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ABSTRACT

Today, delivery of industrial maintenance services is planned under uncertainty, as, for example, the true
task duration is unknown. Thus, providers rely on estimates at the stage of planning. During operations, the
true task duration becomes known which results in a schedule update. This work evaluates the effects of
information uncertainty on business-relevant performance indicators in industrial maintenance. We present
a simulation model to reflect the evolution of information and the schedule revision during operations.
Within a simulation experiment, we measure the business-relevant impact of different uncertainty levels on
operations. Indeed, the findings of our research confirm the common understanding that reduced uncertainty
at the stage of planning has a positive effect on service delivery. However, our research also shows that
in order to achieve business-relevant impact in service delivery quality, the reduction of uncertainty at the
stage of planning needs to reach a certain threshold.

1 INTRODUCTION

In industrial maintenance — a prominent example of an industrial service according to Gitzel et al. (2016)
— providers plan schedules for their engineers. However, those schedules are planned under uncertainty,
as, for example, the true duration of a repair task is unknown until it is actually finished. Therefore, the
schedule initially planned under uncertainty is constantly updated during operations as previous estimates
become certain. Thus, technician scheduling should be seen as a dynamic problem (Vossing 2017). Similar
remarks have already been made to delivery services on a broader notion by Psaraftis (1995). For example,
a planner may have assumed an estimated task duration of two hours, however, once an engineer is on
site, he notices that the true repair takes four hours. In this case, the engineer’s schedule must be updated
such that it reflects the new information. Another example that requires schedule update is the arrival of a
previously unknown high priority task (e.g., repair).

Researchers aim to reduce uncertainty during planning by leveraging new technologies, as, for example,
predictive methods and smart machinery. In industrial maintenance, for example, predictive methods can
be used on the basis of real-time machine log data. However, so far, researchers have not yet evaluated
the impact of reduced uncertainty at the state of planning on service delivery. Whilst there seems to be a
common agreement on the positive effect of reduced uncertainty at the stage of planning on service delivery,
we are not yet able to describe the effects further. We do not know whether the impact of reduced uncertainty
has a linear effect on service delivery or, for example, whether the impact increases exponentially with
reduced uncertainty.

Consequently, this work aims at evaluating the impact of reduced uncertainty at the stage of initial
schedule creation on service delivery in industrial maintenance. In detail, we present a simulation experiment
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in which the impact of reduced task duration estimate error on delivery performance is measured. Hence,
this work is not concerned on how uncertainty can be reduced. Instead, it only evaluates its impact once
such methods exist. However, on the basis of this work, researchers can estimate the degree of uncertainty
reduction they must reach such that a true benefit in service delivery is achieved. Therefore, this work
contributes to research on service delivery, a major research priority in service science (Ostrom et al. 2010;
Ostrom et al. 2015). Furthermore, this work contributes on research on planning under uncertainty by
addressing the gap between predictive methods and their impact on the quality of service delivery.

The remainder of this work is structured as follows: In Section 2, we introduce fundamentals and related
work. In Section 3, we explain the theoretical basis for the simulation model, which itself is presented
in Section 4. The simulation experiment and its results are shown and discussed in Section 5. Finally, in
Section 6, we summarize this work and point out limitations and future work.

2 FUNDAMENTALS AND RELATED WORK

In this section, we introduce fundamentals of technician dispatching and elaborate on related work.

2.1 Fundamentals

In industrial maintenance, a provider dispatches his engineers to his clients’ sites in order to deliver the
desired service (e.g. repair or overhaul). In practice, the process of dispatching — i.e., the timely assignment
of service tasks to engineers — is done by human dispatchers that follow simple dispatching strategies
(Hill 1992). During dispatching, a dispatcher usually tries to achieve two contradictory goals: First, the
dispatcher wants the technician to be utilized as high as possible, whilst second, also having short-term
capacity to schedule upcoming unplanned tasks that have a high priority (e.g., repair) (Wolff et al. 2018).
Furthermore, efficient technician dispatching results in a competitive advantage, as expensive resources
(the technicians) are used efficiently.

