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ABSTRACT

We consider a pharmaceutical supply chain where the manufacturer sources a customized product with
unique attributes from a set of unreliable suppliers. We model the likelihood of a supplier to successfully
deliver the product via Bayesian logistic regression and use simulation to obtain the posterior distribution of
the unknown parameters of this model. We study the role of so-called input-model uncertainty in estimating
the likelihood of the supply failure, which is the probability that none of the suppliers in a given supplier
portfolio can successfully deliver the product. We investigate how the input-model uncertainty changes
with respect to the characteristics of the historical data on the past realizations of the supplier performances
and the product attributes.

1 INTRODUCTION

The research and development of biological products is often outsourced by large pharmaceutical companies
to smaller-scale specialized biomanufacturers (Martagan et al. 2017). The objective of the pharmaceutical
company is then to decide which biological products are sourced from which biomanufacturer. A bio-
logical product has a set of physical and chemical attributes, such as purity, molecular mass, size, shape,
hydrophobicity, endotoxicity, etc. (Akcay and Martagan 2016), and these attributes play an important
role in determining the likelihood of a successful delivery of the product by the biomanufacturer. To be
specific, if the attributes associated with the product are not satisfied within a specified time window,
the biomanufacturer is assumed to have failed. Such supply failures typically have significant financial
implications and, therefore, the assessment of the supply failure probability is of critical importance.

We consider the problem of estimating the supply failure probability. We assume that the probability of
failure from a supplier is represented with a logistic regression model. However, the parameters of the logistic
regression model are unknown to the pharmaceutical company. The estimation of the unknown parameters
from the limited amounts of historical data leads to an uncertainty called input-model uncertainty in the
simulation literature. Accounting for this uncertainty in stochastic simulations is critical and, if ignored, it
could lead to suboptimal decisions (Barton 2012). The consequences of ignoring input-model uncertainty
have been studied in a number of applications including queueing models and inventory management
models. We refer the reader to Akcay and Corlu (2017) for recent work in this area. Our goal in this paper
is to study the impact of input-model uncertainty in the estimation of the supply failure probability in a
pharmaceutical supply chain.

We capture the uncertainty in the unknown logistic-regression parameters in a Bayesian fashion, and use
Markov Chain Monte Carlo (MCMC) simulation to generate random samples from their posterior distribution,
because this posterior distribution cannot be computed analytically. Since the logistic-regression parameters
are inputs in the assessment of supply failure probability, the uncertainty in these parameters needs to be
propagated to the supply failure probability, inducing a probability distribution around the supply failure
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Figure 1: Uncertainty in the failure probability due to unknown logistic regression parameters. The red line
shows the true failure probability. (a) No historical data available; (b) 10 products with historical product
features dispersed between −1 and 1; (c) 10 products with historical product features concentrated at 0.75;
(d) 10 products with historical product features concentrated at -0.5.

probability. In this paper, our main objective is to investigate how the so-called input-model uncertainty
is affected from the characteristics of the historical product data. Figure 1 illustrates the distribution of
the supply-failure probability when it is modeled with a logistic regression model and there is one product
attribute equal to 0.75. The true supply-failure probability is marked with a red line. Figure 1(a) assumes
no historical data and the uncertainty in the supply-failure probability is due to the estimation of the
logistic-regression parameters. Figure 1(b) assumes that 10 products are available in the historical data and
the attribute of these products changes between -1 and 1. Figure 1(c) considers that these attributes all take
values very close to 0.75, the attribute of the current product. Figure 1(d) considers that they all take close
values to -0.5, a value far from the attribute of the current product. Figure 1 shows that the input-model
uncertainty is clearly affected from the characteristics of the attributes of the historical products.

