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ABSTRACT 

By outsourcing major aircraft systems to Tier 1 suppliers, original equipment manufacturers depend heavily 
on their supply chain to meet the growing demand for aircrafts. However, capacity constraints upstream of 
the Tier 1 suppliers increase the risk of schedule disruption. Discrete event simulation is commonly applied 
to analyze capacity constraints in manufacturing systems while analytical models assess financial 

investment scenarios for capital equipment. This paper demonstrates a combined simulation and analytical 
modeling approach to simulate the operational and financial implications of capacity constraints in 
aerospace supply chains. A three-tier supply chain is modeled with the option of investing to remove a 
capacity constraint in a sub-tier supplier. The results demonstrate how a supplier’s capacity investment 
decisions and the increasing demand for aircrafts can affect their cash flow and delivery schedule adherence. 

1 INTRODUCTION 

1.1 Capacity Management in Aerospace Supply Chains 

The demand for air travel is expected to rise dramatically within the upcoming 15-20 years with leading 
aircraft manufacturers estimating demand of 36,000–41,000 new aircrafts during this period (Boeing 2017; 
Airbus 2018). Aircraft original equipment manufacturers (OEMs) must ensure that they and their suppliers 
have sufficient capacity to meet the growing demand if they are to maximize their long-term profits, leading 
to capacity becoming a key factor in OEMs’ outsourcing decisions. This includes suppliers located 

upstream of Tier 1 (T1) suppliers since they are trusted to manage their upstream supply chain (SC), leading 
to OEMs having relatively little contact with their wider SC (Dostaler 2013; Alfalla-Luque et al. 2013). As 
a result, the risk of an aircraft OEM not having sufficient capacity in their upstream SC when outsourcing 
to a T1 supplier is increased. However, the highly strategic nature of outsourcing now requires firms to 
gather more information about their potential suppliers (Bayraktar et al. 2007). These suppliers are required 
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to demonstrate that they currently have or will have enough capacity to support the OEM’s production. If 
the latter, the suppliers would share their capacity management plans with the OEM, including plans to 
invest in additional capacity (e.g., acquiring new facilities or machines). Such decisions can have a 

significant impact on the wider SC (Wang et al. 2007a) due to the operational and financial consequences 
of capacity investments. In a similar manner to capacity constraints causing SC disruption, SC disruptions 
cause major operational delays in the aerospace industry due to part shortages (Treuner et al. 2012).  

In addition, the financial position of SC members has become an important factor in outsourcing 
decisions (Bayraktar et al. 2007). Another cause of SC disruptions is suppliers becoming financially 
distressed and unable to meet their financial obligations (Treuner et al. 2012). Since cash is needed to 

sustain operations by paying for labor, overhead, etc., running out of cash places a firm’s, and subsequently 
the SC’s, operations at risk of disruption. This indicates that there is a relationship between the performance 
of individual firms and that of the SC that must be understood when making outsourcing decisions. 

This requirement makes the resolution of capacity constraints in the SC context a particularly 
challenging matter. Reasons for this include the high cost to expand capacity (Wang et al. 2007b), the long 
lead times involved with installing the equipment (Wang et al. 2007b), and how such decisions are typically 

expensive and difficult to reverse (Wu et al. 2005). As a result, suppliers can be reluctant to invest in 
additional capacity due to the risk of demand dropping, thus making their investment redundant. One 
notable case of this phenomenon concerned the major expansions that Boeing and their SC made to support 
an increase in production of the Boeing-747 aircraft (Wang et al. 2007b). Shortly after these expansions, 
the Asian financial crisis occurred, causing a drop in demand for the aircraft. Boeing was forced to drop its 
production, and their suppliers incurred huge losses (Wang et al. 2007b). The implications of capacity 

constraints on the wider SC’s performance are, therefore, an important matter to consider when outsourcing. 

1.2 Analytical and Simulation Modeling for Supporting Supply Chain Capacity Management 

Analytical models have been used to identify and analyze the financial implications of SC capacity 
management decisions with the aim of minimizing the total costs incurred and/or maximizing the net 
present value (NPV) or profit generated (Martínez-Costa et al. 2014). Analytical models are represented as 
a series of mathematical equations that are typically static in nature (i.e., they do not capture the dynamic 

behavior of the modeled system over time). The traditional approach to capacity planning (CP) is to use a 
spreadsheet-based tool to calculate the number of machines or workstations (WS) required by dividing the 
total capacity needed to meet demand by the capacity of a single WS (Geng and Jiang 2009). This approach 
is commonly used due to its ease of application and ability to quickly assess capacity constraints in a system. 

