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ABSTRACT

The introduction of a new product into a semiconductor manufacturing facility can have significant adverse
effects on both current and new products. We combine a simulation model of a simplified production
system and a learning model to optimize releases of old and new products using simulation optimization.
Our results show that the simulation optimization model yields significant improvements in performance
over simple alternatives, and provides insights into the structure of optimal release policies.

1 INTRODUCTION

Managing new product introductions is critical for companies in high technology industries like semi-
conductor manufacturing to attract and retain customers. A new product with enhanced features and/or
improved performance commands higher prices early in its life cycle when the competition is still catching
up, the new product is in high demand, and its price is high (Leachman and Ding 2007; Nemoto et al.
2000). Hence it is important for the firm to rapidly ramp up production of good devices when both demand
and prices are high. However, introduction of a new product into an operating factory where it shares
capacity with other products adversely impacts all products produced by the factory (Leachman 1993) as
problems are identified and require engineering intervention to fix. The time required for these interventions
decreases as experience is gained in producing the new product, requiring the modeling of learning effects
in production planning.

Effective management of new product introductions requires consideration of both the adverse impact
of the new product on other products in the factory, and the fact that the new product will consume more
resources than a mature product early in its life cycle. To this end, we study a simplified system that
manages the impact of the new product by controlling the releases of both new and old products. We
first create a simulation model to capture the impact of a new product introduction on a production line in
which an stable product, which will be replaced over some time horizon by the new product, is currently
being produced. Klein and Kalir (2006) describe such a situation in an Intel fab which was required to
transition from producing logic products to flash memory products. Introduction of the new product on this
production line causes increased disruptions affecting both old and new products. A simulation optimization
procedure is used to find the releases of both old and new products to maximize the expected contribution
over the duration of the product transition.

The rest of the paper is organized as follows. Section 2 provides a brief review of previous related
work. Section 3 summarizes a mathematical model of new product introduction developed in previous
work which we use in our simulation model. Section 4 presents the simulation model, while the simulation
optimization procedure is presented in Section 5. Section 6 describes the numerical experiments and results,
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while Section 7 concludes the paper with a summary of our principal findings and some directions for
future work.

2 LITERATURE REVIEW

The work in this paper lies at the intersection of two research streams: that on learning in manufacturing
systems, and the body of queuing and simulation studies that examine the impact of different sources of
variability on the performance of manufacturing systems. Our focus in this work is on planning the releases
of work into an operating factory in the presence of learning effects as the difficulties encountered with a
newly introduced product are identified and remediated over time.

There is an extensive body of research on learning models in manufacturing systems, which mainly
deals with measuring and modeling the improvements in productivity obtained as experience of performing
a new task is gained. Anzanello and Fogliatto (2011) and Yelle (1979) review the classical learning curve
literature and present various models of learning developed across many industries. Liao (1979) and Reeves
and Sweigart (1981) assume that learning is driven by cumulative production, and leads to a decrease in
capacity consumption by the product.

Later research, such as Chand et al. (1996), Fine (1986; 1988) and Fine and Porteus (1989), distinguishes
between learning that takes place through repetition of the task and learning obtained from experimentation
that consumes production capacity, and thus competes with revenue generating production. Terwiesch and
Bohn (2001) distinguish learning through experimentation from learning by cumulative production. They
formulate a dynamic programming model to decide when to experiment and when to produce but do not
consider manufacturing lead times or the effects of congestion. Similar problems have been addressed by
Tirkel et al. (2016) and Gilenson et al. (2015), among others. Haller et al. (2003) present a methodology
to manage the conflict between the requirement of short cycle times and rapid increase in throughput while
bringing a new factory up to full production volume. They suggest the use of maximum limits on the WIP
in different segments of the line to maintain an acceptable tradeoff between WIP and cycle time, similar
to the SLIM approach of Leachman et al. (2002). The WIP limits are updated weekly over the duration
of the ramp, and simulation experiments show beneficial results. However, this work considers a single
product and does not address interactions between different products.