In the literature on input-uncertainty from a Bayesian point of view, there are a number of recent
works on quantifying the input-model uncertainty in the simulation output in terms of the length and
probability content of the credible intervals; e.g., Xie et al. (2014), Akcay and Biller (2017), and Akcay
and Martagan (2017). However, to the best of our knowledge, we are the first to look at the characteristics
of the (multidimensional) input data and to study the influence of such input data characteristics on the
quantification of the input-model uncertainty. More specifically, we answer the following research questions:
(i) In the estimation of the supply failure probability, is the quantification of input uncertainty necessary?
In particular, when is it necessary and when is it not necessary? (ii) How do the historical product-data
characteristics affect the input-model uncertainty quantified in terms of Bayesian credible intervals?

The remainder of the paper is organized as follows. Section 2 reviews the relevant literature on
supply uncertainty in operations management. Section 3 presents the Bayesian logistic regression model
to represent the biomanufacturer’s failure probability as a function of the product attributes. Section 4
introduces an MCMC algorithm to generate samples from the joint posterior distribution of the logistic-
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regression parameters. Section 5 presents our numerical analysis and Section 6 provides some concluding
remarks with future research directions.

2 LITERATURE REVIEW

The relevant literature can be classified into three main research streams: (i) sourcing decisions under
supply risk, (ii) the effect of risk attitude in sourcing decisions under supply uncertainty, and (iii) the
literature on input uncertainty in stochastic simulations.

The first research stream has been studied extensively in the operations management literature. The
supply risk includes both disruption risk and yield risk. Disruption risk refers to the so-called rare events
such as hurricanes, tornadoes, earthquakes, and labor strikes whereas the yield risk refers to the suppliers
not being able to deliver the promised products in the desired quality or quantity. Although disruption
risk and yield risk are related to each other, their modeling and management require the use of different
approaches. Therefore, they are considered separately in the literature. Because our focus is on yield risk
in this paper, we restrict our review to yield risk in this section and refer the reader to Synder et al. (2015)
for a review on supply chain disruption risk. A common assumption in this literature is that the yield
distribution of the supplier is known with certainty. Tomlin (2009) relaxes this assumption by proposing a
Bayesian model that updates the forecasts about the yield distribution as the decision-maker learns more
about the suppliers over time. The resulting inventory management and sourcing strategies are further
investigated in Pun and Heese (2014), Saghafian and Tomlin (2016), and Silbermayr and Minner (2016).
Another common assumption is that the decision maker is risk-neutral.

The second research stream includes alternative risk measures in supply chains. Among the widely
used risk measures are utility functions, mean-variance framework, Value-at-Risk (VaR), and Conditional
Value at Risk (CVaR). Lau (1980) considers a newsvendor setting and derives optimal order quantities
under two different objectives: maximizing the expected utilization and maximizing the probability of
achieving a budgeted profit. Other studies that consider a newsvendor setting under a risk measure include
Berman and Schnabel (1986), Choi et al. (2008), Wu et al. (2009), and Choi and Chiu (2012). The risk
framework has been extended to more complex problems including multi-period inventory models and
outsourcing problems. Buzacott et al. (2011) consider a procurement setting with commitment-option
supply contracts under the mean-variance framework. Giri (2011) studies the risk-averse decision-maker’s
optimal procurement problem. The authors use an exponential utility function to measure the risk attitude
of the decision maker. Xue et al. (2016) propose a diversification strategy for a risk-sensitive manufacturer
with unreliable suppliers, where the risk attitude of the suppliers is captured by a mean-variance risk
measure. In this paper, we are not considering the supply selection problem, but rather focus on the
assessment of the supply failure probability, which is an important input to the supply selection problem.
Furthermore, our Bayesian credible interval characterization corresponds to the VaR risk measure with
respect to the risk of not knowing the true parameters of the logistic-regression model.

