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ABSTRACT 

We discuss a bicriteria scheduling problem for parallel identical batch processing machines in semi-
conductor wafer fabrication facilities (wafer fabs). Only jobs that belong to the same family can be 
batched together. The performance measures of interest are the total weighted completion time and the 
electricity power cost. Unequal release dates of the jobs are taken into account. The jobs can have non-
identical sizes. We provide a Mixed Integer Linear Programming (MILP) formulation for the general 
setting. Moreover, we analyze the special case where all jobs have the same size, the maximum batch size 
is an integer multiple of this job size, and all jobs are available at time zero. We prove certain properties 
of Pareto-optimal schedules for this special case. These properties lead to a MILP formulation that is 
more tractable than the one for the general setting. We perform computational experiments with the ε-
constraint method for both formulations.  

1 INTRODUCTION 

Semiconductor manufacturing requires one of the most complex manufacturing processes existing today 
(Mönch et al. 2013). Integrated circuits are produced in semiconductor wafer fabrication facilities (wafer 
fabs) layer by layer on thin discs made from silicon, so-called wafers. A single wafer may contain up to 
several thousand integrated circuits. The moving entities in wafer fabs are lots of wafers. We refer to lots 
in this paper as jobs to align with the scheduling literature. The production process inside a wafer fab can 
be modeled as a job shop with a number of unusual facets (cf. Mönch et al. 2011). Among them the 
following ones are the most important: 

 
 A large number of different products with a product mix that changes over time 
 Process flows, that might contain up to 800 process steps for the most advanced products 
 Processing times ranging from several minutes to 24 hours per job 
 Re-entrant process flows, i.e. a job might visit the same machine up to 40 times 
 Machine groups, i.e., parallel machines 
 A mix of different process types, for instance, single wafer processes and batch processes, i.e., a 

group of jobs that are processed at the same time on the same machine forms a batch 
 Sequence-dependent setup times that can be considerably longer than the processing times 

 
Up to one-third of all operations in a wafer fab are performed on batch processing machines. The 

corresponding processing times on batch processing machines are very long. Since batch processing 
machines typically process several jobs at the same time, these machines tend to off-load multiple jobs on 
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machines that are able to process only single jobs. Long queues in front of these serial machines are the 
result. Hence, an appropriate scheduling of jobs on batch processing machine is crucial for the 
performance of the entire wafer fab.  

The diffusion furnaces in wafer fabs are a typical example of batch processing machines. Diffusion 
furnaces consume considerably more electricity than most of the other machines in a wafer fab. This is 
caused by the fact that the diffusion process is a high temperature process that disperses material on the 
wafer surface. Leading semiconductor manufacturers strive for energy saving and carbon reduction 
initiatives because 70% of greenhouse gas emission comes from electricity consumption (cf. TSMC 2016; 
Yu et al. 2017). Therefore, it is desirable to schedule jobs on diffusion furnaces in such a way that a 
compromise between production-related objectives and energy consumption-aware objectives is reached. 
However, a recent survey paper shows that sustainability issues are a widely underresearched topic in 
semiconductor supply chains (Mönch et al. 2018). In the present paper, we are therefore interested in 
studying a model problem where the total weighted completion time, an important indicator for cycle time 
performance, and the electricity power cost are considered. We present MILP formulations and show that 
under some assumptions the ε-constraint can be applied to solve small- and medium-sized problem 
instances.  

The paper is organized as follows. The problem is described and analyzed in the next section. This 
includes a discussion of related work. MILP formulations for the two situations are provided in Section 3. 
Moreover, the ε-constraint method is applied in this section too. The results of computational experiments 
are discussed and analyzed in Section 4. Conclusions and future research directions are presented in 
Section 5. 

2 PROBLEM SETTING AND ANALYSIS 

2.1 Problem Description and Structural Properties 

The scheduling problem is based on the following assumptions: 
 

1. There are F  job families. Due to the different chemical nature of the processes, only jobs of the same 
family can be batched together. 