An example of analytical modeling being used to evaluate the financial impact of capacity investments 
in a SC context can be found in Chauhan et al. (2004) where the authors build a strategic CP model for a 

three-stage SC using mixed integer programming. They modeled the cost of investing in additional 
production capacity within producers and/or transport capacity between SC members by modifying the 
capacity of each producer and transport at an aggregate level.  

Strategic CP in a SC context also brings the challenge of resolving conflicts of interest between SC 
partners despite their interdependent relationships. One such conflict of interest regards the expense in 
acquiring additional capacity, since they are making a significant financial risk based on the expectation 

that they will experience an increase in demand from their downstream SC partners. To alleviate these risks, 
researchers have modeled the use of contractual agreements when developing CP strategies. In the study 
by Mathur and Shah (2008), suppliers are encouraged to invest by including protection against unrealized 
demand by adjusting the price of products in the contract. Yang et al. (2017) explore the use of cost sharing 
contracts to split the investment costs between suppliers and downstream SC partners upon reaching 
thresholds in the suppliers’ capacity. Understanding the financial cash flows that suppliers experience if 

they invest in additional capacity can be used to identify financial risks in outsourcing decisions. However, 
analytical modeling is typically limited to static analysis or aggregated SC structures. To model individual 
machines within SC members requires increasing the size and difficulty in solving the problem modeled. 
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Simulation is frequently applied to process planning problems in manufacturing firms as a replacement 
to static analysis (Jeon and Kim 2016). In an industrially relevant example, the discrete event simulation 
(DES) software package QUEST is used to optimize the assembly process of the Boeing-747 to improve 

assembly efficiency and cycle times through use of the moving-line concept (Lu and Sundaram 2002). DES 
was also applied to process planning for mobile phone and ship manufacture (Jeon and Kim 2016), 
demonstrating its versatility. Georgiadis (2013) uses system dynamics (SD) to develop a CP model for a 
recycling plant that considers the impact of investment on the NPV generated over time. Hussain et al. 
(2016) used the SD software package iThink® to evaluate the impact of capacity constraints and safety 
stock on the backlog levels in a two-tier SC. Cannella et al. (2008) used the Vensim SD software to simulate 

the impact of various capacity constraint levels on SC performance. Their approaches focused on backlog 
and inventory levels in the SC although the cash-flow or financial position of SC members are not modeled. 

In summary, the impact of CP decisions on the financial and operational performance of individual 
sites and SCs have been investigated using analytical and simulation techniques, the latter being noted for 
its ability to capture a SC’s dynamic and complex behavior. SD in particular is frequently used for CP (Jeon 
and Kim 2016). DES on the other hand requires a non-trivial amount of data and time to build, run, and 

analyze simulation experiments (Geng and Jiang 2009). However, the flexibility of DES to model systems 
in high fidelity and its ability to track the movement of individual entities makes it highly applicable to 
modeling aircraft manufacturing SCs where production volumes are low in contrast to the problems 
investigated using SD in the mentioned literature. While DES is not typically used to model the financial 
impact of CP decisions in a SC context, it can generate high quality data to support such techniques (i.e., 
analytical modeling). By exporting the required data to a tool for analysis, the effort required to modify 

DES models to capture the financial impact of CP decisions is minimized. This creates an opportunity to 
leverage the strengths of DES to connect the operational implications of capacity constraints and investment 
strategies to the SC’s financial performance to support outsourcing decisions in the aerospace industry. 

This paper presents a methodology to simulate the influence of capacity constraints and available 
investment scenarios on aerospace SC performance to support an aircraft OEM’s outsourcing decisions. 
Section 2 describes the methodology developed while Section 3 demonstrates its capability with 

experimental results. Section 4 discusses the implications of the results and their relevance to outsourcing 
decisions in aerospace SCs and Section 5 summarizes the main findings of this paper. 

2 METHODOLOGY 

2.1 Methodology Overview 

Figure 1 illustrates the combined simulation and analytical modeling approach used in this paper to model 
the influence of external demand and CP decisions on SC performance. Since the state of each SC member’s 

process flows changes over time due to increasing demand and the emergence of capacity constraints, DES 
is used to capture the SC’s dynamic behavior. The simulation model described in Section 2.3 exports the 
timing of events that trigger the flow of cash between SC members. Additional capacity from investment 
in capital equipment (CE) became available after a specified time, representing their installment dates.  

The arrival of a delivery initiated the time period defined by the payment terms before the supplier was 
paid by the recipient. This date was also used to determine how late an order was for the purposes of 

calculating lateness penalties. Machine-type elements with a dedicated logics file were placed in front of 
the raw material stores of each SC member to export the arrival date of parts entering the stores. The total 
manufacturing expenditure incurred and the value of inventory held by each SC member each month were 
exported from the simulation. Machine-type elements with a dedicated logics file were created to gather 
the manufacturing and inventory data of the SC member it was assigned to. The analytical model presented 
in Section 2.5 correlated the timing of the exported data to the appropriate time period to calculate the 

timing of (i) incoming revenues for delivered goods; (ii) payments to purchase raw materials and perform 
manufacturing processes; (iii) inventory holding cost (IHC) incurred; and (iv) late delivery penalties 
incurred. The analytical model linked the operational performance of each supplier to its financial 
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performance. Inputs for the analytical model were the supplier payment terms, payment plans for capacity 
investment, lateness penalties, and interest rates applied when calculating the IHC. 