Within technician scheduling, Li and Ierapetritou (2008) differentiate between two concepts: First, an
initial schedule generation coupled with schedule revision throughout the day — also referred to as predictive-
reactive scheduling (e.g., Sabuncuoglu and Bayiz 2000), and second, online and offline scheduling (e.g.,
Sabuncuoglu 1999).

Due to the uncertainty in dispatching, dispatchers usually follow predictive-reactive scheduling ap-
proaches (Vossing 2017), which aligns with the first concept. This means that an initial schedule is
predicted, however, during operations, providers react on unforeseen events and update their schedule (Li
and lerapetritou 2008). Therefore, the technician dispatching problem can be seen as a two stage problem:
First, an initial schedule must be created, and second, the revision of the current schedule after disruptive
events. After operations have finished, the final schedule is most likely to differ from the initial schedule.
In the following, we briefly summarize work on the two stages of the technician dispatching problem.

The first stage of the technician dispatching problem — the initial schedule creation — is an extension
to the Vehicle Routing Problem (VRP), which was initially introduced by Dantzig and Ramser (1959) as
the Truck Dispatching Problem. Since then, many modifications have been published in order to reflect
individual problem instances. The core of the VRP is described as “’the problem of designing optimal
delivery or collection routes from one or several depots to a number of geographically scattered cities or
customers, subject to side constraints” (Laporte 1992). Until today, several reviews and taxonomies of the
VRP and its extensions have been published, e.g., Eksioglu et al. (2009), Drexl (2012), and Lahyani et al.
(2015). The VRP is the basis for many technician routing problems, as, for example, the work by Weigel,
Don and Cao, Buyang (1999) or Kovacs et al. (2012).

Unfortunately, literature on the second stage — rescheduling within technician dispatching — is rare.
Chaari et al. (2014) outline triggers and approaches for rescheduling. However, the presented rescheduling
approaches for technician dispatching do not differ much from rescheduling in other domains.
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2.2 Related Work

So far, research in technician dispatching has focused on the inclusion of uncertainty at the stage of
initial schedule creation. A good overview of robust optimization within VRP is provided by Bertsimas
and Simchi-Levi (1996). Furthermore, the work by Sungur et al. (2008) proposes a robust optimization
approach for the VRP with demand uncertainty. In addition, Souyris et al. (2013) present a robust schedule
optimization problem under uncertain task duration.

Even though these works provide methods on how to deal with uncertainty in technician scheduling,
they lack to measure the impact of reduced uncertainty on business-relevant performance indicators. Most
studies evaluate their robust solution against the naive nominal solution based on the objective value.
However, the objective value does reflect business performance.

3 CONCEPT OF TECHNICIAN SCHEDULING

In this section, we explain the problem of technician dispatching as understood for the remainder of
this work. Given the interest in the effects of information uncertainty on service delivery, the following
assumptions are made: First, the maintenance provider follows a predictive-reactive scheduling approach.
Second, the initial schedule for an engineer is created on a daily basis and planning happens prior to shift
start. Further information on how the initial schedule is derived are given in section 3.2. Third, information
uncertainty at the stage of planning is limited to uncertain task duration only. At the stage of planning,
an estimated task duration is used. Once the engineer arrives at a task’s site (i.e., once it is planned to
start according to the currently valid schedule), the true duration becomes known. The relation between
the true and the estimated task duration is further explained in section 3.1. Fourth, schedule update (i.e.,
rescheduling or schedule revision) is an immediate process. Thus, once a task duration becomes known, the
current schedule is immediately updated resulting in a new current schedule. Updating is done according
to the right-shift policy as explained in section 3.3.

