waiting effects, an AMHS model has to be created. For this purpose we developed three AMHS 
models that are compatible with MIMAC model SET2.  

 

Figure 1: Specialized AMHS model A fitting transport times of SET2. 

The first AMHS model (A) is described in (Schwenke and Kabitzsch 2017), see Figure 1. It is 
specialized for the use with SET2 because the locations of the machines are chosen in such a way that the 

AMHS resembles the given transport times of SET2. More precisely, this specialized AMHS model was 
created by mapping the given transfer times between production steps of process routes of SET2 to 
demanded distances between the corresponding machines. Subsequently, the locations of the machines 
were arranged in such a way that the majority of the machine pairs would resemble the demanded distance. 
In order to resolve contradictions, compromises needed to be found so that deviations were kept small. 
Additionally, if between two machines the travel time for going in one direction is different to the travel 

time for going in the opposite direction, two alternate one-tracked connections were placed between such 
machines. As a result, the layout of AMHS model A exhibits many shortcuts and bypasses. Thus, on the 
one hand it may be typical for mature wafer fabs, but on the other hand, at first sight, the layout appears 
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interwoven and not quite straightforward. Hence, we designed two more generic layouts for a more general 
investigation of the suggested transport scheduling methods. Both new AMHS models are inspired by real 
fabs with spine layout. Thus, the new layouts are more generic because they resemble this common spine 
layout, also known as interbay-intrabay layout. Furthermore, more track elements are used because in 
reality the machines may not always be located for ideally short connections according to a given process 
route. For simplicity only a one-sided spine layout was created, which was big enough to house all machines 

of the example fab SET2. But the introduced transport scheduling methods could easily be used for scaled 
up models of bigger fabs. For a very much simplified baseline layout, the first new AMHS model (B) is 
only a simple loop for an interbay without any crossovers. In contrast, the second AMHS model (C) is more 
realistic because it exhibits crossovers in front of every bay. Furthermore, it contains bypasses in the back 
of the bays as it is the case in many conveyor-based AMHS. 

 

Figure 2: Generic AMHS model B without any crossovers or shortcuts. 

The conveyors and rotary tables are 12 inch wide. Hence, for designing the AMHS models a drag-and-
drop-based software tool was implemented so that productions areas (bays), machine groups as well as 
individual machines can be manually placed on a 12 inch grid. The models contain ten bays, which are 60 

feet long and 24 feet wide. The connecting interbay double tracks are 220 feet long. All double tracks are 
36 inches apart. The conveyor speed is set to 8.58 inches per second, whereas the transfer times on rotary 
tables are 6 seconds for passing straight and 9 in case of taking a turn. 

 

Figure 3: Generic AMHS model C with crossovers and bay shortcuts. 

After bays and machines were manually placed, the connecting conveyors and rotary tables were placed 
automatically by the software tool. Additionally, all shortest paths between pairs of machines were 
computed and extracted. Subsequently, the intersecting parts of each two paths were computed for fast 

lookup of conflicts for later use in the transport scheduling methods. In Figures 2 and 3 the yellow long 
rectangles depict one-tracked conveyors and the squared orange rectangles symbolize rotary tables. For 
clarity, the machines are not displayed but they are located at the end of the horizontal load port branches 
at the vertical bays. Finally, the horizontal conveyors at the bottom of the pictures resemble the interbay. 
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3.2 Transport Insertion 

Previously, we described the TI method only briefly (Schwenke and Kabitzsch 2017), hence, it is described 
in greater detail below. At first, symbols and indices are introduced: The overall fab schedule consists of 
production jobs Ji  with due dates Di. A production job Ji consists of process operations (steps) Oi o so that 
index i refers to the production job and the index o refers to the step within Ji. Each operation Oi o is 
associated with a starting time si o, a process duration pi o and a local due date Di o. Between each two 

subsequent process operations Oi o and Oi o+1, a transport job Jk moves the wafer lot from the source machine 
to the destination machine. Hence, in contrast to the production jobs Ji there are the transport jobs Jk, which 
consist of transport operations Tk t so that index k refers to the transport job and t refers to the transport 
operation within a particular transport job. Each transport operation Tk t is associated with an individual 
starting time sk t and duration qk t designating the entry of a rotary table or conveyor and the duration for 
traversing it. Thus, a transport operation Tk t corresponds to the t-th traversing of a rotary table or conveyor 

on a wafer lot’s path from one machine to another, and a transport Jk consists of nk transport operations.  
The TI method performs a basic loop, which successively constructs an overall transport schedule S by 

inserting one transport job Jk after another. In preparation to the loop, all transport jobs Jk are sorted in non-

decreasing order of their ready times rk and then they are stored in the set U of all unscheduled transports. 

