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ABSTRACT

In the semiconductor manufacturing literature, production planning models mainly aim at minimizing
total production, inventory and backlog costs. Solving these models may lead to a poor utilization of the
production capacity when there are not enough demands. In this paper, after presenting a first generic linear
programming model with fixed lead times when total costs are minimized, a model where productivity is
maximized is introduced. Then, a model is proposed that includes the maximization of profit and considers
the net present value of the financial objective function. These models are then compared using a data set
from the literature. The numerical results show that, although the model with productivity maximization is
performing as expected, the model with profit maximization is more relevant since it also helps to increase
productivity. The impact of the actualization rate is analyzed, and also the limitations of the production of
some products.

1 INTRODUCTION

Semiconductor manufacturing probably includes the most complex production systems. This complexity
is mainly due to the size of facilities, with hundreds of machines and complex production characteristics,
such as reentrant flows that link hundreds of operations to be performed on products, resulting in long cycle
times of several weeks or months. Semiconductor manufacturing is decomposed into two main phases:
“Front-end” and “Back-end”. In this paper, we address production planning in the first phase, also called
wafer manufacturing, in which raw wafers are transformed into finished wafers with integrated circuits,
ready to be diced and packaged. Front-end facilities can produce many products, each one requiring
hundreds of operations to be processed on different sets of heterogeneous parallel machines. In addition,
during its long production route, each product is processed many times on the same set of machines (more
than 80 times for advanced processes).

Planning the production of wafers is not an easy task. An important issue is to model the planned
activity of each resource of the production facility. When the demand is high or/and when the production is
characterized by a high mix of products and a low volume, this modeling becomes particularly important.
The literature dealing with production planning in semiconductor manufacturing is relatively recent. The
first proposed models suggest to model this congestion by integrating a ”fixed Lead Time” (LT ) per product.
This means that a product that enters the system at time period t exits the system at time period t +LT .
In these models, resource consumption is modeled by a linear function. This lead time is fixed a priori
(calculated based on historical data) and does not depend on the workload. In real situations, the lead
time depends on the workload and the production plan. In order to consider the workload, (Hung and
Leachman 1996) propose an iterative approach based on an optimization (linear programming) model to
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determine a production plan with fixed lead times and a (discrete event) simulation model that updates the
lead times by evaluating the production plan. These two steps are repeated until the values of the lead times
are converging. More recently, several studies (Albey et al. 2017; Kacar et al. 2013; Asmundsson et al.
2006) address this issue using mathematical formulations that model congestion with “Clearing Functions”.
Clearing Functions are nonlinear functions that model the congestion by quantifying cycle times based on
the workload. The notion of “Clearing Functions” is not new, and was introduced in the 80s by (Graves
1986). This recent keen interest is mainly due to the development of more realistic clearing functions.
Recently, Albey et al. 2014 propose a clearing function that considers product mix.

These research works emphasize congestion modeling. The studied objective functions are mainly
based on a combination of inventory and backlogging costs. However, one of the most important objectives
in semiconductor manufacturing is also to maintain a high productivity level. This activity is measured by
the number of operations performed during the planning time horizon. This performance indicator is also
called the number of “moves” in the industrial jargon. In this paper, we propose new objective functions
and integrate them in a classical model with fixed lead times in order to enhance productivity and maximize
the profit. An actualization rate is used to model the net present value of the profit. In Section 2, linear
programming models for production planning are presented, first a generic model where the total cost is
minimized, then a model where the number of “moves” is maximized and finally a model where the total
profit is maximized. Numerical experiments are conducted in Section 3. The models are compared and
analyzed using a data set from the literature with different demand profiles and actualization rates. The
impact of limiting the production of some products is also studied. Section 4 concludes the paper and
provides some perspectives.

