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ABSTRACT 

Modern semiconductor foundry business involves dozens of different products sharing the same 
production line. With each of them having distinct flows with potentially different mask layers, process 
steps and dedicated tools, it is not easy to get a good overview. Furthermore, analyzing simulation results 
is difficult because the flow of material on the shopfloor inside the simulation is difficult to understand. 

We describe a dynamic approach of automated, interactive, aggregated flow visualization based on nodes 
and edges graphs, augmented by current state and simulation data like waiting and upcoming material, 
tool states and line holds. This allows for a profound analysis of the current state of the production line 
and the material flow anticipated by the simulation considering all constraints. 

1 INTRODUCTION 

Semiconductor manufacturing nowadays typically requires hundreds of different process, measurement 

and other steps to be executed on a single wafer of a given product. As a foundry business typically 
manufactures a large number of diverse products, product flow is highly complex and difficult to 
visualize. 

Simulation of this complexity requires modelling many restrictions that occur. Any process step for 
every single product has its own machines that are allowed or blocked due to process releases and 
inhibits. Different time link constraints (Winkler et al. 2016) occur that lead to different behaviour of the 

material flow.  
Evaluation of the quality of the simulation model beyond simple measures like the total number of 

moves or the speed of single products is nontrivial. It is however essential to continuously verify and 
validate the quality to get a valid simulation result. Often, if a product does not behave as expected, e.g. 
gets stuck somewhere, simulation input files (the model) are analyzed to find the root cause. This could 
be caused by a real issue in the line or just by a weakness in the simulation model. Analyzing tabular text 

files is usually a tedious process, greatly improvable by a suitable graphical representation.  
Beside of an understanding of how all of the process steps are connected and where different products 

can use which machines, the described approach allows for a graphical analysis of how the material will 
flow within the simulation and what the model looks like. 

While a handful of commercial simulation tools does provide a graphical representation of the 
simulated model (Cimino et al. 2010), such visualizations are usually insufficient to understand the entire 

complexity of the fab; they show the machine park, but they fail to provide a flow-based visualization. In 
contrast, our solution allows: 
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 The visualization and comparison of flows and the deep connections between machine groups, 
process steps and layers. 

 A profound analysis of the current fab state including where material is standing, current tool 
states, restrictions, dedications, inhibits, lineholds and time link constraints. 

 An assessment of how the WIP will flow using a discrete-event simulation upcoming WIP 
forecast. 

 
In comparison, most works (Chen et al. 2008, Niedermayer and Rose 2003) analyze only either the 

overall line or a single point of interest (e.g. a single cluster tool) but do not provide such a 
comprehensive graphical insight with interactive drill-down into the details of the model. 

In Section 2 we will show in detail how we utilize graphs to visualize the flow along process steps. 
Section 3 describes the interactive augmentation of the graph by relevant and useful context details. In 

Section 4 we will discuss the architecture, performance and scalability of our solution. Finally, in Section 
5 we sum up and elaborate on potential future use cases and improvements. We did an extensive search 
for related literature but to our knowledge nothing similar has been published. 

2 VISUALIZATION OF PRODUCTION FLOWS 

This section describes the requirements to the graph visualization and the different types of node 
aggregation that are used. 

2.1 Graph-based visualization 

Production flows in semiconductor fabs describe the sequence of steps for a wafer to become a 
functioning product. Typically, flows are broken up into several consecutive mask layers according to the 
actual subsequent stack-up of the structures on the wafer. Each layer then consists of dozens of process, 
measurement and other operations which have to be followed along in order to create and verify the 
actual structures and assist the wafer handling during production. 

In order to effectively visualize such flows, we have chosen a graph-based representation with 
complexity folding, where a node represents operation(s) or a layer and the edges represent the flow from 
one to the other. This approach offers several advantages: 
 

 A graph is a versatile and universal modelling and visualization tool. Many users are already 
familiar with this concept and there is a lot of existing knowledge we can refer to. 

 An existing generic graph rendering framework can be used, where we enter only the nodes and 
edges and the actual visualization work will be performed for us. There are numerous solutions 
on the market, ranging from free open-source software to more expensive commercial libraries on 
different platforms and programming languages. 