2. All jobs that belong to family Ff1   have the same processing time   fjs
pp   where   fjs :  is 

a mapping that assigns to each job its family. 
3. There are Ff,n f 1  jobs in family f . In total, we have to schedule 




F

f
f

nn
1

jobs. Jobs are 
labeled by n,,j 1 . 

4. Each job has a weight jw  that is used to express the importance of the job.  
5. The size of job j  is js . It is measured in number of wafers. 
6. There are m  identical parallel machines. They are labeled by m,,k 1 . All the machines are 

available at time 0t . 
7. Each job j  has a ready time 0jr .  
8. All the machines have the same maximum batch size B .  
9. Once a batch processing machine is started, it cannot be interrupted, i.e., no preemption of the 

machine is allowed. 
10. We assume that a finite scheduling horizon is divided into periods of equal length, i.e. the periods are 

labeled by T,,1t  . The electricity power cost is modeled as a piecewise constant function over 
the set of periods. 
 

 We are interested in the performance measure total weighted completion time (TWC) which is 
defined as follows: 

           



n

1j
jjCwTWC : ,          (1) 
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where j
C  is the completion time of job j . Note that the TWC measure is a surrogate measure for the 

weighted cycle time, an important measure in most wafer fabs (Mönch et al. 2013). The second 
performance measure is the electricity power cost (EPC). When we denote the EPC value  in period t  by 
 te  then we can express the EPC value for schedule S  as follows: 

 

             ,zte:SEPC
T

1t

m

1k

k
t

 

              (2) 

 
where k

tz  is an indicator value that is 1 if a batch is processed in period t  on machine k  in S  and zero 
otherwise.  Using the three-field notation from scheduling theory, the scheduling problem at hand can be 
represented as follows:  

 
       EPC,TWCND|s,r,leincompatib,batchp|P jj ,          (3) 
 
where P  indicates identical parallel machines, p-batch, incompatible refers to batch processing machines 
with incompatible families, jr  to unequal ready times, and js  to nonidentical sizes of the jobs. The 
notation  EPC,TWCND  refers to the set of all Pareto-optimal solutions, i.e., a schedule S is called non-
dominated when no other feasible schedule 'S  exists with    STWC'STWC   and    SEPC'SEPC  , 
and at least one of these inequalities is strict. The entire set of all non-dominated solutions for a problem 
instance is called the Pareto frontier. 

Note that problem (3) is NP-hard since the problem TWC|leincompatib,batchp|P   is NP-hard due 
to Uzsoy (1995). Hence, we have to look for efficient heuristics if we want to tackle large-sized problem 
instances.  

2.2 Discussion of Related Work 

We discuss work related to energy-aware scheduling, especially with respect to scheduling models that 
include parallel batch processing machines and energy-aware objectives or constraints. Energy-aware 
scheduling currently receives a lot of attention, we refer to the recent survey papers Giret et al. (2015), 
Merkert et al. (2015), and Gahm et al. (2016). 

While there are many papers that deal with single-criterion scheduling problems for batch processing 
machines, the number of publications for batch scheduling in a multicriteria setting is much smaller. We 
are only aware of the papers by Reichelt and Mönch (2006) and Mason et al. (2007) where multicriteria 
batch scheduling problems related to semiconductor manufacturing are studied. There are a few papers 
that consider scheduling problems with electricity power cost-related constraints for single batch 
processing machines. Cheng et al. (2014) discuss a scheduling problem for a single batch processing 
machine where all jobs are ready at time zero. All jobs have the same processing time. Time-of-use 
(TOU) electricity pricing is assumed. The makespan maxC  and the total electricity costs are considered as 
criteria. The ε-constraint method is applied. A heuristic variant of the ε-constraint method for the same 
scheduling problem is proposed by Cheng et al. (2017). Wang	 et	 al.	 (2016)	 consider	 a	 similar	
scheduling	problem.	The	problem	setting	is	motivated	by	a	real‐world	glass	making	facility.	Again	
the	makespan	and	the	total	energy	cost	are	taken	into	account.	The	energy	consumption	depends	
on	 the	 furnace	 temperature	 choice.	 The	 ε-constraint method is applied for small-sized problem 
instances whereas constructive heuristics are applied to tackle large-sized instances. A case study using 
data from the real-world manufacturing environment is conducted. 