Several authors have used simulation models to study the behavior of wafer fabs during product
transitions or under changing product mix. Nemoto et al. (2000) examine the financial benefit of cycle time
reduction in ramping up a new process using stochastic simulation, also considering the impact of decreasing
device prices over time. Dümmler (2000) presents a series of interesting simulation studies examining the
behavior of a wafer fab in the presence of temporary surges in wafer starts, changing product mixes and
different release and dispatching policies. His findings are consistent with the simple mathematical model
we develop in this paper, and suggest that the impact of new product introductions on the variability of the
effective processing time in the fab is a major contributor to adverse performance. Klein and Kalir (2006)
describe a simulation model used to study the performance of an Intel wafer fab transitioning from logic
to flash memory products, and found that the simulation successfully identified potential bottlenecks that
were not identified by a static capacity analysis. The simulation model was used to suggest managerial
actions that avoided performance degradation during the product transition.

A number of authors have focused on yield learning, the improvement in the fraction of good devices
over time as the firm gains experience with the product. Bohn (1995), Gruber (1992; 1994), Macher and
Mowery (2003) and others examine empirical data on yield learning over time. Tirkel (2013) reviews
various yield learning models discussed in the literature. In contrast, our work in this paper focuses on the
improvement in factory productivity, as measured by output, over time in the presence of learning by fab
engineering personnel remediating production problems on the shop floor.

Kim and Uzsoy (2008;2013) propose an integrated production planning model using clearing functions
that incorporate learning effects by considering production and engineering lots separately. Production
lots are sold to generate revenue, whereas engineering lots help increase capacity in future periods. They
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perform a marginal cost analysis to provide insights on managing the system. However, they do not
explore the problem of ramp up and new product introduction. The idea of distinguishing production and
engineering lots is applied to a full fab model by Ziarnetzky et al. (2017), who give three production
planning formulations with fixed lead times that incorporate learning and different capacity allocation
scenarios for the engineering and production lots.

Manda et al. (2016) formulate a mathematical model using clearing functions that captures the impact
of a new product introduction on the effective processing time distribution of a production line on which an
existing product is already being produced, while incorporating the learning effects gained by experience in
producing the new product. The impact of the new product introduction on factory performance is captured
through the mean and variance of the effective processing time, the time required for a job to be processed
accounting for all detractors such as setups and machine failures. Specifically, the new product randomly
encounters production difficulties that require the production equipment to be taken offline for the problem
to be resolved. This creates a stochastic series of non-preemptive disruptions whose frequency decreases
over time as experience with the new product accumulates. In this paper, we embed this mathematical
model into a simulation model of a simplified production system, and use simulation optimization to obtain
product release schedules that maximize the total contribution (revenue minus variable costs) from both
products over the duration of the product transition.

3 MODELING AND ANALYSIS

We consider a simplified production system represented as a single resource which is currently producing
a mature product, Product 1, to meet a known, stable demand. We assume that the manufacturing process
for this product has been debugged to the point that it has achieved its steady-state effective processing
time distribution. At a specified point in time demand for this product begins to decrease and is replaced
by demand for a new product, Product 2, whose demand eventually replaces that of Product 1 entirely.

The mature product, Product 1, has a natural processing time with mean t0 and standard deviation σ0.
A process event requiring engineering activity occurs following a Poisson process on average after every
Q1 units are processed, with mean duration P time units and standard deviation of σp.

Product 2 has the same natural processing time and engineering activity duration distributions as
Product 1. However, this product requires engineering activities more frequently, on average, after every
Q20 units, again following a Poisson process, when it is first introduced. As process issues are identified and
resolved, the average number of units processed between disruptions increases from Q20 to Q2s following
the exponential learning model

Q2t = Q20 +(Q2s−Q20)(1− e−αX2(t)) (1)

where X2(t) denotes the cumulative production of Product 2 in the time interval [0,t) and α is a parameter
governing the rate of learning. The mean and standard deviation of the effective processing time, representing
the contributions of both products, is given by
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and Wit denotes the workload of product i at the start of period t.

In ongoing work (Manda and Uzsoy 2018) we have extended the approach of Manda et al. (2016) by
deriving a nonlinear clearing function describing the expected throughput of the system in each planning
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period as a function of the workload of each product available for processing in each period. This clearing
function can then be incorporated into a deterministic nonlinear optimization model that determines the
optimal release schedule of each product in each period. However, the presence of the learning model (4)
in the clearing function results in a non-convex feasible region for which even locally optimal solutions
are difficult to obtain in reasonable CPU times. In addition, the practical problem is subject to many
stochastic elements, including the demands for each period, the amount of learning in each period and line
yield. The use of simulation optimization allows us to progressively implement simulation models of more
complex multi-stage production systems for which deterministic optimization models are computationally
burdensome. The work in this paper constitutes a first step in this direction by using a simplified, aggregate
model of a wafer fab in implementing a product transition.