 Some graph rendering frameworks offer built-in automatic graph layouting. Good layouting of 
complex graphs is not at all trivial to implement. For example, the layout algorithm of our choice 

consists of more than 5,000 lines of code, where similar algorithms are described in theses each 
of several dozens of pages in length, e.g. Tušla (2017), Reynolds (1997). By finding a suitable 
framework, we can save the enormous efforts and concentrate on our actual problem. 

 Nodes in a graph can easily be hierarchical, i.e. there may be a sub-graph inside each node, 
making it expandable and foldable. This is perfectly suitable for complexity folding, e.g. by 
collapsing entire layers into single nodes until the user shows interest about them. 

 
We will present the selected graph rendering framework and the supplementary architecture in detail 

in Section 4. For the rest of this Section, we will focus on the logical representation of such graphs from a 
user’s point of view. 
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2.2 Node Aggregation 

By default, each graph node represents an entire layer. This generates a compact overview of the 
investigated flows (Figure 1, topmost graph). By selecting layers, the process operations in these layers 
are shown as individual nodes instead of the aggregated layer node (Figure 1, center graph). Consecutive 
measurement and/or other operations are foldable to single nodes (“non-process operation chains”) in 
order to reduce complexity, or may be shown in full detail instead (Figure 1, bottommost graph). 

 

Figure 1: Simple graph with complexity unfolding. 

To reduce the number of nodes and focus on tool groups instead of individual operations, the 
aggregation may be switched to show one node per machine group. This is especially useful for observing 
bottlenecks in the context of their predecessors and successors. However, because of the re-entrant nature 
of semiconductor manufacturing, machine groups usually appear several times along processing flows. 
Thus, having only one node per machine group often leads to edges going backwards, seemingly against 
the flow. Depending on the analysis, this may or may not be desired. Therefore, we also implemented the 

possibility to avoid loops by automatically splitting entities to multiple nodes where necessary (Figure 2). 

 

Figure 2: Graph aggregated by machine group with optional loop avoidance. 

Aggregating by generic operation descriptions instead of full operation names is an approach that also 
can be used to graphically inspect differences in flows. By utilizing the automatic graph layouting of the 
graph rendering framework, this automatically delivers a common sort order for operations and/or 

operations of multiple, unequal flows. 

3 ANALYTICS 

We start by describing how we extended the graph with additional information and how the user is 
interacting with the graphs. Furthermore, we built in a history so that the user is also able to analyze 
situations in the past. Finally, analytic use cases are described. 

3.1 Augmented Nodes and Edges 

While a generic graphical representation of arbitrary combinations and sections of production flows is 
already valuable by itself, in addition to that, we augmented the nodes and edges of the graph by useful 
associated information. 
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It is most important for a semiconductor manufacturing foundry to have timely, accurate and 
contextual information about the following measures which are all contained in the node visualization 
shown in Figure 3: 

 

Figure 3: Augmented graph node. 

 WIP (number of wafers) waiting or being processed at the given operations, layers or tool groups 
(green, “here: 47”). 

 If aggregating by tool sets: WIP waiting or being processed at different operations in the selected 

flows, as this will share the same tool capacity with the currently inspected operations’ WIP 
(cyan, “flows: 124”). 

 WIP waiting or being processed in flows not currently selected. While we want to focus mainly 
on the user’s selection, it is still highly useful to have this contextual information as this WIP will 
share the same tool capacity with the currently inspected operations’ WIP (violet, “other: 434”). 

 Upcoming WIP (number of wafers per time frame, e.g. wafers/h). For accurate forecasting of 

these numbers, we use the results of a discrete-event fab simulation. The number can be shown on 
the edges. The sum of the incoming edges is also shown in the yellow/ochre segment in the upper 
left of the node. In addition, the thickness of the drawn edge is adjusted by the amount of 
upcoming WIP, i.e. edges where a high amount of upcoming WIP is predicted will be drawn 
thicker than edges carrying low or no upcoming WIP (“98”, “20”). 