A ready time rk is the point in time, when a transport can start, which is not earlier than the finish of its 

preceding process operation Oi o. Accordingly, when the transport job Jk arrives at its destination machine, 

a subsequent process operation Oi o+1 will be executed. Subsequently, in each iteration of the loop, the next 

unscheduled transport job is inserted into the next earliest possible time period that allows unimpeded 

movement of its wafer lot across all conveyors and rotary tables on its travel path from its source machine 

to its destination machine. 

When a transport Jk is inserted into the transport schedule S, three things happen. Firstly, all transport 

operations Tk t of Jk are inserted at once. Most importantly, the transport operations Tk t are inserted without 
any delay in between them, i.e., sk t + qkt = sk t+1, which is the no-wait constraint between the transport 
operations. This no-wait constraint enforces the wafer lots to travel unimpeded so that congestions are 
avoided. Hence, possibly a waiting time wk may need to be inserted before the transport Jk actually starts 
moving, i.e., rk + wk = sk1. As a result, all succeeding transport operations Tk t of transport job Jk are fixed 
as well.  

Secondly, after the transport is fixed the delay wk must be checked if it causes the transport to arrive 

too late at its destination machine. It arrives too late if the local due date Di o+1 of the succeeding process 

operation Oi o+1 cannot be met anymore. Note, in preparation of the loop, the local due date Di o was 

computed beforehand for each operation Oi o of the overall fab schedule by applying the critical path 

method. More specifically, a transport arrives too late if its arrival time 𝑎𝑘 =  𝑠𝑘 𝑛𝑘
+ 𝑞𝑘 𝑛𝑘

 causes the 

operation Oi o+1 to end after its local due date Di o+1 , i.e., ak > Di o+1 – pi o+1. For convenience, the local due 

date Di o+1 can be converted into the arrival due date dk of the transport Jk, which is the point in time when 

the transport should arrive at the latest, i.e., dk = Di o+1 - pi o+1. If the transport arrives too late, then the 

starting time si o+1 of process operation Oi o+1 is not valid anymore. Hence, it must be corrected to 

s’i o+1 := rk + wk + ∑ 𝑞𝑘𝑡
𝑛𝑘
𝑡=0 . Note, ∑ 𝑞𝑘𝑡

𝑛𝑘
𝑡=0  is the raw transport time of Jk. Furthermore, all subsequent 

process operations’ starting times of the overall fab schedule need to be updated, using the CPM, as well 

because the delay might propagate. After updating the fab schedule, the next transport in the sorted list 

might start delayed as well, but the order of transport starts will be maintained.  

Thirdly, for each rotary table it needs to be stored, when it is occupied, or ‘booked’. For this purpose, 

for each rotary table Q, there exist two ordered sets. The first set (EQ, ≤) in non-decreasing order contains 

all points in time e when wafer lots enter. The second ordered set (FQ, ≤) contains the corresponding exit 

times f. Hence, together the two sets keep the information when a rotary table is occupied. A transport 

operation Tk t has to fit between the end f of another previous transport operation of another transport job 

and the beginning e of a subsequent transport operation of another transport job. The TI method is noted in 

pseudocode below. 
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1. Sort transports Jk by ready times rk and store them in set U of unscheduled transport jobs. 
2. Pick first transport job Jk from set U, i.e., U := U \ Jk. 
3. Find time periods for Jk in transport schedule S, so that for each transport operation Tk t holds: 

(a) sk t > f ∈  FQ and 
(b) sk t + qk t < e ∈  EQ 

4. For each transport operation Tk t add the found starting times sk t and end times sk t + qk t to the 

ordered sets of starting times EQ and end times FQ of occupation of the associated rotary table Q. 
5. Fix the starting times sk t of transport Jk in schedule S. 

6. If the arrival ak = rk + wk + ∑ 𝑞𝑘𝑡
𝑛𝑘
𝑡=0  of Jk is later than the start si o+1 of the subsequent process 

operation Oi o+1, i.e., ak > si o+1, then update the fab schedule using the CPM. 