4 SIMULATION MODEL

In order to explore the performance of simulation optimization for the problem of interest, we consider a
simplified production system where the wafer fab is modeled as a single server queuing system with two
customer classes over a planning horizon consisting of J discrete periods. The discrete periods are of the
order of three months in duration, representing the common time scale used in the semiconductor industry
when considering production transitions. The structure of the queuing system is illustrated in Figure 1.
Releases of each product into the fab during each planning period are assumed to be uniformly distributed

Figure 1: Schematic of queuing system.

over the period with negligible variability, and the demand Dit for each product i in period t is assumed
to be known with certainty. The quantities Rit of each product i released in each planning period t are the
decision variables. We shall denote the mean arrival rate of product i in planning period t by λit =

Rit
T .

Each arriving unit (lot) of product i will encounter an engineering disruption with probability pit . The
disruption probability of the stable product, Product 1, remains constant at p1 =

1
Q1s

for the entire planning
horizon, while that of Product 2 decreases over the planning horizon following the learning model, with
disruption rate

p2t =
1

Q20 +
(
Q2s−Q20e−αX2(t)

) (5)

at time t. The duration of an engineering activity is same for both the products and has a mean and standard
deviation given by P and σp. With probability 1− p2t for Product 2 and probability 1− p1t for Product 1,
the service time distributions for these products follow the natural processing time distribution.

The simulation operates in continuous time given a vector of the decision variables Rit specifying the
number of lots of each product i released in period t. When a lot of product i arrives at the server at some
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time τ it generates a disruption with probability piτ . Otherwise the service time is generated from the
natural processing time distribution. At each departure epoch t of a lot of Product 2 from the system, the
cumulative production X2(t) and the disruption probability p2t of a disruption for the next arriving lot of
Product 2 are updated based on the learning model (5). At the end of each period, the total throughput of
each product obtained in the period and the number of each product remaining in the system are stored.
Using the demand for the period, the backorders and finished goods inventory of each product is computed
at the end of each period. Finally, the total contribution (revenue - variable production costs) is computed
over the entire time horizon of J periods. We obtain n independent replications of the simulation for each
release vector and calculate the expected total contribution (revenue minus variable costs) of the system
over the planning horizon, and report the 95% confidence interval for the total contribution.

5 SIMULATION OPTIMIZATION PROCEDURE

The simulation optimization procedure seeks a release vector Rit for each time period t that maximizes the
expected total contribution over the planning horizon of J periods. The problem can be stated as follows:

min E

[
∑
∀t,i

[πit(Dit +Sit−1−Sit)− (ritRit +witWit + iitIit + sitSit)]

]
s.t. (6)

Rit ≥ 0 (7)

Sit denotes the number of units of product i backlogged at the end period t, Wit the amount of product i
in work in progress (WIP) inventory at the end of period t, Iit the amount of product i in finished goods
inventory at the end of period t. rit ,wit , iit and sit are the associated cost coefficients, and πit the market
price of product i in period t.

We use a Genetic Algorithm (GA) for our simulation optimization engine in this exploratory work due
to its simplicity of implementation. This requires careful selection of the algorithm parameters, particularly
population size, mutation and crossover probabilities, elite and immigration fractions to ensure efficient
convergence to a global optimum in reasonable CPU times. Extensive initial experiments explored the
impact of these parameters on performance, leading to our final choices. However, despite these settings
we experienced extremely slow convergence when starting the GA from a completely random initial
population. To address this issue, we seeded the initial population with several release vectors obtained
from a relaxed version of the nonlinear programming model of Manda and Uzsoy (2018), which resulted
in significantly more rapid convergence to good solutions. The specific parameter settings and results of
the computational experiments are described in the following section. This approach of seeding a search
heuristic with different initial solutions is widely used in the literature, as discussed by Kalir and Sarin
(1999) for simulated annealing. The specific approach we use is to obtain optimal solutions to a relaxed
problem by perturbing the problem data, based on the problem space approaches of Storer et al. (1992).