 Tool states (productive, standby, engineering, scheduled/unscheduled down, non-scheduled). We 

chose to display those graphically in the form of stacked bars where the node’s width denotes 
100% of the time (when looking at the last hour) or 100% of the tools (when looking at the 
current state). This quickly gives an overview about the number of tools currently available / 
having been available on average during the last hour (or any other configurable time frame) 
(stacked bars: “%”, “T”). 

 Line holds, i.e. operations where material is currently held for yield reasons (e.g. because a 

measurement result must be awaited) or for WIP flow control reasons (e.g. because some material 
is moving too fast / other material too slow). We mark such operations with a yellow-to-red 
gradient exclamation mark which immediately attracts the user’s attention (“!”). 

3.2 Graph interactivity and tabular details 

In addition to the information shown directly in the nodes and on the edges, hovering over any element 
will show a tooltip with a description and additional insights (Figure 4). Furthermore, it is possible to get 

detailed data by clicking on the displayed values. For example, clicking on a WIP indicator will show a 
list of the individual lots leading to that number, while clicking on a line hold emblem immediately yields 
the list of associated line holds with introduction date, type and reason description, whereas clicking on an 
edge with upcoming WIP will show the split of products and customers. A click on the ‘S’ button on the 
upper left of a node displays a list of steps aggregated by this node (similar to the lot list at the bottom of 
Figure 4), declaring also the quantitative split of WIP and upcoming WIP between operations, products 

and customers. 
The lot list presents basic lot information such as lot type, product, customer, carrier, flow, current 

operation, wafer quantity, priority, global rank, initial and current committed fab out date, current 
location, current operation waiting duration and due date, whether the lot is processing, waiting, blocked 
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or on hold and if so the hold reason. For lots currently in a time link area, the enter timestamp and how 
much time is left until the control limit will expire is also shown. For immediate attention, a few 
important columns like the priority, the global rank and the remaining time to control limit are highlighted 
with colors. By selecting a lot in the lot list, the corresponding edges will turn into a green tint in order to 
visually guide the path of the lot (Figure 4).  

 

Figure 4: Entire user interface (sidebar, top panel, graph, lot list, tool tip). 

Some lot details are specific to the tool the lot would run on. By default, these details are aggregated 
so that only one row per lot has to be shown. If necessary, the user can ‘unfold’ the aggregated rows into 
individual ones, one for each lot-tool combination (Figure 5). For example, some tools may be located in 

a different fab building, requiring an inter-fab transport for processing the lot there. As this leads to 
additional cycle time and an inter-fab bridge has limited capacity, these tools are usually only chosen for a 
good reason, e.g. if all other tools are inhibited. For further investigation these tables are exportable into 
arbitrary spreadsheet software in csv or xls format. 

3.3 Data Historization 

As the situation (high/low WIP, tool downs, etc.) of the fab is highly dynamic, it is often desirable to have 

a reporting reaching back into the past. We therefore enriched the system with a time slider (Figure 6, 
above the graph) to select an arbitrary snapshot recorded during the last few days for visualization. 

In order to easily find the most interesting snapshots in the past, the WIP of any node can be viewed 
over time in a line chart (Figure 6, below the graph). Usually, as problems appear in the line, WIP piles 
up, leading to an easily spottable spike in the chart. This snapshot can then be specifically navigated to for 
further investigation using the time slider. Picking a past snapshot via the time slider will also show the 

upcoming WIP forecast of the simulation run related to the selected snapshot (Figure 7). 
While we chose to execute and archive one snapshot per hour, this could be easily adapted to a tighter 

or looser schedule, or even an event-based schedule (e.g. on tool down). The system is flexible enough to 
allow arbitrary non-equidistant snapshot dates, for example it could be reconfigured to have a tight 
schedule for the last week and a loose schedule for another three weeks. 
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Figure 5: Folded and unfolded version of lot list. 

3.4 Use Cases 

From a machine group point of view, the augmentations previously described allow the following 
questions to be answered: 

 
 Does the machine group have a suitable amount of WIP waiting/processing? What share of the 

total machine group’s WIP is related to the currently observed flow / operation? This is especially 
useful for bottlenecks, where a lack of WIP and running tools empty represents a capacity loss 
and too much WIP might lead to higher Cycle Time. 