The third research stream, which considers the analysis of input uncertainty in stochastic simulations,
has been widely studied in the simulation literature. We can broadly categorize the methods used to capture
input uncertainty in stochastic simulations as Bayesian methods (e.g., Chick 2001; Biller and Corlu 2011;
Xie et al. 2014) or frequentist methods (e.g., Ankenman and Nelson 2012; Barton et al. 2014; Song and
Nelson 2015). In contrary to the frequentist methods, the Bayesian approach allows for incorporating expert
opinions on unknown model inputs. In this paper, we use a Bayesian model and directly feed the posterior
input-distribution parameters into simulation (instead of a using a metamodel as in Xie et al. 2014). The
incorporation of risk measures into the decision-making process to hedge against the input uncertainty is
a topic that has recently received attention in the simulation literature. Zhou and Xie (2015) are the first
to propose a risk-adjusted framework for simulation optimization considering mean-variance, VaR, and
CVaR as risk measures. Wu et al. (2018) continue the study of this problem by deriving the consistency
and the asymptotical properties of the objective function and the optimal values. Zhu et al. (2015) study
risk quantification in stochastic simulations under input uncertainty.
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3 MODEL

We consider a pharmaceutical manufacturer who works with N≥ 1 suppliers to have a specific pharmaceutical
product developed for its downstream manufacturing processes. Each product comes with a set of features of
size d denoted by x= (x1, . . . ,xd)∈X that affect a supplier’s ability to successfully develop the product. The
examples of these product features include purity, molecular mass, size, shape, hydrophobicity, endotoxicity,
etc. (Akcay and Martagan 2016). The outcome of the product development effort by each supplier is
either a success or failure. We let the binary random variable Yn denote the outcome for supplier n; i.e.,
Yn = 1 and Yn = 0 represent a success and failure, respectively. In practice, it is common to assume that
the outcome of the product development effort depends on the product features; i.e., a product with higher
purity is typically more difficult to develop than a product with lower purity. Therefore, we model the
failure probability of supplier n as

P(Yn = 0|β n,x) =
1

1+ exp(β0n +∑
d
j=1 β jnx j)

, (1)

where βn = (β0n,β1n, . . . ,βdn). Equation (1) is also known as logistic regression, a commonly used model
in practice for binary classification (Murphy 2012).

The manufacturer can outsource the product to multiple suppliers, while it is sufficient to have only one
successful supplier to be able to extract the value of the product. In other words, if none of the suppliers
is successful, the manufacturer loses the opportunity to exploit the value of the product. We refer to this
situation as the supply failure. It is of critical importance to have an accurate estimate of the probability
of supply failure. The outcome of the product development effort by a supplier is independent of the other
suppliers and, therefore, the probability of supply failure is given by

g(β ;x),
N

∏
n=1

P(Yn = 0|β n,x), (2)

where β = (β1; . . . ;βN) is an N× (d + 1) matrix that represents the logistic-regression parameters. The
logistic-regression parameters β are estimated from historical data (i.e., the past performance of each
supplier under various product attributes). Traditionally, the logistic regression models are usually fit by
maximum likelihood, using the conditional likelihood of Yn given x. We refer the reader to Section 4.4 in
Friedman et al. (2001) for further details.

We let Dn , {(xt
n,y

t
n) : t = 1, . . . ,mn} with xt

n = (xt
n1, . . . ,x

t
nd) denote the attributes of the tth product

assigned by the manufacturer to the supplier n; i.e., xt
ni is the ith attribute of the tth product undertaken by

the nth supplier, and yt
n is a binary variable that takes the value of 1 if the supplier n successfully develops

the product t and zero otherwise. Let D = {D1, . . . ,Dn} denote the collection of all the historical data
available to the manufacturer to make an inference on the unknown logistic-regression parameters β . In
practice, the finiteness of the historical data often leads to an uncertainty in the estimate of the parameters
β . Therefore, using only the point estimates of the parameters in Equation (2) can lead to poor decisions
if they are based on the estimate of the probability of supply failure.