3.1 Task Duration Estimation

Due to uncertainty, the task’s true duration d’ is unknown before the task is actually started. Therefore,
during planning and rescheduling before the task has started, maintenance providers rely on a task duration
estimate d°. The difference between the true service duration and the estimated service duration is referred
to as the estimate error Az. The relation between the true and estimated task duration are shown in Equation
(1). The estimate error Ar follows a pre-defined distribution defined by the simulation scenario. The
estimate error distributions are introduced along the simulation experiment scenarios in section 5.1.

d=d + At (1)

3.2 Initial Schedule Creation

Our formalization of the initial schedule creation problem closely follows the work of Petrakis et al. (2012),
however, we simplify some aspects as they are not relevant for this work. First, only schedules for one
day are created. Second, engineer skills are neglected. Third, we modify the objective function to reflect
an optimization objective better aligned with our findings from practice. The objective of this work is
to maximize the number of tasks served, however, at minimal provider costs. Furthermore, the problem
presented in this work does not use any approach of robust scheduling.

The formalized scheduling problem can be considered as a graph G = {V,E}, in which the vertex V
consists of two disjunctive subsets V = {D,C}. Set C = {0, 1,...,m— 1} reflects the set of engineers and —
for easier understanding — their home locations. Analogue, set D = {0,1,...,n— 1} reflects the tasks and
their locations. The set of edges E denotes possible travel segments for the technicians, thus, E = {(i, )}
with i, j € V. The travel times between the locations are seen as symmetric, thus ¢;; = cj; for i, j € V and
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cij =0 for i € V. One minute of travelling costs the provider f. Furthermore, the maximum regular work
time — which is a hard constraint during the initial schedule creation — is denoted by #,,,,. The estimated
task duration for a task 7 is denoted by df with i € D. The shift begin of all engineers is denoted by b.

We use two decision variables to formalize the initial schedule creation within the technician scheduling
problem. First, variable a;,i € D denotes the engineer’s arrival time at task i. Second, the decision variable
Xijk 1, j € V,k € C is defined as follows:

1 if engineer k travels from node i directly to node j
Xiilr =
ok 0 otherwise

Given the above information, the technician dispatching problem can be defined as shown in 2:

1
mirélil}clize Z Z Z cijx,-jkf—i- (n - 5 Z Z Z x,-jk)p (2a)

i€V jeVkeC ieD jeDkeC
subject to Y (xijx —Xjix) =0 VjieVkecC, (2b)
ieV\{j}
Y xip<1 Vie D,keC, (2¢)
jec
Y xij=0 Vie D,k e C\{i}, (2d)
jec
Y Y xip<t Vjec, (2¢)
i€V keC
ajZ(b—&-cij)xijk VieD,jkeC, (21)
ajZ (ai—i-df—l—cij)xijk Vi,j,keC, (2g)
(a,- +d; +cl~j)xijk < b+ tyax Vi,keC,jeD, (2h)
xijk € {0,1} Vi,jeV,keC (2i)

Flow is conserved with constraint (2b), ensuring that all engineers that arrive at a task also leave it
again. Constraint (2c¢) ensuring that each engineer leaves his home depot only once, whereas constraint
2d assigns each engineer to one home location. Constraint (2e) limit the amount of visits from engineers
to one for each task. Constraints (2f) and (2g) ensure correct engineer arrival times at the tasks locations.
Furthermore, constraint (2h) ceils the maximum working time of each engineer. Finally, constraint (2i)
forces x to be binary, thus imposing a binary flow on the graph G. According to Miller et al. (1960) and
Kulkarni and Bhave (1985), sub-tour elimination is implicitly done by constraints (2f), (2g), and (2h). The
objective function minimizes total provider costs by including a penalty p for unscheduled tasks and travel
time costs f per travelling minute. As overtime is not permitted within the initial schedule creation, each
engineer works a maximum of his regular work time — for which he receives a fixed wage. Thus, regular
work wages are schedule-independent and not included in the objective function. As such, the formalized
problem is not a Mixed-Integer Program. However, by the introduction of auxiliary variables and large
constants, non-linear constraints can be linearized (Petrakis et al. 2012).