 How much WIP is expected to be arriving at this machine group and where is it coming from? Is 
the upcoming WIP hindered by some line hold at a predecessor operation? 

 What are the details of the material currently standing in front of a machine group, including 

dispatch ranking and dedications? 
 Into which chains (to which machine groups) will material be fed based on the current dedication 

setup and tool situation? 
 Is the productivity of the tools sufficient (enough productivity/standby time)? Are there enough 

tools assigned / released? 
 

Also, because of the complexity folding, it is easy to get an overview of how much material is in 
which layer. The user can then drill down to operation level for desired layers (e.g. where there is a lot of 
WIP). 

Finally, the approach is valuable for visually comparing flows or flow sections against each other. An 
example of this feature has already been shown in Figure 4, where one operation requires different 
machine groups for the individual flows, whereas the rest of the flows are similar. The graph will 

automatically be combined where the flows are equal and split where they differ. This allows to 
comfortably compare flows on layer or process step level. 

3380



Winkler and Sprenger 
 

 

Figure 6: WIP history chart with highest peak selected by time slider. 

Figure 7: Integration of simulation into time slider for hourly upcoming WIP forecast. 

4 SOFTWARE AND SYSTEM ARCHITECTURE 

We start by describing the architecture of the underlying software, its scalability and how it complies with 
the company’s regulations. While the software was created as a customized in-house development 
specifically meeting the company’s needs, its core and user interface are well-structured and highly 

modularized, allowing to be easily adapted for other data models or different use cases. 

4.1 Architecture 

As described in Section 2, utilizing an existing powerful graph rendering framework avoids being 
detracted from the actual problem by having to implement such underlying functionality ourselves. 
Therefore, we researched and tested numerous frameworks and found JGraphX (Bagger and Heinz 2001; 
JGraph 2017) to work best for us. It is licensed under the permissive 3-clause BSD license and provides 

fully interactive and customizable graph rendering including a number of sophisticated automated graph 
layouting algorithms. For our purposes, we found the Hierarchical Layout to work best. 
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As JGraphX is written in Java, a language which the authors are generally familiar with, it seemed 
logical to use it for implementing the application. Also, JGraphX integrates well into Java Swing, which 
was chosen as a portable, powerful, highly adaptable yet relatively simple to use User Interface 
Framework, allowing to freely integrate additional components like the line chart of JFreeChart shown in 
Figure 4. This makes the application very flexible for changes and adoption of additional use cases. 

In order to be used on any computer without requiring an explicit installation, the application is 

embeddable into a web page as a Java Applet. We have chosen to deploy it on a dedicated JBoss (Fleury 
and Reverbel 2003) server, offering: 

 
 Middleware: by choosing RESTEasy as a reliable communication framework, the applet can 

easily communicate with the JBoss server via secured HTTP. The server will respond only to 
known queries of known users (whitelist approach). Requests may be logged. Only the JBoss 

server has access to the database server. This greatly enhances security in comparison to direct 
database connections from clients. 

 Stateless communication: Holding the session state in the client applet only, the server is 
stateless, responding directly to each query without having to consider a context. This makes the 
server simple and robust, i.e. there are potentially fewer possibilities to end up in an undefined 
state. 

 Isolation: Even though our implementation has been thoroughly tested, there is still a risk of an 
unknown bug crashing the application. We generally expect it to be sufficient to reload the applet 
on the client side, as the state is held only therein. If, however, the server crashes for any 
unexpected reason, it could be rebooted without influencing further services. This could be 
automated by a watchdog. 

 Database connection pooling: The JBoss server automatically reuses database connections in a 

smart way. It will open only a reasonable and controllable number of connections. For example, 
ten database connections may be sufficient for serving dozens of clients, as they do not query data 
permanently. If the JBoss server reaches the maximum number of allowed database connections 
and further queries arrive, it will queue them, serving them one after another instead of flooding 
the database server with too much load at once. 