One approach to capture the uncertainty around the unknown logistic-regression parameters β is to
adopt a Bayesian point of view and to propagate the uncertainty in the posterior distribution of β into the
performance-measure estimate. In the stochastic simulation literature, where the performance measures are
estimated via simulation (e.g., discrete-event simulation), Xie et al. (2014), Akcay and Biller (2017) and
Akcay and Martagan (2017) are some of the recent examples. We note that the evaluation of the supply
failure probability g(β ;x) in (2) does not itself require simulation because the failure probability of each
supplier is available in closed form by Equation (1). In this paper, we use simulation to generate random
samples from the posterior distribution of β and build a probability distribution for the supply failure
g(β ;x), which we refer as the input-model uncertainty. In other words, we focus only on the input-model
uncertainty and do not consider any intrinsic simulation uncertainty. If the intrinsic simulation uncertainty
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was present (i.e., when the random samples of Yn were used to estimate the failure probability in Equation 1),
then a nested Monte Carlo simulation approach is needed to quantify the role of input-model uncertainty
and the intrinsic simulation uncertainty on estimating the mean simulation response.

In order to obtain the posterior distribution of the logistic-regression parameters βn associated with the
nth supplier having the historical data Dn, we first pick a prior π0(βn) that represents the initial belief of
the manufacturer about βn. Since the likelihood of the data Dn is given by

mn

∏
t=1

P(Y t
n = 1|β n,x

t
n)

yt
n P(Y t

n = 0|β n,x
t
n)

1−yt
n ,

by Bayesian updating, we obtain the posterior distribution of βn as

π(βn|Dn) ∝ π0(βn)
mn

∏
t=1

(
exp
(
β0n +∑

d
j=1 β jnxt

ni
)

1+ exp
(
β0n +∑

d
j=1 β jnxt

ni

))yt
n
(

1
1+ exp

(
β0n +∑

d
j=1 β jnxt

ni

))1−yt
n

, (3)

where the notation ∝ denotes equivalence up to a normalization constant. It is well known that the
normalization constant for the posterior in this model is analytically intractable (Murphy 2012). Furthermore,
unlike the linear regression, there is no convenient conjugate prior for βn in the logistic regression. Therefore,
we use a Markov Chain Monte Carlo (MCMC) approach to approximate the posterior distribution π(βn|Dn)
via sampling random realizations from this distribution (Section 4).

4 QUANTIFYING THE INPUT UNCERTAINTY IN THE SUPPLY FAILURE PROBABILITY

In this section, we address how the uncertainties around the logistic-regression parameters β = (β1, . . . ,βN)
translate into the assessment of the probability of supply failure g(β ;x). Since we take a Bayesian approach,
β n is treated as a vector of random variables whose distribution represents the current belief on the likely
values of β n for the nth supplier. The MCMC approach allows us for generating random samples from this
posterior distribution even though we cannot compute this posterior distribution analytically (Section 4.1).
We then use these random samples to quantify the input-model uncertainty in the supply failure probability
(Section 4.2).

4.1 Posterior Distribution of the Logistic-Regression Parameters

In Figure 2, we present how a random sample from the posterior distribution of the logistic-regression
parameters βn is generated. The idea behind the MCMC approach is to generate a sequence of realizations
of β n such that the stationary distribution of this sequence is the posterior distribution π(β n|Dn); we refer
the reader to Andrieu et al. (2003) for a survey on the MCMC algorithms. Following Akcay and Martagan
(2016), we adapt the slice sampling algorithm in Neal (2003), which only requires the unnormalized
posterior in (3) without specifying a proposal or marginal distribution. The intuition behind slice sampling
is based on the observation that to sample a random variable one can sample uniformly from the region
(or more specifically, a hyperrectangle slice) under the graph of its density function.
The width parameters in the algorithm presented in Figure 2 represent the length of the interval around the
current sample. The algorithm begins with this interval and searches for an appropriate region containing
the points of posterior density that evaluate to a large enough value. We refer the reader to Neal (2003)
for the details on how to select the width parameters. In our implementation of the algorithm in Figure 2,
we choose the initial point β 0