We are also aware of the following two papers that deal with parallel machine environments. Liu 
(2014) studies the problem  2CO,TWTND|r,batchp|P j  where p-batch refers to a situation where the 

processing time of a batch is determined by the longest processing time of the jobs that form the batch. 
Moreover, the total weighted tardiness (TWT) and the CO2 performance measure are considered. A non-
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dominated sorting genetic algorithm (NSGA)-II approach is proposed for this problem. The later 
performance measure is derived from the total energy costs by multiplying them with a constant factor. 
Jia et al. (2017) consider the problem  EPC,CND|r,batchp|P maxj . They solve this problem by a bi-

criteria ant colony optimization approach. Overall, we conclude that the problem discussed in this paper is 
not studied so far.  

3 EXACT APPROACHES 

3.1 MILP Formulation for the General Case 

Next, we present a MILP formulation for scheduling problem (3). We use a time-indexed formulation for 
the scheduling horizon T,,t 1 . The following indices and sets are used in the model: 

 
n,,j 1  : job indices  

b,,i 1   : batch indices  

m,,k 1 : machine indices  

T,,t 1  : period indices.  
 

The following parameters are included in the model: 
 

jw   : weight of job j  

j
r     : ready time of job j  

js    : size of job j  (in wafers) 

B     : maximum batch size B (in wafers) 
 js : family of job j  

 if : family of batch i  

 jsp : processing time of job j  

 ifp : processing time of batch i  

 te  : electricity power cost in period t  

M   : big number. 
 

The following decision variables are part of the model: 
 





otherwise0

batch   toassigned is  job if1

,

ij,
xij

 
 





otherwise0

 machineon   periodin  started is batch  if1

,

kti,
yitk  

 

j
C : completion time of job j   

iC : completion time of batch i . 
 

 

The model can be formulated as follows: 
 

 
 







   

  





b

i

T

t

m

k
itk

pt

t
j

n

j
j ye,Cw

if

1 1 1

1

1

min


  
(4) 
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subject to 





b

i
ijx

1

1  
n,,j 1  (5) 





n

i
ijj Bxs

1

 
n,,j 1 , b,,i 1  (6) 

     0jsifxij   n,,1j  , b,,1i   (7) 


 


T

t

m

k
itkij yx

1 1

 n,,j 1 , b,,i 1  (8) 

 
iji xMTC  1  n,,j 1 , b,,i 1  (9) 

 
 
 


b

i

t

pt
ki

if

y
1 1

1


  
m,,k 1 , T,,t 1  (10) 

  iifijj
Cpxr   n,,j 1 , b,,i 1  (11) 

 if

m

k

T

t
itki pytC  

 1 1

 
b,,i 1  (12) 

 
ijji xMCC  1  n,,j 1 , b,,i 1  (13) 

 
ijjj xMCC  1  n,,j 1 , b,,i 1  (14) 

,C,C ji 0  10,y,x itkij   n,,j 1 , b,,i 1 T,,t 1 , m,,k 1 . (15) 

 
 We are interested in determining all Pareto-optimal solutions with respect to the TWC and EPC 
measures. This is represented by (4). The constraints (5) ensure that each job is assigned to exactly one 
batch. The maximum batch size is respected by constraints (6). Constraint set (7) models the fact that only 
jobs belonging to the same family can be used to form a batch. The family of a batch is determined by its 
jobs. If at least one job is assigned to a batch that this batch has to be started in some period on some 
machine. This is modeled by the constraints (8). The constraints (9) ensure that the completion time of a 
batch is not larger than the end of the scheduling horizon. It is modeled by constraints (10) that each batch 
starts at most once before the end of the scheduling horizon. The constraints (11) enforce that the ready 
time of the jobs are respected, i.e., a batch can only start if all jobs that belong to the batch are ready. The 
completion of a batch is calculated by equation (12). The constraint sets (13) and (14) ensure that the 
completion time of a batch and the completion time of the jobs that belong to this batch are the same. The 
domains of the decision variables are respected by constraints (15). 