7. If U ≠ {0} then goto 2 else stop. 

 
All transport jobs are sorted and stored in the ordered set U (1). If a transport shall be inserted into the 

overall transport schedule S, it is deleted from U (2). Accordingly, a transport can only occupy a rotary 
table if the preceding transport left, i.e., sk t > f ∈  FQ, and a possibly already allocated succeeding transport 
has not entered yet, i.e., sk t + qk t < e ∈  EQ. Thus, periods in time have to be found when each succeeding 
rotary table Q of a transport Jk is unoccupied (3). Crucially, such periods of time have to be subsequent 

without any delay across several rotary tables so that they obey the no-wait restriction which demands the 
unimpeded moving of transport job Jk. Once such a succession of time periods is found, the rotary tables 
need to be booked (4). Afterwards, the starting times of the current transport job Jk are fixed (5). At last, it 
must be checked if the succeeding process operation can be started as scheduled or if the transport arrives 
delayed. If so, the fab schedule must be updated (6). If all transport jobs have been scheduled (inserted into 
schedule S), the algorithm stops (7). In summary, during the execution of the TI method the transport 

schedule S will be filled sequentially.  

 

Figure 4: The transport schedule S is filled successively with three transports J1, J2 and J3. The order in 
which the transports are inserted is according to their ready times r1, r2 and r3. 

Figure 4 shows an example of three transport jobs being inserted one after another into an overall 
transport schedule. The schedule is depicted in the form of a Gantt chart. There are five rotary tables 
involved, i.e., Q1 to Q5, where the transport jobs have to cross, see Figure 5. Hence, the schedule in Figure 

4 is only a small extract of the complete overall transport schedule. It only covers the events on the rotary 
tables during the time period when these three transport jobs traverse. The first job is J1 because it is ready 
to start at ready time r1 = 10. Thus, it is inserted undelayed and traverses the five rotary tables at times s1,1 
to s1,5. The second transport job J2 starts at ready time r2 = 20 and traverses a long distance of conveyor 
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belts before it arrives at its rotary tables Q4 at point in time 115 seconds. Then J2 traverses Q4 and Q5 
unimpeded as well. The last job J3 is ready at r3 = 30 and must find sufficient time windows on Q2, Q3 and 
Q4. It can travel across Q2 only after J1 left. It reaches Q3 clearly after J2 left. At Q4 it has to be checked if 
the preceding job J1 left early enough. Moreover, it has to be checked if the succeeding job J2 arrives late 
enough. Importantly, only if this is the case, it can fit between J1 and J2 on Q4. For instance, if J2 would 
arrive earlier, then job J3 could not enter Q4 immediately. Instead it would have to introduce more waiting 

time w3 so that J3 appears at Q4 only after J2 left. In this case, J3 would experience a much larger delay. 

 

Figure 5: Extract of interbay and conjunct bays with conveyors (rectangles) and rotary tables (squares). 

Three transport jobs J1, J2 and J3 traverse rotary tables Q1 to Q5 and form conflicts (lightning bolts). 

3.3 Transport Optimization 

In contrast to the TI method, the TO method always considers several transports at once. More specifically, 
it jointly considers such transports that constitute conflicts. Hence, the TO method solves a JSSP optimally 
by minimizing the total weighted completion time of the transport jobs so that the most urgent transport 
jobs are weighted the most and thus, will be delayed the least. The TO method is comprehensively described 

in (Schwenke and Kabitzsch 2017), in which it is called MIP solving method. Therefore, below only the 
conceptual differences to the TI method are highlighted focusing on finding conflicts and stating a 
corresponding JSSP. 

The conflicts are discovered as follows. Initially, in preparation of a basic loop, the transports are sorted 
in non-decreasing order by their ready times rk in the same manner as at the beginning of the TI method. 
Then all transports that leave after marked process operations are checked with each other to determine if 

they constitute conflicts. A process operation will be marked if its preceding transport has been scheduled 
by the method or if it has no preceding transport such as the first operation Oi 1 in a production job Ji. 