3.3 Rescheduling

During operations, the current schedule for the given technician is updated following the right-shift policy
every time a change in a task’s duration becomes known. In this work, the true task duration becomes
known when the engineer starts delivery of the task, i.e., when the task’s current start time has been reached.
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In this context, the current schedule is either the day’s initial schedule for the day or an already modified
schedule.

The right-shift policy — in its base form — naively updates the schedule by propagating duration changes
for any element by propagating it through the schedule until its end is reached. Thus, in the naive approach,
if the task duration of task i is changed by Az;, the updated start times a;” dated o subsequent tasks can be
calculated as shown in Equation (3). We chose the right-shift policy as a suitable rescheduling approach, as
it is a simple policy that minimizes both, deviation from the initial schedule and disruptions to the planning

function of the schedule (Leon et al. 1994).

a? el = g 4 Ay 3)

Given the domain of industrial maintenance, two more constraints need to be taken into account: First,
an engineer cannot access a machine at any time, as industrial machines are involved in a production
schedule and must be shut down prior to maintenance actions (Paz and Leigh 1994). In this work, we
assume that the client plans engineer works according to the initial schedule and shuts the machine down 30
minutes prior the communicated start time. Thus, the new start times of tasks can be calculated according
to Equation (4).

1

updated a; +max(At,,,—30) At, <0 (i.e., true task duration < estimated task duration)
a. =
a; + At,, At,, > 0 (i.e., true task duration > estimated task duration)

Second, an engineer has a maximum overtime after which he must return home. Consequently, if the
application of the right-shift policy results in a violation of the maximum work time including overtime,
tasks are removed from the end of the schedule until the engineer is able to return home without exceeding
his overtime. Removed tasks would — in practice — be added to the backlog and be scheduled the following
day. In case the overtime is exceeded when the last task’s duration is extended, the engineer remains at
the location and finishes the task. In this work, the maximum overtime ¢, is set to ¢, = 2 hours, which
aligns with legal obligations in Germany. Figure 1 shows the applications of the right-shift policy for three
examples. Using the described rescheduling police, technician schedules are independent of each other, as
changes on one technician’s schedule do not influence another technician’s schedule.

3.4 Performance Indicators for Service Delivery

The impact of task duration estimate errors on the actual service delivery is evaluated on the basis of
performance indicators. This work builds on performance measures for industrial maintenance as introduced
by Meier et al. (2013). In detail, the following relevant performance indicators are used in this work:

Tasks performed: The number of tasks performed by all engineers within the given day.
Engineer utilization: The utilization (= on site and travel) of the engineers with regard to .,
Travel Time: The percentage of work time an engineer is travelling.

Tasks started on-time: The percentage of tasks started on time. Every task started within —15/+ 30
minutes of the initially planned start time.

Cancelled Tasks: Percentage of tasks that had to be cancelled as overtime was exceeded.

e Overtime: The sum of overtime (in hours) of all engineers. This indicator is directly cost-relevant
for maintenance providers, as higher wages are paid during overtime.

4 SIMULATION MODEL

In this section, we further elaborate on the simulation model. First, we give a brief overview of the
simulation environment. Second, we define its major components. Third, we talk about model validation,
before fourth, talking about parametric values used.
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Figure 1: Examples for right-shift scheduling.

4.1 Simulation Environment Overview

Within the simulation model, we are able to simulate the entire process from the initial schedule creation
through the evolution of information over time. With the evolution of information, the simulation model
updates the current schedule to reflect the currently known information. Once the simulation has finished,
the current schedule becomes the final schedule. Finally, the final schedule can be compared against the
initial schedule.

The components of the simulation environment are displayed in Figure 2. As an input, the simulation
model receives a list of tasks to be scheduled and a set of engineers that are available to deliver the requested
services. Given this information, the initial schedule is created using the initial schedule solver, which
is further explained in Section 4.2. Once the initial schedule is created, the environment simulates the
modification of task duration at the time a task is scheduled to start. Thus, at the planned beginning of a
task, its duration is modified to reflect the true task duration, opposed to the previously used estimated task
duration. The new service duration then triggers the schedule to be updated. Finally, the final schedule is
compared to the initial schedule in order to determine performance indicators as described in Section 3.4.