2 MATHEMATICAL MODELS

In this section, we generalize the classical model that considers fixed lead times (see Kacar et al. 2013).
First, contrary to most studies, two timescales are considered. The first timescale (in weeks) is used to
model demands, while the second timescale (in days) is used to model production processes. In Section 2.1,
a generic model is introduced that is based on the classical objective function (an aggregation of inventory
costs and backlogging costs). Then, in Section 2.2, a first objective function is proposed that maximizes
the total number of performed operations, i.e. the “moves”. Finally, in Section 2.3, a second objective
function is proposed that considers the Net Present Value (NPV) of the profit.

2.1 Generic model with two timescales

In this section, a generic model is introduced for planning the production of of wafers, namely the production
of P products over a discrete time horizon that has two timescales. The time horizon is decomposed into
T days and S weeks. Demands Dps are expressed per product p and per week s. Each product p needs
a sequence of operations Lp to be processed on a set of K workshops. Each workshop k can process a
finite set of operations L k and has a finite capacity Ck.

The plan is determined by optimizing internal production flows. The goal is to decide quantities Xplt
to be released per product p, per operation l and per period t (one day). The set of operations of product
p and their resource consumption αpl provide the timing of operations. In order to trace production flows,
a variable Wplt that represents the work in progress per product p, per operation l and per period t (a day)
is introduced. An unitary work in progress cost wpl is associated to each product p and each operation l.

The goal is to to satisfy demands while minimizing inventory, backlogging and work in progress costs.
We introduce an unitary inventory cost hps and an unitary backlogging cost bps for each product p and
each period s (a week). Let us also introduce two decision variables Ips and Bps, that respectively model
the inventory and the backlog of product p at time period s (a week).

To consider congestion in our model, a fixed lead time LTpl per product p and per operation l is used.
This way of modeling congestion is known to be less efficient than iterative approaches or clearing function
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based models (Asmundsson et al. 2006), but is both practical and relevant (Kacar et al. 2016). Its main
advantage is that it is easier to analyze and is a special case of more sophisticated models. In this model,
we assume that transportation times and costs between two workshops are negligible or constant. Products
that complete a given operation are placed in a waiting queue for the next operation (the waiting queue is
supposed to be uncapacitated). We also assume that the processing time of each operation is lower than
one day (this assumption is justified since the longest operation usually needs less than half a day). All
lead time are expressed in days.

Due to the large industrial data sets we want to address, only continuous variables are considered in
our models. All sets, parameters and decisions variables are summarized below.

2.1.1 Notations

Sets

• Lp: Sorted list of operations of product p;
• L k

p : Set of operations for product p processed in workcenter k.

Parameters

• P: Number of products;
• K: Number of workshops;
• T : Number of periods in the planning horizon for production;
• S: Number of periods in the planning horizon for demands;
• tss: First period of {1, . . . ,T} included in s ∈ {1, . . . ,S};
• t fs: Last period of {1, . . . ,T} included in s ∈ {1, . . . ,S};
• αpl: Unitary resource consumption of operation l of product p;
• Ck: Daily available resource capacity of workcenter k;
• LTpl: Lead time of operation l ∈L(p) for product p;
• Dps: Demand of product p at the end of period s;
• hps: Unitary inventory cost of product p at the end of period s;
• bps: Unitary backlogging cost of product p at the end of period s;
• wpl: Unitary work in progress cost;
• Bp0: Initial backlog of product p;
• Ip0: Initial inventory of product p;
• Wpl0: Initial work in progress of product p at operation l.

Decision variables

• Xplt : Quantity of product p to be released in period t to operation l ∈Lp;
• X in

pt = Xp1t : quantity released for product p at period t (also known as fab-in plan);
• Yplt : Quantity of product p completing its operation l ∈Lp at period t;
• Y out

pt = Yp|Lp|t : output quantity of product p at period t;
• Wplt : Work in progress of product p, at operation l ∈Lp at the end of period t;
• Ips: Inventory level of product p at the end of period s;
• Bps: Backlogging level of product p at the end of period s.
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2.1.2 Mathematical formulation

min
P

∑
p=1

∑
l∈Lp

T

∑
t=1

wplWplt +
P

∑
p=1

S

∑
s=1

(hpsIps +bpsBps) (1)

s.t. Yplt = Xp(l+1)(t) ∀p ∈ {1, . . . ,P} ∀l ∈Lp ∀t ∈ {1, . . . ,T} (2)