Transports constitute conflicts if the durations of transport operations on rotary tables would overlap. 
For example, if transport jobs Jk and Jl start both directly after their preceding process operations at their 
ready times rk and rl, then their transport operations Tk t and Tl u overlap if there exist any step t in transport 
Jk and step u in transport Jl so that (sl u ≥ sk t AND sl u < sk t+qk t) OR (sk t ≥ slu AND sk t < sl u + ql u). For 

example, in Figure 5 three transport jobs J1, J2 and J3 would simultaneously try to traverse the rotary table 
Q4, because each of them would arrive at Q4 at the same point in time, e.g., at 100 seconds. Furthermore, 
the transports form conflicts at rotary tables Q2, Q3 and Q5. Note, J1 and J2 do not constitute a conflict at Q1 
because their time windows of their transport operations T1,1 and T2,3 for traversing Q1 do not overlap. In 
summary, the three transports compete for resources so that they constitute a JSSP.  

Therefore, the algorithm collects all transports that form conflicts with each other in a problem set P of 

transports to be simultaneously scheduled. Then for this subset P of transports a JSSP is stated and 

formulated as a mixed integer problem (MIP). Subsequently, the JSSP is solved by a standard MIP solver. 

In order to avoid congestions, the transports shall travel unimpeded, i.e., the JSSP is subject to no-wait 

constraints. In order to advantage urgent transports the local due dates of the subsequent process operations 

of each transport are regarded in the target function of the MIP. As mentioned, for convenience, this local 

process operation due date previously is converted into the due date of the transport dk, which is the point 

in time before the transport should arrive. The TO method is noted in pseudocode as follows. 
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1. Sort transports Jk by ready times rk and store them in set U of unscheduled transport jobs. 
2. Collect transports Jk that constitute conflicts: 

(a) Consider first transport Jk from set U. 
(b) For each transport Jl ∈  P check if Jl and Jk constitute conflicts, i.e.,  

if (sl u ≥ sk t AND sl u < sk t+qk t) OR (sk t ≥ slu AND sk t < sl u + ql u) 
then  Add Jk to set P of transports to be scheduled, i.e., P = P ∪  {Jk} and 

  Remove Jk from set U, i.e., U := U\Jk and 
  goto 2(a) 
else  goto 3. 

3. For P state a JSSP with no-wait constraints and derive a MIP formulation. 
4. Solve the MIP using a MIP solver. 
5. For each Jk in the solution of the JSSP: Fix the starting times of transport Jk in schedule S. 

6. For each Jk in the solution of the JSSP check if arrival ak = rk + wk + ∑ 𝑞𝑘𝑡
𝑛𝑘
𝑡=0  of Jk is later than the 

start si o+1 of the subsequent process operation Oi o+1, i.e.,  
if ak > si o+1 then update the fab schedule using the CPM. 

7. If U ≠ {0} then goto 2 else stop. 
 

In short, the solution of the JSSP is a priority order for conflicting transports to be scheduled. Thus, at 

step 5 the pseudocode is very similar to the TI method. The only difference is that the ordered sets (EQ, ≤) 
and (FQ, ≤) for checking when the rotary tables are booked are not needed because the MIP solution of the 
JSSP already guarantees conflict free movement. The set of transports that form conflicts is rather small, 
e.g., 20 transports, compared to all transports to be scheduled in a large-scale fab scheduling problem. 
Hence, a rather small size of JSSPs is a prerequisite of the suggested approach. Otherwise, computing an 
exact solution using a MIP solver would take too long. As a fallback heuristic in case of an intractable MIP, 

the TI method could be used or the common FCFS policy at the rotary tables. 

 

Figure 6: Transport schedule of three transports J1, J2 and J3 as it is yielded by solving a JSSP. 

For example, Figure 6 depicts the solution of a very small MIP. If the transports J1, J2 and J3 would be 
inserted into the schedule S in sequence of their ready times r1, r2 and r3 they would form a different solution 
schedule as it is depicted in Figure 4 for the TI method. Instead, the JSSP takes the due dates of the transports 
into account and computes the best compromise. As a result, e.g., the transports traverse rotary table Q4 in 

a different sequence. Accordingly, the arrival times of the transports at their destination machines are 
different. For instance, the most urgent transport J2 arrives much earlier and can meet its due date d2=210 
much better. In summary, the conceptual differences between the TI method and the TO method are as 
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follows. Firstly, the TI method only handles one transport at once. Conflicts between transports are simply 
solved by delaying the subsequent starting transport job. Hence, the method is uninformed of other transport 
jobs, which is a disadvantage. In contrast, the TO method always handles several conflicting transports at 
once. Thus, it finds a compromise between the competing transports, which is clearly an advantage.  