 

By choosing a three-tier architecture utilizing a clustered Oracle Database and multiple JBoss Servers 
with Load Balancing as well as doing the computationally most expensive rendering work on the client 
machines, we get a scalable and fail-safe system architecture potentially usable by hundreds of users at 
once (Figure 8). 

Apart from the disadvantages mentioned above, using a stand-alone Java Client directly accessing the 
database would also be undesired by corporate policy. Large companies often have regulations regarding 

programming language, user security (e.g. requiring user single sign-on), fail-safe mechanisms, scalability 
and maintainability of the system and whether executables are allowed to be deployed on individual client 
computers. The described architecture fulfills all requirements of GLOBALFOUNDRIES. We had no 
significant failure of the system and required no considerable user support or maintenance effort since the 
first deployment five years ago. Currently, we have more than 200 trained users, with 10 to 30 distinct 
users using this software every day. Depending on where in the production line problems occur, these are 

different users on a daily basis. 
The simulation is loosely coupled solely via a single text file listing the amount of upcoming WIP for 

each product, customer, flow, operation and time frame. This allows the simulation framework, 
methodology, level of detail as well as time horizon to be freely chosen. At the moment, we use a non-
deterministic discrete event simulation with simplified dispatch rules for the next 168 hours, but this may 
be changed at any time. 
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4.2 Usability, speed and scalability 

The described architecture and used framework is able to draw flow charts that include all flows of a few 
hundred products at the same time if desired, as shown in Figure 9. Very complex charts like that take at 
maximum a few seconds to render. After the user has selected more specifically what he wants to see, the 
chart is regularly drawn within < 0.1s.  

There are four kinds of data that are retrieved: 

 
 All flow related data is loaded when the application (browser window) is opened. 
 The latest snapshot with WIP levels, E10 states and lineholds is loaded afterwards. When 

switching to a different snapshot it takes around 5s to retrieve the new data from the database. 
 Detailed WIP information is loaded from the database when a WIP bucket is clicked. This takes 

<1s. 

 WIP charts over time are loaded upon request and take ~5s. This takes so long as data loaded 
needs to be on process step detail level to be able to exactly consider the filter setting chosen by 
the user. 

 

 

Figure 8: Scalable System Architecture. 

Another advantage of the chosen architecture is that everything is rendered on the user’s computer. 
This allows fast response to any user input on the one hand and on the other hand also scalability. If a 
single server needed to render all requested visualizations, the maximum amount of users would be 
limited severely. Utilizing the client computer allows fast responses while still being able to provide 
hourly snapshots of the last two weeks. 

Finally, we hold a total of ~50GB of data in the database. Besides the current flow setup it contains 

hourly snapshots of all lots, lineholds, upcoming WIP expected by the simulation, etc. for a total horizon 
of two weeks. The described architecture is able to hold the data currently relevant for the user inside the 
Applet with a total of ~0.5GB memory consumption on the client side, whereas all other data is loaded 
upon request. 
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Figure 9: Complex graph of a many flows selected at the same time. 

5 SUMMARY AND OUTLOOK 

The described software enables the flow-related visualization of the shop floor. This enables the 
simulation expert to see the behaviour of the simulation model along the production flows and directly 
analyze the root cause for disturbances and WIP pile-up. Furthermore, it allows to analyze the situation in 
the fab as current state but also to analyze situations in the past. 

The described architecture is suitable to handle a lot of data, even in a very complex foundry with 
hundreds of different products. Furthermore, it fulfills common requirements of a company’s IT 

environment including user single sign-on and other security concerns. 
One thing we are thinking about for the future is to extend the time slider to show the anticipated 

situation in the future based on the current state. This will allow a more detailed analysis of the simulation 
model (see Figure 10 in comparison to Figure 7). 

 

Figure 10: Possible time slider extension to show simulated future situation. 

In addition, we are thinking about direct simulation model modification through the user interface. If 
an obstacle like an inhibit is identified as not persisting any longer, it could be disabled and the change 
fed into the next simulation model run. The JBoss architecture allows to feed back data into a database 
and the simulation software could use it. 
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