Wplt =Wpl(t−1)+Xplt −Yplt ∀p ∈ {1, . . . ,P} ∀l ∈Lp ∀t ∈ {1, . . . ,T} (3)

Xplt = Ypl(t+LTpl) ∀p ∈ {1, . . . ,P} ∀l ∈Lp ∀t ∈ {1, ...,T −LTpl} (4)

Dps +Bp(s−1) =
t fs

∑
τ=tss

Y out
pτ + Ip(s−1)− Ips +Bps ∀p ∈ {1, . . . ,P} ∀s ∈ {1, . . . ,S} (5)

P

∑
p=1

∑
l∈L k

p

αplYplt ≤Ck ∀k ∈ {1, . . . ,K} ∀t ∈ {1, . . . ,T} (6)

Xplt ,Yplt ,Wplt , Ips,Bps ≥ 0 ∀p ∈ {1, . . . ,P} ∀l ∈Lp ∀t ∈ {1, . . . ,T} ∀s ∈ {1, . . . ,S}
(7)

The objective function (1) minimizes the total inventory, backlogging and work in progress cost. In
the remainder of this paper and in the numerical experiments, for simplicity, we assume that the unitary
work in progress cost wpl is equal to zero. Constraints (2)-(5) model flow conservation. Constraints (2)
ensure the link between the output of one operation Xplt and the input of the next operation Yplt . Constraints
(3) balance the work in progress over the time horizon for each operation. Constraints (4) guarantee the
fixed lead time for each operation of each product. Constraints (5) are flow conservation constraints for
final products, ensuring the satisfaction of demands through the inventory and the production at the current
period or their backlogging to subsequent periods. The capacity constraints in each workshop are modeled
through Constraints (6). Constraints (7) ensure the non-negative of decision variables.

2.2 Maximizing number of “Moves”

In the semiconductor industry, an important indicator for productivity is the number of performed operations,
also called “moves”. It corresponds to the number of completed operations multiplied by the number of
products processed, per tool, workshop and plant. For example, with 8 machines and if each machine
processes 100 products, then the number of “moves” is set to 8×100 = 800. We propose to include this
indicator in the previously defined objective function (1) with a scaling factor E. The new objective function
is given by the equation below that maximizes the number of moves while minimizing the objective function
(1).

max E
P

∑
p=1

∑
l∈Lp

T

∑
t=1

Yplt −
P

∑
p=1

S

∑
s=1

(hpsIps +bpsBps) (8)

2.3 Maximizing profit

Mixing the minimization of the costs and the maximization of the number of “moves” is not really a natural
way to improve productivity. In the following, let us introduce a profit per finished product Gp, leading to
a more homogeneous objective function. In addition, using this new objective function, it is possible to
model the fact that future profits and their associated decisions are less important than the current profits.
This is done by introducing the notion of Net Present Value (NPV), which is often used in Economics to
calculate the return on investment taking into account the time value of money (one monetary unit today is
larger than the same monetary unit tomorrow). All future financial flows are included in a single function
with an actualization rate βs ∈ (0;1], in order to emphasize the importance of good financial results in first
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periods. In our model, this actualization rate is applied each week, which means that the present value of
the profit in week s reduces as s increases. Equation (9) below models the new objective function.

max
P

∑
p=1

S

∑
s=1

β
(s−1)(−hpsIps−bpsBps +

t fs

∑
t=tss

GpY out
pt ) (9)

3 NUMERICAL EXPERIMENTS

In Section 3.1, the data set is described. Then, in Section 3.2, we analyze the impact of the scaling parameter
E on the objective function (8). In Section 3.3, the impact of the net present value on the objective function
(9) is analyzed. Finally, in Section 3.4, since maximizing the profit induces a surplus of production, we
propose to limit the excess of production and analyze the impact of this limitation.