Secondly, the computational cost of solving the MIPs can be a disadvantage but is bearable in most 
cases. Therefore, the TI method exhibits a small advantage in regard to computation time. Thirdly, the TI 

method must keep lists for logging when the rotary tables are occupied by a wafer lot so that their limited 
capacity is regarded. In contrast, the TO method does not need such lists, because it intrinsically regards 
the limited capacity of rotary tables by the classic capacity constraints within the JSSP.  

Similarities are that both methods schedule the transport jobs in a loop, which processes a previously 
produced fab schedule. Both methods regard no-wait constraints so that the transports remain unimpeded 
after they started. Consequently, both methods introduce waiting times after the ready times of the transport 

jobs and before the transport jobs actually start. 

4 VALIDATION 

For validation of both transport scheduling methods, three performance indicators were determined, namely 
transport-related delay of cycle times, total number of delayed transports and variability. In order to produce 
input data, the MIMAC model SET2 was used to simulate dispatch rules. Importantly, the dispatch rules 
consider the idealized raw transport times according to the applied AMHS. A raw transport time is the time 

a wafer lot would take to travel from one machine to another if there were no other wafer lots in the way.  
Then the produced fab schedule was used to induce transport jobs to transfer a wafer lot after each 

process operation to the machine of its next process operation. Hence, for simplicity idle transports are 
ignored. Fab schedules were produced by simulation of the dispatch rules shortest processing time (SPT), 
first come first served (FCFS) and earliest due date (EDD) so that results are averaged. The scheduling 
horizon of the tests is 5 days using product mix and release rates as given in the MIMAC data set. As a 

result, 31 jobs with an average of 250 operations using 277 machines, grouped in 97 sets, were produced. 
A corresponding fab level schedule with a total of 7656 process operations was constructed inducing 7625 
transport jobs. Furthermore, three different AMHS models, as described in Subsection 3.1, were applied 
for conducting the experiments. Table 1 shows the applied AMHS (A, B or C) as well as the investigated 
transport scheduling method of the conducted experiments. 

Table 1: Matrix of conducted experiments. 

 
transport scheduling method 

applied AMHS model 

A B C 

First Come First Serve X   

Transport Insertion X X X 

Transport Optimization X X X 

 

Most importantly, after a fab schedule is produced, the order of the process operation within this fab 
schedule is fixed, i.e., the order is never changed anymore by the transport scheduling methods. Instead, 
the transport scheduling methods only introduce transport-related delays which originate from solving the 
conflicts as described in Subsections 3.2 and 3.3. More precisely, it is analyzed how much a particular 
transport scheduling method increases the cycle time of a process job compared to the idealized, but 
unrealistic, case of raw transport times. This case is unrealistic because it would be assumed that wafer lots 

never block each other and transport conflicts would never form. 
The first set of experiments was carried out similarly to the validation in (Schwenke and Kabitzsch 

2017). Additionally, now the variability of the transport-related delay is investigated. Hopp and Spearman 
(2011) suggest to use variation coefficients c to quantify variability. Hence, they define three degrees. Low 
variability corresponds to c < 0.75. Medium variability is 0.75 ≤ c < 1.33. High variability corresponds to 
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c ≥ 1.33. Thus, Table 2 shows for each method the reduction of the transport-related delays in a process 
job’s cycle time. Furthermore, it displays the number of delayed transports, the total transport-related delays 
in seconds as well as the average delay d in seconds. Accordingly, the variation coefficient can be derived 
as the normalized standard deviation, i.e., c = σ/d. As a result, Table 2 shows that the variability of transport-
related delays is significantly reduced by applying the transport scheduling methods TI and TO in 
comparison to the baseline method FCFS. Hence, a conveyor-based system that is operated by use of FCFS 

rules at rotary tables already exhibits low variability. But the methods TI and TO can lower the variability 
even more. 

Table 2: Variability in transport-related delays using AMHS model A. 