4.2 Simulation Environment Components

In the following, we walk through the individual components of the simulation environment and explain
how they are implemented. First, we explain the initial schedule solver, before second, elaborating on the
task duration and schedule update components. The last two components are realized using a discrete-event
simulation approach. The components of the simulation environment are further explained below.

o [nitial Schedule Solver: The initial schedule is using two heuristics — as described by Petrakis et al.
(2012) — to solve the initial schedule problem. The solver first creates a valid schedule using the
Least Insertion Cost heuristic, which is further improved by applying a Variable Neighborhood
Search. For solving, we applied the neighborhoods as described by Petrakis et al. (2012) except for
the URI Swap 2, URI Swap_ 21, URI Swap_12, UR2 Relocate_I, and UR2_Swap_I neighborhoods
with 2000 iterations.
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Figure 2: Simulation environment (actions and their simulation environment components).

e Task Duration Updater: This module reflects the introduction of new information. In detail,
whenever a task starts, it unveils its true duration, as opposed to the previously used estimated
duration. Therefore, this module provokes rescheduling.

e Rescheduling: This module is responsible for updating the current schedule within the simulation
environment. It uses the right-shift policy as described in Section 3.3.

4.3 Model Validation

The simulation model was validated according to Sargent (2009). First, conceptual validation was done
by presenting the initial underlying concepts to experts from two medium-sized German OEM providing
maintenance services to their customers. The initial concepts were modified to include one remark the
practitioners made. Second, the simulation model was validated by having two researchers following the
schedule updates during n = 150 simulation runs closely, a validation method closely aligned with the
validation through Animation (Sargent 2009).

4.4 Simulation Parameters

The simulation experiment was conducted using the parameters given in Table 1. Given the task duration
and travel time distribution, an engineer should — on average—be able to conduct three tasks within his
regular work time, resulting in a theoretical engineer utilization of 7" /g, = 93.75% (three tasks and four
journeys per day). The engineer set size is chosen to be 15, and for each engineer one additional task to
the—on average—feasible three tasks is added, resulting in a total of 60 tasks. On execution of the simulation
environment, a set of 2,000 locations is created which remains constant during the experiment. However,
at each simulation run, tasks are randomly re-assigned to locations. Overall, the travel time in minutes
between two locations follows a normal(45, 10) distribution. Furthermore, the deviation of the estimated
task duration from the true task duration is provided by a deviation distribution. Given the context of
this work, the deviation distribution is used as simulation experiment factor and its different values are
introduced in the following section.

5 SIMULATION EXPERIMENT

As initial schedules are created on a daily basis and operational schedule updates are only reflected
within the schedule for one engineer on one specific day, the schedules on different days can be seen as
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Table 1: Parameter values used within the simulation experiment.

Parameter ‘ Value H ‘ Parameter ‘ Value (in min)
Variable Neighborhood Search Iterations | 2000 Work Time f,,4x 480
Penalty for Unplanned Task p 5000 True Task Duration d’ | normal(90, 15)

Costs Travel Time f
Number Tasks n
Number Technicians m

Travel Time Matrix ¢ | normal(45, 10)
max overtime 1, 120

independent of each other. Therefore, different instances of the initial schedule creation problem can be
treated independently of each other. Furthermore, we evaluate the impact of stochastic variables (estimate
error) on service delivery performance. According to Raychaudhuri (2008), this is a typical case for the
application of a Monte Carlo simulation, in which many individually independent instances of a stochastic
problem set are generated, simulated, and finally, jointly analyzed. Due to the repetition, researchers
evaluate many different combinations of stochastic instances and, therefore, increase the likelihood of
gaining valid insights (Law 2015).