n and the width parameters randomly from a specified region (see Section 5).
It is also critical to verify that the Markov Chain {β s

n : s= 0,1, . . .} converges to its stationary distribution.
We observe in the marginal trace plots that the stationarity is always achieved for the values of s greater than
1000. Thus, we assume that the length of the burn-in period is 1000; i.e., the samples during the burn-in
period are discarded. To reduce the serial autocorrelation in the samples, we set the thinning parameter
equal to 10; i.e., we collect the samples at every 10 iterations of the algorithm in Figure 2.
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1: Inputs: (i) Unnormalized posterior density in Equation (3); let π̂(β ) denote this density. (ii) The
current point of βn denoted by β s

n = (β s
0n,β

s
1n . . . ,β

s
dn). (iii) The width parameters w = (w0,w1 . . . ,wd).

2: Output: The new point β s+1
n = (β s+1

0n ,β s+1
1n . . . ,β s+1

dn ).

3: Step 1: Generate a random variate u∼ Uniform(0, π̂(β s
n).

4: Step 2: Randomly position the hyperrectangle H = (L0,R0)× (L1,R1)× . . .× (Ld ,Rd):
5: Ui← Uniform (0,1); Li← β s

in−wiUi; and Ri← Li +wi for i = 0, . . . ,d.

6: Step 3: Sample from H and change its size when a new sample is rejected:
7: Repeat:
8: Ui← Uniform (0,1); and β

s+1
in ← Li +Ui(Ri−Li) for i = 0, . . . ,d.

9: if u < π̂(β s+1
n ) then Exit loop

10: end if
11: for i = 0 to d do
12: if β

s+1
in < β s

in then Li← β
s+1
in

13: else Ri← β
s+1
in

14: end if
15: end for

Figure 2: Sampling from the posterior distribution of the logistic-regression parameters βn.

4.2 Quantification of the Input-Model Uncertainty

We quantify the uncertainty in the supply failure probability g(β ;x) by propagating the uncertainty in
the logistic-regression parameters β into g(β ;x). This induces a complete probability distribution for
g(β ;x); we capture this distribution through a Bayesian credible interval (Xie et al. 2014). More specifi-
cally, we construct a (1−α)100% credible interval [qL,qU ] for g(β ;x) such that the probability content,
which is defined as P(g(β ;x) ≤ qU |D)−P(g(β ;x) ≤ qL|D), is equal to 1−α . We notice that there is
not a unique credible interval meeting this requirement. Therefore, we focus on two-sided and equal-
tail probability (1−α)100% credible intervals in the remainder of the paper. More specifically, we let
qL , qα/2 = min{q : P(g(β ;x) ≤ q) ≥ α/2} and qU , q1−α/2 = min{q : P(g(β ;x) ≤ q) ≥ 1−α/2}. As
we cannot directly evaluate the posterior distribution of g(β ;x), we obtain a Monte-Carlo estimate of this
credible interval as outlined in Figure 3.

1: Inputs: Risk level α; confidence level on the estimated values of qL and qU ; the feature vector of the
current product x; the number of samples R to generate to form the distribution of g(β ;x).

2: Output: The credible interval [qL,qU ].
3: for r = 1 to R do
4: Generate the rth sample β r

n from the posterior distribution of β r
n for supplier n ∈ {1, . . . ,N}.

5: τr← g(β r;x) where β r = (β r
1 , . . . ,β

r
N).

6: end for
7: Estimate the density of g(β ;x); let f̂ (·) denote this density.
8: Let ω denote

√
α(1−α)/

√
R f̂ (τ(dRα/2e)) where τ(r) denotes the rth smallest value in the set {τr : r =

1,2, . . . ,R}.
9: qL← τ(dRα/2e)− z γ

2
ω and qU ← τ(dR(1−α/2)e)+ z1− γ

2
ω where zα/2 = Φ−1(α/2) and Φ(·) is the cdf of

a standard normal random variable.