3.2 MILP Formulation for the Special Case 

We analyze the special case where all jobs are ready at time 0t , i.e. 0jr . Moreover, we assume that 
all jobs have the same size and that B  is an integer multiple of this job size. Note that this problem is still 
NP-hard. We prove a first property that generalizes an insight from Uzsoy (1995).  
 
 Property 1: For each point in the criteria space there is a corresponding Pareto-optimal schedule 
where all batches except maybe the last scheduled batch of each family are fully loaded, i.e., the batch 
size is equal to the maximum batch size.  
 Proof: We assume that there is a Pareto-optimal schedule S  that contains a batch   of family f that 
is not full and this batch does not have the largest start time among the batches of family f . We 
construct a new schedule 'S  from S  by moving a job from a batch of family f  with the largest start 
time to batch  . Let '  be the batch of family f  with the largest start time. Since the completion time 
of   in 'S  is smaller than in S  we obtain    STWC'STWC  . At the same time, we have 

   SEPC'SEPC   since the electricity power cost only depends on the start time of a batch which is 
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unchanged for   and all batches except maybe for batch ' . If '  contains in S  only a single job then 
'  is empty in 'S and its EPC value is zero. Overall, we have    STWC'STWC   and 

   SEPC'SEPC   which contradicts with the Pareto-optimality of schedule S .           ■ 
 

 It follows from Property 1 that a Pareto-optimal schedule exists for each point of the criterion space 
where the number of batches in a family with l  jobs is  Bl . We show a second property where the 
structure of batches in Pareto-optimal schedules is considered.  

 
 Property 2: For each point of the criteria space there is a Pareto-optimal schedule where for each pair 
of batches 1  and 

2
  of the same family with completion times 21 CC   the weight of each job 

belonging to 1  is not smaller than any weight of a job of 
2 .  

 Proof: We assume that there is a Pareto-optimal schedule S  where batch 1  contains a job j  with a 
weight ij ww   where job i  belongs to batch 2 . We obtain a new schedule 'S  by exchanging job j  and 
job i . We then have    STWC'STWC   and    SEPC'SEPC   which contradicts to the Pareto-
optimality of schedule S .                        ■ 

 
 Based on Property 2, we sort the jobs in each family with respect to non-increasing values of the job 
weights. These job sequences are used to form the appropriate number of batches according to Property 1 
for each family. The total number of batches is denoted by b . The following MILP formulation is 
possible to solve instances of this special case of Problem (3). Due to space limitations, we only introduce 
additional notation compared to the indices, parameters, and decision variables of the MILP formulation 
(4)-(15): 
 

iw : sum of the weights of the jobs that belong to batch i .  

 
The model can be formulated as follows: 
 

    
 









  

  



  

b

i

T

t

m

k
itk

pt

t

b

i

T

t

m

k
itkifi ye,yptw

if

1 1 1

1

1 1 1

min


  
(16) 

subject to   
 

 


 


ifpT

t

m

k
itky

1

1 1

1 b,,i 1  
(17) 

  
 
 




b

i

t

pt
ki

if

y
1 1

1


  m,,k 1 , T,,t 1  
(18) 

 10,yitk   b,,i 1 T,,t 1 , m,,k 1 . (19) 

 
 The constraints (17) ensure that each batch is used exactly once, whereas the constraints (18) enforce 
that at most one batch can start in each period on each machine. Here, the abbreviation  0ma: ,xxx   is 
used. We see that the main difference between the formulations (4)-(15) and (16)-(19) is the fact that the 
batches are already formed in the latter formulation. This results in a compact formulation. 