3.1 Data set

Our experiments are conducted on a small data set extracted from (Kacar et al. 2012). It contains three
different products with routes with 14 to 23 operations and 11 workstations. The first product has the
longest route. The second product shares a large part of its route with the first product. Finally, the last
product has a short route and some of the workstations are not shared with the two other products.

We fixed lead times based on the instance characteristics presented in (Kacar et al. 2012):

• Bottleneck machines are given a lead time of 5 days,
• Unreliable machines are given a lead time of 3 days,
• Batching machines are given a lead time of 1 day,
• Remaining machines are given a lead time of 0 day.

Let us recall that, in our experiments, the work in progress costs are fixed to zero. The horizon is
divided into 61 days, i.e. 9 weeks. Three profiles of static (not time-dependent) demands are considered.

• Scenario 1. High infeasible demands: {45;15;15}.
• Scenario 2. Medium feasible demands: {33;11;11}.
• Scenario 3. Low feasible demands: {15;5;5}.

As in (Kacar et al. 2012), the backlog cost is fixed to 50, the inventory cost to 15 and the profit per
unit of product to 60.

3.2 Analysis of Productivity Maximization

Let us first analyze the impact of the scaling factor E on the total cost, the number of moves and the
total output (denoted respectively “Total Cost”, “#Moves” and “Total Output” in the following tables)
when using the objective function (8). The scaling factor E is fixed to 0, 1, 5 and 10. Tables 1, 2 and
3 summarize the results for the three profiles of demand (resp. high demand, medium demand and low
demand). Column “E = 0” corresponds to the generic model (1)-(7) and provides reference values. The
deviation in percentage from these reference values is given between brackets.

Table 1: Impacts of scaling factor (E) on “Moves” for high demands.

E = 0 E = 1 E = 5 E = 10
Total Outputs 565 565 628 (+11.1%) 691 (+22.2%)
Total Costs 22,515 22,534 (+0.1%) 25,715 (+14.2%) 31,457 (+39.7%)
#Moves 9,750 10,473 (+7.4%) 11,464 (+17.6%) 12,341 (+26.6%)
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Table 2: Impacts of scaling factor (E) on “Moves” for medium demands.

E = 0 E = 1 E = 5 E = 10
Total Output 495 495 576 (+16.4%) 649 (+31.2%)
Total Costs 0 0 4,020 10,849
#Moves 8,940 10,003 (+11.9%) 11,251 (+25.9%) 12,295 (+37.5%)

Table 3: Impacts of scaling factor (E) on “Moves” for low demands.

E = 0 E = 1 E = 5 E = 10
Total Output 225 227 (+0.7 %) 446 (+98.4%) 564 (+150.6%)
Total Costs 0 636 8,595 21,713
#Moves 4,138 7,525 (+81.9%) 9,927 (+139.9%) 11,900 (+187.6%)

Tables 1, 2 and 3 show that productivity can significantly be improved. Even with a small scaling
factor E, the number of “moves” increases from 7% for high demands up to 82% for low demands. With
larger values of E, larger improvements are obtained on the number of moves. This is done at the expense
of the total cost. There is a trade-off to make between productivity and inventory/backlog costs. Note also
from Tables 1, 2 and 3 that the total output increases when productivity is improved. Through these results
we were not able to find a correlation factor between E and #Moves.

However, this first objective function is a naive way to improve productivity. This is why we explore
in the following the impact of considering the objective function that maximizes profit.

3.3 Impact of Using a Financial Objective

The profit maximization objective function helps us to move from a pure cost-driven model to a profit-driven
model. As shown in the following, the NPV model also improves productivity.