Figure 3: Estimation of the credible interval for the supply failure probability.
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In Figure 3, the risk level α represents the sensitiveness to the input-model uncertainty in the assessment
of the supply failure probability. For instance, if α = 0.05, the risk assessment becomes more conservative
as the length of the credible interval (i.e., the likely values of the true supply failure probability) increases.
On the other hand, if α = 0.5, the risk assessment becomes less conservative as the length of the credible
interval decreases (i.e., less importance is given to the tails of the probability distribution of g(β ;x)). Steps
7 – 9 in Figure 3 follow from the asymptotic normality of the estimator of the qth quantile of g(β ;x); i.e., if
v̂R

q is the (dRqe)th largest observation of R independent samples from g(β ;x) and P(g(β ;x)≤ vq) = q, then√
R(v̂R

q − vq) converges in distribution to (
√

α(1−α)/ f (vq))Z as R→ ∞ where Z represents a standard
normal random variable and f (·) is the density of g(β ;x) (Hong et al. 2014). A standard method to
approximate f (·) is to use the kernel density estimation (Wasserman 2006).

It is of practical importance to know how the input-model uncertainty is affected from the characteristics
of the products in the historical data. To capture the similarity of the current product and the old products, we
define resemblance as ‖x− x̄n‖ where ‖·‖ is the Euclidian norm, x̄n = (x̄n1, . . . , x̄nd) and x̄nd = ∑

mn
t=1 xt

ni/mn.
We choose the Euclidian norm as it gives the intuitive notion of the length of the vector x− x̄n. Another
important characteristic of the historical product data is the dispersion of the product features; i.e., the
extent of the variety of the product features developed by the supplier. To capture this characteristic, we
define dispersion as ∑

d
i=1 wisi where si =

√
∑

mn
t=1(x

t
ni− x̄ni)2/(mn−1) is the standard deviation of the ith

feature of the products developed by the nth supplier and wi is the user-specified weight factor to capture
the relative importance of the ith feature. Notice that other representations of the notions of resemblance
and dispersion are possible. We leave it as a future research to investigate such possible representations
and their impact on the input-model uncertainty in the assessment of the supply failure probability.

5 NUMERICAL RESULTS

In our numerical experiments, we let N = 1 and d = 1. The feature variable is assumed to take continuous
values in the domain (-1,1). We divide the feature domain by ∆ ∈ {2i : i = 0,1,2, . . . ,8} and randomly
generate the feature of the m historical products from one of the ∆ slots. Having ∆ too small (large) assures
that the feature variable of the historical products are generated from a larger (smaller) interval, implying
that the dispersion of the feature variable of the historical products are high (low). We generate the feature
variable of the current product uniformly from its domain and calculate the resemblance of the current
product feature to the features of the products in the historical data. In total, we generate 50,000 random
instances and, in each instance, the true values of the logistic-regression parameters are generated from
a uniform distribution between -2 and 2. The prior information on the distribution of each parameter is
assumed to be normal with mean 0 and standard deviation σ0.

Figure 4 presents how the credible interval (CrI) width (i.e., qU − qL) changes as a function of the
resemblance and dispersion values generated at these instances. We fit a third-order polynomial surface to
better reflect the impact of resemblance and dispersion on the CrI width. Figure 4 shows that (i) the input-
model uncertainty (i.e., measured by the CrI width) becomes smaller as the current product characteristic
gets closer to the characteristics of the historical product and (ii) for a large number of historical products,
the input-model uncertainty becomes larger as the dispersion decreases at low resemblance (i.e., when it
is closer to -1 or 1). On the other hand, the input-model uncertainty does not necessarily increase as the
dispersion decreases at low resemblance when the number of historical products is small. This observation
provides an answer to our first research question listed in Section 1 on whether and when the quantification
of input uncertainty is necessary. Essentially, Figure 4 shows that input uncertainty is especially a relevant
problem in the estimation of the supply-failure probability when the product features of the current product
deviate considerably from the features of the products in the historical data and an attribute varies a lot
from one product to another in the historical data.