 

Figure 1: Overview of the combined simulation and analytical modeling methodology. 

2.2 Discrete Event Simulation 

This paper uses Delmia QUEST (QUeuing Event Simulation Tool), a commercial DES software package. 
DES concerns the modeling of dynamic systems by representing them as a series of interconnected activities 

and queues that are often subject to random (stochastic) variation (Robinson 2014; Law 2015). The dynamic 
behavior of the system is captured by updating the variables that represent their current state (the system’s 
“status”) every time an “event” occurs (a discrete point in time where the system changes in some fashion, 
e.g., a process begins/ends) (Law 2015). Examples of a system’s state variables include the number of parts 
at each resource/queue and the value of attributes assigned to entities. Since the time between events can 
vary, the status of the system “jumps” at discrete points in time and is constant during the intervals 

(Robinson 2014). Examples of QUEST being used in the aerospace industry include the studies performed 
by Lu and Sundaram (2002) and Prado and Villani (2010). If a high level of detail is not required, a model 
can be simplified by aggregating parts of the system. A detailed description of DES and its underlying 
mechanics can be found in Robinson (2014) and Law (2015). 

2.3 Supply Chain Simulation Model 

Figure 2 illustrates the SC modeled, consisting of an aircraft OEM, a T1 supplier for a major aircraft 

structure and a Tier 2 (T2) supplier providing the structure’s machined parts. Each supplier’s processes 
were modeled to identify capacity constraints, including their inventory stores and transportation between 
SC partners. Discussion with the OEM’s manufacturing engineers and reviews of the aircraft structure’s 
manufacturing documents revealed that it is comprised of composite skins and stiffeners, machined parts 
and a variety of miscellaneous parts (fasteners, seals, etc.). The skins and stiffeners were fabricated in 
parallel before being taken to the final assembly jig. The skins also had a structural core attached during 

the ply lay-up process. All the other parts were sent directly to the assembly jig. 
The OEM shared a master schedule (MS) containing their demand for aircraft structures with the T1 

supplier who then used the material requirements planning (MRP) inventory management technique to 
schedule their manufacturing and procurement orders. These orders were generated by a Microsoft Excel 
VBA macro representing their MRP system. 

The T1 supplier had one aircraft set’s worth of assembly jigs, turnover fixtures, and composite molds 

to produce the skins and stiffeners. The other WS were shared with other product lines and were represented 
by scheduling “windows” of time where the composite parts could be served by them. The cycle time data 
for the T1 supplier’s processes were calculated using the OEM’s parametric costing guide for 
composite/assembly processes. The resulting data were then validated using estimates provided by the 
OEM’s manufacturing engineers. An initial simulation run showed that an average throughput of one 
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aircraft structure per week under a single shift pattern was established, which was validated by discussing 
the results with SC managers’ based on their experience with the T1 supplier. 

As the OEM didn’t maintain direct communication with the T2 supplier, it was not possible to directly 

access information regarding their process flows or WS. Instead, the OEM’s manufacturing expertise was 
used to identify the processes and WS involved in their manufacture. Cycle time estimates for each process 
were calculated from spreadsheet-based parametric models. Since the number of WS in the T2 supplier was 
unknown, it was assumed one of each type of WS was present, representing the minimum capacity the T2 
supplier could be expected to have. Since all of the WS would be shared between other product lines, a 
“window” of time was scheduled for processing the machined parts at each WS. It was assumed the T1 

supplier’s procurement orders for machined parts were used as the MS for the T2 supplier’s MRP system 
when scheduling their procurement and manufacturing orders. 

 

Figure 2: The SC structure showing A) the T2 supplier’s machining process flow; the T1 supplier's process 
flow for B) structural core fabrication; C) composite skin and stiffener fabrication; and D) final assembly. 
The triangles show the location of elements that recorded the arrival date of parts into each SC member. 

The following assumptions were applied in the simulation model: 
 

1. Parts from suppliers not modeled arrived on time and in perfect quality.  
2. There were no losses due to scrapped parts or materials. 
3. Production rates steadily increased from one aircraft set per month to one aircraft set per week. 
4. Unlike the T1 supplier, the T2 supplier suffered no financial penalties for late deliveries. 
5. A one week safety lead-time was applied to both suppliers’ raw material and finished goods stores. 
6. Since both suppliers used the MRP inventory management technique, it was assumed that all lead 

times were constant and all of the WS in the SC model had infinite capacity when scheduling the 
procurement and manufacturing orders. 