5.1 Experiment Factors

In Section 3.1, we introduced the notion of the true and estimated task duration. This work evaluates the
effect of estimate errors on service delivery quality. Within the experiment, we vary the task duration estimate
error distribution. Therefore, the estimate error distribution is the factor of this simulation experiment.
The different estimate error distributions are provided in Table 2 and each error distribution reflects one
simulation experiment scenario. Hence, with growing scenario number, the uncertainty at the stage of
planning is reduced, until finally — in scenario 9 — no estimate error (i.e., no uncertainty) is assumed. All
error distributions follow a normal distribution with mean zero, indicating no systematic estimate error.

Table 2: Experiment scenarios — distribution of task duration error (in minutes).

Scenario | Error Distribution H H Scenario | Error Distribution H H Scenario ‘ Error Distribution
1 normal(0, 120) 4 normal(0, 75) 7 normal(0, 30)
2 normal(0, 105) normal(0, 60) normal(0, 15)

3 normal(0, 90) normal(0, 45) normal(0, 0)

5.2 RESULTS

Each scenario is executed k = 640 times and the responses are measured. The average performance indicator
values for each scenario are shown in Table 3. In the following, we briefly walk through the individual
performance indicators and interpret their measures for the different scenarios.

Given the results as shown in table 3, our findings support the general understanding that reduced
uncertainty at the stage of planning impacts service delivery positively. There is no performance indicator
that shows a negative trend between a reduced estimate error and the performance indicator.

Furthermore, we note that the number of tasks performed increases with a reduced duration estimate
error between scenarios one to six. This can be explained as a high estimate error resulting in rather large
schedule updates may result in sudden, large idle times at the end of a shift for a technician. As no new
tasks are planned throughout the day, idle time prior to shift end results in lost capacity.

In addition, we see that each, the utilization, the percentage of travel time, and the percentage of
cancelled tasks, varies within a range of around 3% for each case. As explained, cancelled tasks need to be
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Table 3: Experiment results (mean values per scenario).

Scenario 1 2 3 ‘ 4 ‘ 5 6 ‘ 7 ‘ 8 9

Tasks Performed | 45.6 46.6 47.8 49.2 50.7 52.4 53.5 52.6 53.4
Utilization 0.9247 | 0.9306 | 0.9373 | 0.9443 | 0.9508 | 0.9537 | 0.9477 | 0.9209 | 0.9235
Travel Time 0.2527 | 0.2577 | 0.2620 | 0.2674 | 0.2730 | 0.2780 | 0.2807 | 0.2712 | 0.2772

Cancelled 0.0196 | 0.0221 | 0.0225 | 0.0223 | 0.0196 | 0.0133 | 0.0042 0 0
On-Time 0.5354 | 0.5264 | 0.5280 | 0.5285 | 0.5326 | 0.5601 | 0.6253 | 0.8206 1
Overtime (in h) 13.1 13.8 14.7 15.3 15.9 15.4 11.8 53 0

rescheduled at following days, therefore, being added to the backlog of tasks that is used as input for the
technician dispatching problem of following days. It is likely that cancelled tasks result in penalties to be
paid to the customer by the provider. The utilization ranges between 92.09% and 95.37%, the percentage
of travel time between 25.27% and 28.07%, and the percentage of cancelled tasks between 0 and 2.25%.
Furthermore, we observe no clear monotonic trend between a reduced task duration estimate error and
those performance indicators. Therefore, we conclude that the engineer utilization, the percentage of travel
time, and the percentage of cancelled tasks are rather independent of the task duration estimate error.

However, in addition, we want to highlight the following points: First, there are no cancelled tasks in
any simulation run once the task duration estimate error was below normal(0, 15), i.e., scenario 8 and 9.
Second, in Section 4.4, we calculated a theoretical utilization of 0.9375. In scenario 9 — which reflects
no duration estimate error — our observations report a mean engineer utilization of 0.9234, which is very
close to the theoretical utilization.
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Figure 3: Mean performance indicator values; (a) on-time; (b) overtime.