 FCFS  

(baseline) 

Transport 

Insertion 

Transport 

Optimization 

 Reduction of transport-related delays vs. 

 baseline method (FCFS) in % 
0% 64% 82% 

 Number of delayed transports 251 122 95 

 Total transport-related delays in seconds 2109 810 416 

 Average transport-related delay d in seconds 8.40 6.63 4.73 

 Standard deviation of transport-related delays σ 6.03 4.31 2.40 

 Transport-related variability c = σ/d 0.72 0.65 0.55 

 

The second set of experiments particularly focused on the comparison of the two novel methods TI and 
TO. For this purpose, the remaining validation uses the new AMHS layouts B and C, see Table 3. The 
experiments, show that the average transport-related delays d can be driven down more by the TO method, 
even though there are more delayed transports if the TO method is applied. Hence, the extent of the delay 
in a delayed transport is much smaller if the TO method is used. Similarly, the standard deviation σ of 
transport-related delays is smaller for the TO method (σ = 3.37) than for TI (σ = 5.44) if AMHS model C 

is used. 

Table 3: Variability in transport-related delays using AMHS models B and C. 

 
 AMHS model 

Transport Insertion Transport Optimization 

B C B C 

 Number of delayed transports 265 178 321 193 

 Total transport-related delays in seconds 2387 1426 1972 977 

 Average transport-related delay d in seconds 9.01 8.01 6.14 5.06 

 Standard deviation of transport-related delays σ 5.16 5.44 5.05 3.37 

 Transport-related variability c = σ/d 0.57 0.67 0.82 0.66 

 
Furthermore, Table 3 shows for TO that AMHS model C leads to better results than AMHS model B, 

which was expected because more shortcuts and crossovers lead to more distinct paths and thus to less 
occasions for conflicts to be solved. Surprisingly, in terms of variability c the results do not show as clearly. 
The reason is the normalization in the formula for the variation coefficient c = σ/d. For example, using 

AMHS model B, even though absolute values of delay d and standard deviation σ are smaller for TO (d = 
6.14, σ = 5.05) than for TI (d = 9.01, σ = 5.16) the normalized values of c indicate higher variability for TO 
(c = 0.82) than for TI (c = 0.57). Hence, normalization can skew the picture. Similarly, using AMHS model 
C, TO leads to similar results (c = 0.66) as TI (c = 0.67), but the absolute value of standard deviation is 
much better for TO (σ = 3.37) than for TI (σ = 5.44). 

3511



Schwenke, Jannasch, and Kabitzsch 
 

5 CONCLUSIONS 

Two transport scheduling methods for fixing the transport operations between the process operations of a 
wafer fab are investigated and compared. The first scheduling method, called TI, sequentially constructs a 
transport schedule by inserting one transport after another into a comprehensive transport schedule. In 
contrast, the second method is called TO because it simultaneously optimizes and fixes several conflicting 
transports so that the most urgent transport jobs will be advantaged. Both methods derive a priority order 

of transports to be scheduled. Hence TI can be seen as a special case of TO. The inner works of both methods 
are explained using an illustrative example. 

Validation comprises computational experiments for both transport scheduling methods. Besides total 
and average transport-related delays, the variability in such transport-related delays is examined because in 
wafer fabs the pursuit of lower variability is a continuous battle. For the experiments, three different AMHS 
models are used. All AMHS models exhibit the common interbay-intrabay layout, but the first AMHS 

model is specialized for the use with only one MIMAC model. Therefore, two more generic AMHS models 
are designed. In summary, the computational experiments, show that average transport-related delays d and 
standard deviation σ can be driven down more by TO than by TI. Similarly, using an AMHS model with 
more shortcuts and crossovers leads to better results as well. In terms of variability the differences do not 
show as clearly because of the normalization in its formula c = σ/d. Hence, normalization can obfuscate the 
results, but in general both transport scheduling methods lead to low or to lower medium variability. 

The limitations of this study are threefold. Firstly, the quantification of variability may strongly depend 
on the structure of the AMHS. Secondly, no idle transports are considered. Thirdly, the scale of the AMHS 
and fab model may be smaller than in current mass producing wafer fabs. Nevertheless, both methods hold 
the potential to be adjusted accordingly. Furthermore, both methods exhibit the advantage that they suppress 
congestions by enforcing unimpeded transports by application of a no-wait constraint between a transport 
job’s subsequent transport operations. As a result, the transport jobs may start delayed but then travel 

unimpeded. Hence, congestion free transportation can be achieved by buying a small waiting time before 
beginning the transport jobs. 
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