3.3  Constraint Method 

The  -constraint method is an approach that allows one to obtain a Pareto frontier (cf. Ehrgott 2010). It 
is based on the idea that instead of combining the different objectives into an integrated objective 
function, a single objective is optimized in a certain step while the remaining objectives are transformed 
into constraints. An  -constraint problem with K  objectives Kkfk ,...,1,   to be minimized is given 
as: 
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           kfmin              (20) 
subject to 
          kj,K,...,j,f

jj
 1 ,         (21) 

 
where KIR  is given. Next, the formulation for the  -constraint method applied to the MILP (4)-(15) 
is shown.  

 

min  
 















  

  





b

i

T

t

m

k
itk

pt

t
EPCj

n

j
jTWC

yeECwE
if

1 1 1

1

1 

  
 (22) 

subject to   
(5)-(15)   

 



n

j
TWCjjTWC CwE

1

1     (23) 

   
 

.yeE TWC

b

i

T

t

m

k
itk

pt

t
EPC

if




  
  



1 1 1

1

1   (24) 

 
 The quantities  10,E,E EPCTWC  , ,EE EPCTWC 1 and IR, EPCTWC   are parameters of the model. For 

1TWCE  and 0EPCE  the model pursues a TWC minimization whereas the EPC value is restricted to 

EPC . In the case of 0TWCE  and 1EPCE , the model aims for a EPC minimization where the TWC 

value of the schedule is restricted to TWC . 
The model (22)-(24) and (5)-(15) is iteratively solved to obtain the set of Pareto optimal schedules. 

Here, we assume that the processing times, the weights and the electricity power cost values are integer 
values. The first iteration is started with ,,E,E TWCEPCTWC 001    and MEPC   where M is set using 

the piecewise constant electricity power cost function. The solution is a schedule S  with objective 
function value  STWC  where the EPC value is restricted to M . Afterwards, the MILP is solved a 

second time with  STWT,E,E TWCEPCTWC  10  leading to a Pareto optimal schedule.  

The next iteration is started by 010  ECPECPlTWC ,E,E  , and   1 STWCTWC . Note that the TWC 
and EPC values are always integer values due to our choice of the parameters of the instances. Therefore, 
choosing   1 STWCTWC  is reasonable. This procedure is repeated until the MILP becomes infeasible 

for the parameters 
EPC

  and 
TWC
 . We obtain the set of all Pareto-optimal schedules for instances with 

parameter values choosing as described before. The  -constraint method can be applied to the special-
case MILP (16)-(19) in the same way. However, due to space limitation we do not present the details. 

4 COMPUTATIONAL EXPERIMENTS 

4.1 Design of Experiments 

We are interested in assessing the computing time requirements for the  -constraint method and how the 
electricity power cost setting influences the number of Pareto-optimal solutions, i.e., how many points are 
included in the criteria space. Moreover, we expect that the number of jobs, the number of families, the 
maximum batch size, and the number of machines also influence the results. Therefore, we use the design 
of experiments shown in Table 1 similar to (Mönch et al. 2005) for the special case. Here,  b,aDU  

refers to a discrete uniform distribution over the integer set  b,,a  .  
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Table 1: Design of experiments. 

Factor Level Count 
Number of families F  3, 5 2 

Number of jobs per family F90  1 
Maximum batch size B   4, 8 2 
Number of machines m  2, 3 2 

Family processing time fp  

2 with probability 0.2 
4 with probability 0.2 

10 with probability 0.3 
16 with probability 0.2 
20 with probability 0.1 

1 

Job weight jw    51 ,,DU~w j   1 

Electricity power cost  te  winter rate, summer rate 2 
Number of independent replications 5 per factor combination 5 
Total number of problem instances  80 

 
The winter and summer electricity power cost settings are chosen as follows: 

 

         ,
,

Tt,teW





 

otherwise8
2

1
110:    























otherwise9,
6

5

2

1
8

2

1

3

1
9

3

1
110

:

TtT,

.TtT,

Tt,

teS     (25) 

 
Note that the design in Table 1 ensures the applicability of the  -constraint method as sketched in 

Subsection 3.3. For the general problem (3), we generate small-sized instances with ten jobs that belong 
to two families and two machines. We choose  43,B . Moreover, ready times of the jobs are generated 

according to 


















n

1j
jj p

B
,0DU~r


 where  50250 .,.  is a parameter that controls the range of the 

ready times. The remaining factor levels are chosen as in Table 1. This leads to 20 small-sized problem 
instances for the general case.  

The scheduling horizon T  is set based on a makespan estimate that is multiplied with a safety factor 
larger than one to ensure feasibility. We are interested in determining the number of solutions that belong 
to the Pareto frontier of a problem instance. We also report the total computing time required to obtain the 
Pareto frontier and the average time necessary for computing a single point of the frontier to assess the 
effectiveness of the presented optimization models. The MILP approaches are coded using the C++ 
programming language and the IBM ILOG CPLEX 12.1 libraries. All the computational experiments are 
conducted on a computer with an Intel Core i7-2600 CPU 3.40 GHz and 16 GB RAM. 

4.2 Results 

A first experiment is conducted to investigate the sizes of the Pareto frontiers for instances of the special 
case that are generated according to Table 1. Instead of presenting the results individually for each 
problem instance, we show the average over the five independent replications for each factor 
combination. The average computing time for obtaining the Pareto frontier and the average time required 
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for computing a single solution measured in seconds is reported. The latter values are put into brackets. 
The corresponding results are shown in Table 2.  

Table 2: Number of solutions and computing times for problem instances of the special case. 

 # Solutions Computing time (in sec) 
m  F  B  winter rate summer rate winter rate summer rate 

4 37 39 77 (1.9) 126 (3.0) 
3 

8 37 50 15 (0.3) 25 (0.4) 
4 46 54 113 (2.1) 212 (3.2) 

2 
5 

8 57 81 37 (0.6) 78 (0.9) 
4 67 91 151 (2.0) 298 (3.1) 

3 
8 64 93 40 (0.5) 108 (0.9) 
4 64 69 234 (3.0) 412 (5.6) 

3 
5 

8 71 103 37 (0.5) 90 (0.8) 
Overall 55 72 88 (1.4) 169 (2.3) 

 

 From the results of the runs described above, we choose two problem instances with 33  F,m , and 
8B  that only differentiate by the fact that the first is based on the winter rate and the second on the 

summer rate. The obtained Pareto frontiers for these instances are visualized in Figure 1. The x and the y 
axis refer to the TWC and EPC values, respectively. Each point drawn in the criteria space represents a 
single Pareto-optimal solution.  

 
 
 
 
 

 

 

 

 

 

 

Figure 1: Pareto frontiers for two problem instances of the special case with different rates. 

In addition, we conduct computational experiments for the 20 small-sized problem instances of 
problem (3). Again, we report the average performance measure values for the five independent 
replications of each factor combination. Table 3 shows the results grouped by the batch size and the range 
of the ready times represented by the   value.  

4.3 Analysis and Discussion of the Results 

Table 2 shows a range of 37 to 103 Pareto-optimal solutions for problem instances representing the 
special case. More Pareto-optimal solutions exist on average for problem instances with the three-level 
summer rate. The number of parallel machines has a large impact. When all the remaining factor levels 
are the same, the average number of solutions is between 25% and 130% higher if there are three 
machines available instead of two. The number of incompatible families seems to be more crucial if only 
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two machines are available. More Pareto-optimal solutions exist in this situation for problem instances 
with five families. A larger batch size leads to a higher number of solutions under almost all experimental 
conditions. 

Table 3: Number of solutions and computing times for small-sized problem instances. 