We use Matlab to implement the Genetic Algorithm. By randomly perturbing the demand data, the
nonlinear programming model was used to create 6 good initial solutions that were used in initial population.
The total population size was 100 and the rest of the population is generated randomly. The elite count is
10. There are 90 individuals other than elite children and the cross over fraction is set to 0.6. This means
that of the 90 remaining individuals, on average (0.6)(90) = 54 are crossover children and the remaining
36 are mutation children. The mutation, and scale and shrink and migration options are left at their default
values. Four independent replications of the GA are run in each experiment.

6 NUMERICAL EXPERIMENTS

In this section, we examine the performance of the model and the structure of the near-optimal solutions
yielded by the simulation optimization procedure. We consider a product transition in which demand
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Table 1: Demand data.

Demand 1 2 3 4 5 6 7 8 9 10
Product 1 1250 1250 1250 937.5 625 312.5 0 0 0 0
Product 2 0 0 0 312.5 625 937.5 1250 1250 1250 1250

Table 2: Parameter values.

Parameters J T t0 c0 P cp α Q1s = Q2s Q20

Values 10 129600 80 0.25 800 0.5 0.0019/0.0030 50 10

Table 3: Cost Parameters.

Parameters π1 π2 s1 s2 w1 w2 i1 i2
Values 5 7.5 10 15 1 1 4 4

for a mature product is replaced by that for a new product over a 10 period planning horizon. As each
period represents a quarter, the total planning horizon is two and half years. Table 1 gives the demand for
the two products over the planning horizon. Only Product 1 has demand during the initial three periods.
From periods 4 to 6, the demand for Product 1 decreases to zero and that for Product 2 increases. From
period 7 onwards we only have demand for Product 2. The average utilization in period 1 for Product 1 is
approximately 91%. This utilization changes over the planning horizon as the new product is introduced,
altering the effective processing time distribution following the learning model.

We conduct two numerical experiments with two different learning rates α in the learning model (1).
The values of α and the other parameters used in these experiments are summarized in Tables 2 and 3. Note
that the learning model is completely deterministic except in its dependence on the cumulative production
of Product 2 which is, of course, a random variable. More complex, stochastic versions of this model, such
as that suggested by Filho and Uzsoy (2013), have been proposed and will be included in future work.

Each lot has a natural processing time t0 of 80 minutes with coefficient of variation c0 = 0.25. The
new product, Product 2, causes a disruption on average every Q20 = 10 lots which, with experience gained
by producing the product, increases to Q2s = 50 lots. The mature product, Product 1, causes a disruption
on average every Q1s = 50 lots. Each disruption lasts an average of P = 800 minutes with coefficient of
variation cp = 0.75.

The cost parameters are given in Table 3. Each lot of Product 1 generates a revenue of 5 while Product
2 generates a revenue of 7.5. The unit backorder cost is assumed to be 10 for Product 1 and 15 for Product
2. The finished goods inventory holding cost is assumed to be 4, in line with the rapid price decrease and
obsolescence seen in the the semiconductor industry. There is no cost for releasing a product into the fab,
but a WIP holding cost of 1 per unit per period is assessed for both products.

We compare the performance of the simulation optimization procedure to that of a simple procedure
suggested by practitioners in which Rit = Dit for both products. The demand data in our experiments
was chosen such that the total demand for both products remains constant across the planning horizon.
This essentially replaces releases of one product with those of the other, which is quite reasonable if the
workload imposed on the factory by each product is the same. However, due to the increased frequency
of disruptions associated with product 2, this is not the case in our experiments, with severe consequences
for factory performance.

6.1 Experiment 1: Slow Learning

In this experiment we use a alpha value of 0.0019, representing a relatively slow rate of learning. The results
summarized in Figures 3 and 4, are quite striking: the baseline scheme performs extremely poorly, generally
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yielding negative expected contribution. Early in its life cycle, the high rate of disruptions experiences by
Product 2 adversely affects the effective processing time distribution, raising utilization above 1 in some
periods. This results in long cycle times, high backlogs and lower revenues. Figure 2illustrates the evolution
of the mean effective processing time over the planning horizon in one particular simulation replication.
The mean effective processing time in period 7 is more than 25% higher than that at the start of period 1,
which represents the effective processing time of the stable Product 1. It is thus easy to see how simply
replacing releases of Product 1 with an equal number of releases of Product 2 will yield poor performance.