When looking at on-time delivery — as depicted in figure 3a — we note a sudden increase at an estimate
error distribution of normal(0, 30) or below (i.e., scenarios 7 to 9). From a delivery perspective, this is an
important finding as it indicates that a service provider is required to meet a certain prediction accuracy
in order to see a drastic increase in delivery performance. We want to point out that — in this work —
the on-time performance indicator is defined by the percentage of tasks started within a -15/+30 minute
time window around the estimated start of a task, which corresponds to the required minimum estimate
error distribution to see a drastic increase in performance. Turning this thought around, this implies that
service providers could — if they know their estimate errors — engineer performance indicators according to
their estimate errors in order to optimize for the on-time performance indicator. However, those are initial
thoughts and further research is required to further support this idea.
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Furthermore, we see a drastic decrease in technician overtime with reduced estimate error, as depicted
in Figure 3b. Our findings indicate that the drastic decrease starts once an estimate error distribution of
normal(0, 45) or below (i.e., scenarios 6 to 9) is met. For the provider, this is very important as additional
overtime results in increased engineer wages.

From a monetary perspective, overtime directly influences the provider’s profit negatively, whereas the
number of tasks performed ensures revenue. Given the assumption of this work that a provider does not
schedule tasks initially during overtime, a provider tries to perform the highest number of tasks within
the fewest overtime. Our findings observe that the number of performed tasks reaches its maximum in
scenario seven. Furthermore, performance values for on-time delivery and overtime improve drastically
within scenario seven. Consequently, a provider should not only try to reduce the duration estimate error,
but reach an estimate error distribution of at least normal(0, 30) (i.e., scenarios 7 to 9) or below. Even with
a further decrease in the estimated error, additional delivery quality can be achieved.

However, decreased estimate errors are likely to result in higher investments, as prediction methods are
likely to be more complex. Therefore, a provider must trade off the benefits of additional delivery quality
gained by a smaller estimate error with the additional costs of creating a model capable of predicting with
the required estimate error.

6 CONCLUSION

Based on a simulation experiment, this work measures the impact of reduced uncertainty (in the form
of task duration estimate errors) on service delivery performance in a field service delivery environment.
In detail, uncertainty at the stage of schedule planning was introduced by adding a service task duration
estimate error. During the simulation experiment, various distributions for the duration estimate error are
assumed. Delivery quality is measured by the number of tasks performed, engineer utilization, travel time,
cancelled tasks, on-time delivery, and engineer overtime.

The key findings of this work can be summarized in the following three points: First, the number
of tasks performed, engineer utilization, travel time, and cancelled tasks seem to be rather independent
of the duration estimate error. Second, on-time delivery improves greatly once the estimate error (in
minutes) follows a distribution below normal(0, 30). Third, once the estimate error (in minutes) is below
a normal(0, 45) distribution, engineers’ overtime drastically decreases.

This work marks first steps into the evaluation of estimate errors on service delivery. Therefore,
naturally, this work has limitations and lays the basis for further work: First, this work relies on assumed
distributions for travel time, task duration, and estimate errors. Therefore, further work needs to be done on
justifying those assumptions. Second, the optimization model presented in Section 3.2 needs to incorporate
further constraints to better reflect practice. For example, skills were neglected. Additionally, customers
may have constrained service time windows that need to be taken into account. In addition, this work can
further profit from a differentiation between repair and overhaul tasks, as each type introduces individual
requirements. Third, the initial schedule is based on naive scheduling. In practice, a provider assuming
uncertainty may choose to create the initial schedule following robust optimization techniques. Finally,
we call for similar research on other sources of uncertainty, as, for example, the arrival of urgent service
demand.

Though this work explores a new direction of research, it already indicates first managerial implications.
Given the positive impact of a reduced estimate error on delivery performance, providers of industrial
maintenance should try to estimate uncertain information as good as possible. However, this work also
shows that the impact is fairly low until a certain threshold has been met. Thus, maintenance providers
should really drive towards finding this threshold in order to leverage the full potential of new predictive
technologies.
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