The NPV model with different actualization rates β is compared to the results of the Generic model
(Column “Generic”), where β is fixed to 1 (i.e. no depreciation), 0.95 and 0.8. The indicators “Total
output” and “#Moves” are kept. Two others indicators are introduced: The total profit considering no
depreciation and the total profit considering an actualization rate of 0.95. Tables 4, 5 and 6 summarize the
results considering high, medium and low demand profiles, respectively.

Table 4: Variations of actualization rate β for high demands.

Models Generic NPV β=1 NPV β=0.95 NPV β=0.8
Total output 565 633 (+12.0 %) 643 (+13.8%) 713 (+26.0%)
#Moves 9,750 10,645 (+9.2%) 10,787 (+10.6%) 11,727 (+20.3%)
Total profit with β=1 11,407 13,571 (+19.0%) 13,563 (+18.9%) 11,361 (-0.4%)
Total profit with β=0.95 11,249 12,761 (+13.4%) 12,793 (+13.7%) 11,588 (+3.0%)

First, note that the objectives with the actualization rates β = 1, β = 0.95 and β = 0.8 are different by
definition. From Tables 4 to 6, note that the actualization rates β = 1 and β = 0.95 provide similar results,
while the actualization rate β = 0.8 provides a larger total output which induces a larger number of moves
(#Moves). By comparing the generic model to models with a profit per product, the total output increases
from 12% for instances with high demands to 193% for instances with low demands. The total profit
increase is also not negligible, varying from 11% to 63%. A detailed analysis of the results shows that,
even if the total profit increases for high demands are greater in percentage compared to profit increases
for medium demands, the absolute increase of total profit for medium demand (3,370) is larger than the
absolute increase of total profit for high demands (2,164). This larger total profit can be explained by the

3402



Beraudy, Absi, and Dauzère-Pérès

Table 5: Variations of actualization rate β for medium demands.

Models Generic NPV β=1 NPV β=0.95 NPV β=0.8
Total output 495 595 (+20.2 %) 610 (+23.2%) 697 (+40.7%)
#Moves 8,940 10,266 (+14.8%) 10,458 (+17.0%) 11,672 (+30.6%)
Total profit with β=1 29,700 33,070 (+11.3%) 33,065 (+11.3%) 30,564 (+2.9%)
Total profit with β=0.95 24,404 26,747 (+9.6%) 26,795 (+9.8%) 25,421 (+4.1%)

Table 6: Variations of actualization rate β for low demands.

Models Generic NPV β=1 NPV β=0.95 NPV β=0.8
Total output 225 469 (+108.4 %) 487 (+116.7%) 660 (+193.2%)
#Moves 4,138 8,060 (+94.8%) 8,316 (+101.0%) 10,243 (+147.6%)
Total profit with β=1 13,500 22,105 (+63.7%) 22,104 (+63.7%) 17,543 (+29.9%)
Total profit with β=0.95 11,093 17,035 (+53.6%) 17,097 (+54.1%) 14,687 (+32.4%)

fact that demands of instances with medium demands can be met while demands of instances with high
demands cannot be met.

Figures 1a, 1b and 1c show weekly total outputs for each experiment compared to actual demands for
respectively high, medium and low demands. Note that the generic model is not depicted in Figures 1b
and 1c since it follows the demands.

From Figures 1b and 1c, note that all methods start by producing the required demand at the first
period, then quickly the model with the lowest actualization rate produces more than the demand. The other
models start overproducing at the end of the horizon since no inventory cost is induced. In our instances,
profits are lost if a product stays more than four weeks in the inventory. The same remarks can be drawn
for Figure 1a, where the NPV model with β = 1 and β = 0.95 follows the behavior of the generic model
until the end of the horizon where the NPV model starts overproducing. These end-of-horizon effects were
expected. In fact, financial results are increased at the expense of meeting demands. This end-of-horizon
overstock can be too large, and this anticipated production may have to be limited if demands after the end
of the horizon are not expected to be large enough. A deeper analysis of the production plan shows that
two products are anticipated. These products are the ones with shorter routes, i.e. requiring less capacity.