Figure 2: A Sample effective processing time plot for fast and slow Learning.

The reasons for the improvements obtained by the simulation optimization can be seen in Figure 4.
While there are some differences between the different GA replications, a common theme emerges. Early
in the planning horizon releases of Product 1 are increased to build inventory against future demand. Small
quantities of Product 2 are released to take advantage of the decreasing learning rate of the exponential
learning model, under which low production quantities early in the life cycle result in large improvements
in Q. Inventory of Product 2 is accumulated during periods 4 through 6. Due to the build up of inventory
of Product 1 in the first 3 periods, the system is now free and more units of Product 2 can be released,
increasing the rate of learning and building inventory of Product 2 during periods 4 through 6 which is
then used to meet demand in periods 7 through 9.

The important observations are the front-loading of releases of both products to build inventory of
Product 1 before operations are disrupted by the introduction of large quantities of Product 2, and the
introduction of small quantities of Product 2 early in the horizon to take advantage of the high learning
benefits without unduly disrupting production of Product 1. Clearly, careful planning of releases provides
a significant performance advantage in this situation.

Another striking feature of the results in Figure 3 is the width of the confidence intervals obtained.
Even in this very simplified production system, the performance of the system over the planning horizon
is subject to a high degree of uncertainty, which can only be increased by the presence of multiple work
centers with different processing and learning characteristics, shifting production bottlenecks and multiple
products whose demand ramps up and down at different times.
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Figure 3: Expected Total Contribution for Slow Learning showing 95% Confidence Intervals.

6.2 Experiment 2: Faster Learning

This experiment uses a value of α = 0.003 which increases the rate of learning obtained by producing
Product 2. The results, shown in Figures 2, 5 and 6, are qualitatively similar to those for the slow learning
experiment, although because there is less variability between the GA replications the figure is easier to
read. Once again releases, of Product 1 are raised early in the horizon, while small quantities of Product 2
are released to start the learning process without undue disruption of Product 1. The accumulated inventory
of Product 1 allows its releases to be reduced in periods 5 and 6, increasing releases of Product 2 and
allowing inventory to be built up as the effective processing time recovers towards the original distribution.
The baseline release schedule now performs substantially better than in the slow learning experiment, but
is still dominated by the simulation optimization procedure.

7 CONCLUSIONS AND FUTURE WORK

The work in this paper constitutes a very early stage in the development of a simulation optimization
environment to study the effective management of product transitions in semiconductor wafer fabrication.
While the production system is stylized to a single-stage queuing model, this paper is the first to our
knowledge to consider two interacting products during the product transition, and to propose a specific
mathematical model of their interactions. Most previous work, except the simulation studies of Dümmler
(2000) and Klein and Kalir (2006) has generally focused on a single product, ignoring the impact of product
introductions on other products with which they share capacity.

A wide range of future research directions remain open in what appears to be a complex but under-
researched area. The development of deterministic optimization models for planning releases in the presence
of learning and product interactions during ramp-up is an important direction for future work. Manda and
Uzsoy (2018) have developed such models, which are rendered non-convex by the presence of the nonlinear
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Figure 4: Product Releases for Slow Learning Experiment.

Figure 5: Expected Total Contribution for Fast Learning showing 95% Confidence Intervals.
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Figure 6: Product Releases for Fast Learning Experiment.

learning effects. However, initial computational results show that the solutions obtained from these models
exhibit a structure very similar to those reported for the simulation optimization approach in this paper.

Another important direction for future work is to develop a clear understanding of the different types of
learning mechanisms at work in an operating wafer fab. Some learning takes place by repetition, as in the
classical learning curve models, while some is the result of systematic process improvement activity based
on experiments that consume production capacity. This paper has focused on improvements in processing
efficiency resulting from learning, while ignoring improvements in yield which have been a major concern
of other authors. The development of a unified framework in which to view these issues, as well as
mathematical and computational models that can provide practitioners with useful insights, constitutes an
important direction for future work.
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