Figure 4 only considers the CrI width as the measure of input-model uncertainty. In Tables 1 and
2, we further report the probability content (PC) as a measure of validity in the input-model uncertainty
quantification. To be specific, in principle, as the number of historical data increases, PC must converge
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Figure 4: σ0 = 1 and α = 0.1.

to 1−α . A higher (lower) PC is an indication that the CrI width is larger (smaller) than it is supposed
to be. In Tables 1 and 2, we investigate how the deviation from 1−α is affected by the dispersion and
resemblance values. For ease in presentation, we group the dispersion values in the 50,000 instances into
low, medium, and high, captured by DI, DII, and DIII, respectively. More specifically, DI corresponds to
the instances with ∆∈ {1,2,4}, DII corresponds to the instances with ∆∈ {8,16,32}, and DIII corresponds
to the instances with ∆∈ {64,128,256}. We group the resemblance values in the 50,000 instance into three
groups as well: RI represents the instances where the resemblance is less than the 20% quantile of all the
resemblance values, RII represents the instances where the resemblance is within the 40%–60% quantile
of all the resemblance values, and, finally, RIII represents the instances where the resemblance is greater
than the 80% quantile of all the resemblance values.

Table 1 provides an answer to our second research question listed in Section 1 on how the historical
product data characteristics affect the input-model uncertainty quantified in terms of Bayesian credible
intervals. Specifically, Table 1 shows that, for a given value of m, the CrI width is much smaller for RII
compared to RI and RIII while having a PC closer to 0.95. This means that if the current product is similar
to the products in the historical data, the input-model uncertainty is lower. Table 1 also shows that, as
m increases, the CrI width typically becomes much larger in DIII compared to DI. This indicates that as
the feature variable of the historical product becomes less dispersed (i.e., the products developed by the
supplier are more similar), the input-model uncertainty continues to be significant even for large values of
m. On the other hand, if the products developed by the supplier become more dispersed, the input-model
uncertainty decreases much faster with the increasing number of products.
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Table 1: The effect of the number of historical products (n) on the credible interval (CrI) width and the
probability content (PC) for σ0 = 1 and α = 0.025.