3.4 Limiting Excessive Production

One way to limit the end-of-horizon effect is to limit the inventory at the end of the horizon for some
specific products. In the following, we only consider the case with medium demands and the NPV model
with an actualization rate of 0.95. Figure 2a details the results obtained in Section 3.3 by depicting weekly
outputs of the three products. This figure shows that the first product follows the demand profile while
Products 2 and 3 are overproduced at the end of the horizon.

First, in Figure 2b, we start by limiting the inventory of the last period of Product 3 to four times
the demand of the last period. Recall that Product 3 shares few non critical machines with other routes.
Limiting its last period inventory has almost no impact on the production plan of other products. Note that
this additional constraint reduces the total profit by 2% (considering the actualization rate of 0.95).

In Figure 2c, the inventory of the last period of Product 2 is limited to the demand of the last period.
This new constraint causes a transfer of production from Product 2 to Product 1. This is due to the fact
that the routes of Products 1 and 2 share several critical machines. Note that, in this case, adding a limit
at the end of horizon for Product 2 does not significantly impact the total profit (a reduction of 0.3%).
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(a) High demands

(b) Medium demands

(c) Low demands

Figure 1: Weekly outputs.
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(a) No inventory limit

(b) Inventory limit on Product 3

(c) Inventory limit on Product 2

Figure 2: Weekly outputs by product (NPV model with β=0.95 and medium demands).
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4 CONCLUSION AND PERSPECTIVES

In this paper, we introduced models with new objective functions that aim at optimizing productivity and
financial objectives for wafer manufacturing. These models were tested on a data set of the literature. First,
we proposed a model that considers a classical industrial indicator (number of “moves”). The experiments
showed that there is a trade-off to find between productivity and classical costs (inventory costs and backlog
costs). Second, we developed a profit-driven model by introducing the Net Present Value in a profit function.
The experiments illustrated that the profit-driven model ensures a better productivity than a pure cost-driven
model, but it can lead to overproduction (notably at the end of the horizon). Thus we proposed to limit
the inventory level at the end of the horizon. These limits are important for products that share capacities
with non-overproduced products.

In the future, it will be interesting to propose an approach to bind these limits to forecasted demands
(after the planning horizon). It will also be interesting to study the Net Present Value objective with financial
closure dates (e.g. quarters) in order to analyze the impact of closure dates and the end-of-horizon effects.
We are currently working on testing the proposed models on real industrial instances of large size (with tens
of products and hundreds of operations). Finally, another limit of our models is the use of fixed lead time
constraints. We are currently working on new constraints to model flexible lead times, and the preliminary
results are promising.
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Albey, E., Ü. Bilge, and R. Uzsoy. 2014. “An Exploratory Study of Disaggregated Clearing Functions for
Production Systems with Multiple Products”. International Journal of Production Research 52(18):5301–
5322.
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master degree from Université Paris-Saclay, France in 2016. His Ph.D subject is on modeling and opti-
mization of complex supply chain. His email address is sebastien.beraudy@emse.fr.

NABIL ABSI is Professor at the Center of Microelectronics in Provence (Department of Manufacturing
Sciences and Logistics) of Mines Saint-Etienne. He received the Ph.D. degree from Pierre and Marie
Curie University, Paris, France, in 2005 and the habilitation (H.D.R.) from the Jean Monnet University, in
Saint-Etienne, France in 2012. He has been Associate Professor from 2006 to 2013 at Mines Saint-Etienne.
Since 2014, he is Professor at Mines Saint-Etienne. His main research area is discrete optimization, with
applications to supply chain planning and transportation. He is the co-leader of the French working group
on production planning. He is associate editor of INFOR Journal: Information Systems and Operational
Research, expert for several national agencies (ANR, CNCS, CSF, FQRNT) and reviewer for more than 25
different journals. He is author of more than 30 papers in peer-reviewed international journals and more
than a hundred of articles and communications in conferences. He participated to dozen of industrial and
research projects. His email address is absi@emse.fr.
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