  # Solutions Computing time (in sec) 
B    winter rate summer rate winter rate summer rate 

0.25 31 43 207 (6.7) 310 (7.2) 
3 

0.50 33 44 337 (10.2) 427 (9.7) 
0.25 30 47 177 (5.9) 304 (6.5) 

4 
0.50 36 55 264 (7.3) 402 (7.3) 

Overall 33 47 246 (7.5) 361 (7.7) 
 

The total computing time increases to a large extent linearly with the number of solutions. However, 
we observe a distinctively larger average computing time for determining a single solution in the case of a 
batch size of 4B . From Property 1 in Subsection 3.2 it is clear that in a Pareto-optimal schedule all 
batches except maybe one per family have the maximum batch size. A smaller batch size thus leads to a 
higher number of batches for a given number of jobs. This results in more decision variables and 
constraints in the corresponding MILP model and therefore in the observed longer computing times per 
solution. Note that we know from some preliminary experimentation with a larger number of jobs that the 
MILPs cannot be solved to optimality within a reasonable amount of computing time when the number of 
jobs is larger than 90. This is expected because of the NP-hardness.  

Results for problem instances of the general case presented in Table 3 show again a larger number of 
solutions if the summer rate is applied. Moreover, there are more Pareto-optimal solutions for problem 
instances with a larger batch size under almost all experimental conditions. Also, the number of solutions 
increases if the   value increases. Computing times ranging from 177 and 427 seconds are observed to 
obtain the Pareto front of a single instance. A larger amount of time is required for problem instances with 
the electricity power cost function with more levels. This behavior is caused by the larger number of 
solutions in this situation since the average computing per single solution is very similar. Note that we 
know again from some preliminary experiments that more than ten jobs or more than two machines lead 
to instances for which CPLEX is not able to prove that the obtained solutions are optimal within a 
reasonable amount of computing time. This is again expected due to the NP-hardness. 

Solving problem instances with a smaller maximum batch size and a larger range of the ready times 
tend to be more time-consuming compared to the remaining instances. The computing time for these 
problem instances is larger than the average time over all instances indicating that solving the related 
MILPs is more difficult. We can see from the Figure 1 that, on the one hand, high-quality solutions in 
terms of a low TWC value can be achieved at a lower EPC level if the summer rate is applied. On the 
other hand, solutions with very low values of EPC result in higher TWC values in this situation.  

5 CONCLUSIONS AND FUTURE RESEARCH 

In this paper, we discussed a scheduling model for parallel batch processing machines. The jobs belong to 
incompatible families. Only jobs of the same family can be used to form a batch. The performance 
measures TWC and EPC were considered. The electricity power costs are piecewise constant functions of 
the period number. The jobs can have unequal ready times and nonidentical sizes. We proposed a MILP 
formulation for this scheduling problem. Moreover, we analyzed the special case where all jobs are ready 
at time 0t , all jobs have the same size, and the maximum batch size is an integer multiple of this size. 
Two structural properties of Pareto-optimal schedules are shown in this situation. A second MILP 
formulation is provided that exploits these structural properties of the special case. The ε-constraint 
method was applied to both formulations. Designed computational experiments were performed to assess 
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the behavior of the two MILP models with respect to computing time. Moreover, we looked at the 
number of Pareto-optimal solutions when the electricity power costs change. We found that the electricity 
power costs, the number of machines, the maximum batch size, and ready time range have an impact on 
the hardness of the problem instances.  

There are several directions for future research. First of all, we are interested in designing 
metaheuristic approaches based on the NSGA-II approach to tackle large-sized problem instances for the 
general problem. As a second research avenue, we are interested in enriching the model problem by 
considering standby times, family-dependent electricity consumptions, and unrelated parallel machines. 
We believe also that it is interesting to use the TWT measure instead of the TWC measure. Since the 
TWT value and the TWC value are the same for instances where all jobs have zero due dates, the 
proposed ε-constraint method for medium-sized instances of the special case can be used to assess the 
quality of the NSGA-II approach for the more general problem with the TWT measure.  
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