(a) m = 10
RI RII RIII

DI
CrI width 0.717 ± 0.014 0.479 ± 0.007 0.707 ± 0.012

PC 0.950 ± 0.031 0.956 ± 0.026 0.932 ± 0.036

DII
CrI width 0.741 ± 0.010 0.453 ± 0.009 0.748 ± 0.012

PC 0.979 ± 0.019 0.995 ± 0.010 0.956 ± 0.027

DIII
CrI width 0.733 ± 0.012 0.468 ± 0.008 0.733 ± 0.013

PC 0.904 ± 0.038 0.978 ± 0.020 0.948 ± 0.028

(b) m = 40
RI RII RIII

DI
CrI width 0.615 ± 0.020 0.272 ± 0.006 0.568 ± 0.022

PC 0.873 ± 0.046 0.952 ± 0.027 0.978 ± 0.021

DII
CrI width 0.715 ± 0.012 0.275 ± 0.007 0.686 ± 0.016

PC 0.938 ± 0.027 0.971 ± 0.023 0.947 ± 0.027

DIII
CrI width 0.705 ± 0.016 0.268 ± 0.007 0.719 ± 0.013

PC 0.922 ± 0.037 0.946 ± 0.028 0.929 ± 0.031

(c) m = 80
RI RII RIII

DI
CrI width 0.494 ± 0.026 0.206 ± 0.005 0.562 ± 0.0225

PC 0.897 ± 0.044 0.930 ± 0.033 0.926 ± 0.0361

DII
CrI width 0.689 ± 0.015 0.208 ± 0.005 0.717 ± 0.0144

PC 0.935 ± 0.029 0.974 ± 0.021 0.895 ± 0.037

DIII
CrI width 0.684 ± 0.018 0.199 ± 0.005 0.715 ± 0.0146

PC 0.907 ± 0.038 0.930 ± 0.033 0.922 ± 0.0357

(d) m = 160
RI RII RIII

DI
CrI width 0.441 ± 0.025 0.151 ± 0.003 0.458 ± 0.0231

PC 0.928 ± 0.033 0.991 ± 0.013 0.924 ± 0.0358

DII
CrI width 0.659 ± 0.016 0.154 ± 0.005 0.699 ± 0.0164

PC 0.931 ± 0.034 0.946 ± 0.030 0.947 ± 0.0271

DIII
CrI width 0.666 ± 0.018 0.154 ± 0.005 0.714 ± 0.0146

PC 0.940 ± 0.031 0.996 ± 0.008 0.920 ± 0.0365
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Table 2: The effect of the risk level (α) on the credible interval (CrI) width and the probability content
(PC) for σ0 = 1 and m = 10.

(a) α = 0.05
RI RII RIII

DI
CrI width 0.639 ± 0.014 0.409 ± 0.006 0.627 ± 0.012

PC 0.864 ± 0.048 0.895 ± 0.038 0.854 ± 0.050

DII
CrI width 0.664 ± 0.011 0.387 ± 0.008 0.672 ± 0.012

PC 0.945 ± 0.029 0.975 ± 0.021 0.948 ± 0.029

DIII
CrI width 0.658 ± 0.012 0.401 ± 0.008 0.656 ± 0.013

PC 0.862 ± 0.044 0.914 ± 0.037 0.873 ± 0.041

(b) α = 0.10
RI RII RIII

DI
CrI width 0.530 ± 0.014 0.325 ± 0.005 0.520 ± 0.012

PC 0.798 ± 0.056 0.778 ± 0.052 0.724 ± 0.063

DII
CrI width 0.554 ± 0.011 0.307 ± 0.007 0.562 ± 0.012

PC 0.817 ± 0.050 0.892 ± 0.043 0.838 ± 0.048

DIII
CrI width 0.548 ± 0.012 0.320 ± 0.006 0.548 ± 0.013

PC 0.778 ± 0.053 0.833 ± 0.049 0.765 ± 0.053

(c) α = 0.25
RI RII RIII

DI
CrI width 0.306 ± 0.010 0.180 ± 0.003 0.301 ± 0.008

PC 0.475 ± 0.070 0.500 ± 0.062 0.432 ± 0.070

DII
CrI width 0.324 ± 0.008 0.168 ± 0.004 0.330 ± 0.009

PC 0.528 ± 0.064 0.483 ± 0.069 0.467 ± 0.065

DIII
CrI width 0.322 ± 0.009 0.175 ± 0.004 0.323 ± 0.009

PC 0.460 ± 0.063 0.550 ± 0.066 0.406 ± 0.061

In Table 2, we investigate the effect of the risk level α on the CrI width and the PC. Since the risk
level 1−α can be interpreted as the sensitiveness to the input-model uncertainty, we observe that, as α

decreases, the CrI width increases in order to ensure that the true supply failure probability is included in
the CrI. We note that the aforementioned effect of the resemblance on the input-model uncertainty continues
to hold for the values of the risk level α ∈ {0.05,0.1,0.25}.

6 CONCLUSION

We consider a pharmaceutical supply chain where the manufacturer sources a customized product with
unique attributes. Different from a classical random yield setting, the attributes of the products determine
the likelihood of the successful development of the products by the suppliers. We model the supply failure
probability as Bayesian logistic regression and use simulation to obtain the posterior distribution of the
unknown parameters of this model. We define two characteristics of the historical products, namely, the
dispersion and resemblance, and investigate their impact on the input-model uncertainty due to not knowing
the true values of the logistic-regression parameters.
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