2.4 Capital Expenditure Model 

The cost and payment plan for the CE were used to calculate the impact of the investment on each supplier’s 
cash flow and hourly manufacturing cost rates. How expenditures related to CE are recorded and allocated 
to individual products depends on how the CE will be used. If the CE will be used for multiple products 

(e.g., a CNC machine), it is defined as non-contract-specific. The cost of the CE is depreciated over its 
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lifecycle using the equation Depreciation = CE Cost / CE Lifecycle and is allocated as an overhead cost. 
The additional overhead cost due to depreciating the CE is included in the hourly manufacturing cost rate, 
which is calculated as Machine Hourly Rate = Yearly Expenditure / Value Added Hours. If the CE is for a 

bespoke product (e.g., a composite mold), the cost of the equipment is amortized over each aircraft set using 
the equation Amortization Per Set = CE Cost / Number of Sets. The number of sets the CE is amortized 
over requires a balance between recouping the investment as quickly as possible while minimizing the cost 
per aircraft set to maintain competitiveness. 

2.5 Financial Model 

The main long-term goal of profit-making organizations is to maximize the profits made from their 

activities (Dyson 2001). In a manufacturing context, making profit involves satisfying customer demand 
unless it is economically infeasible to do so. Investing in additional capacity implies an expected increase 
in demand and an opportunity to generate more profit provided there is enough demand to offset the 
investment. However, cash is needed to sustain operations by paying for labor, overheads, and so on; 
running out of cash places a firm’s operational activities at risk of disruption. Making profits in the long-
term is unlikely to happen unless the short-term cash position of a firm is monitored (Dyson 2001). Due to 

their importance to the SC’s financial and operational performance, the cash flow of the T1 and T2 supplier 
as a result of capacity investments made are measured. 

The capital expenditure model incorporated any capacity investment payments made (defined by the 
payment plan for the WS). The date and value of these payments were correlated to the appropriate month 
to calculate the net cash flow (NCF) into the firm after expenses for manufacturing activities, raw material 
purchases, lateness penalties, and payments for capacity investments. The total manufacturing expenditure 

incurred by each supplier was calculated by summing the product of the cycle time for each process 
performed each month and its hourly cost rate. The NCF of each month, tm, was summed to calculate the 
cumulative cash flow (CCF) of each supplier at a given month, Tm: 
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As OEMs can suffer significant financial consequences because of schedule disruptions, financial 

penalties were applied to the T1 supplier when they delivered aircraft structures late to the OEM. The 
penalty applied was calculated by multiplying the lateness of the product by a constant. The lateness of the 
product was equal to the number of days a delivery was late according to the MS. The IHC was modeled 
by measuring the average total value of raw materials, work in progress (WIP) and finished goods held by 

each supplier and multiplying it by their interest rate. Any parts or products in transit to a customer were 
included in the supplier’s finished goods inventory. The value of inventory of each supplier was measured 
by summing the value of each part’s raw material and manufacturing cost in their stores and process flows. 
The raw material cost is the price paid to acquire the part while the manufacturing cost represents the work 
performed on it to create a saleable product. Both costs were modeled as part attributes. When a process 
was completed on a part, the cost to perform the process was added to the part’s manufacturing cost. 

Since outsourcing decisions for large aircraft systems and structures in the aerospace industry are 
strategic in nature, a long-term perspective is required. Having cash available today is more valuable than 
having it later. To represent this, the NPV of cash was calculated to adjust the value of cash flows, C, in 
each year, t, after the start date up to the year of interest, T. A rate of return, r, of 10% was assumed when 
calculating the NPV. More details regarding the NPV of cash can be found in Dyson (2001). 

 

3113



Allen, Murphy, Butterfield, Drummond, Robb, Higgins, and Barden 
 

 
( )0 1

T
t

t
t

C
NPV

r=

=
+

   

3 RESULTS 

3.1 Supply Chain Scenarios and Capacity Analysis 

The capacity constraint in the SC model was initially identified using a spreadsheet-based capacity planner 
(Figure 3). The capacity constraint in the SC was found to be the non-destructive inspection (NDI) machine 
at the T2 supplier. As it was a non-contract-specific machine, the cost to acquire a NDI machine is 

depreciated as an overhead, thus increasing the hourly manufacturing cost rate.  

 

Figure 3: Location of the capacity constraint in A) the SC; and B) the T2 supplier (indicated by the boxes). 

The impact of this capacity constraint on the SC’s operational and financial performance was 
investigated in three scenarios (Table 1). The MS for aircraft structures, the daily lateness penalty applied 
to the T1 supplier, the T1 supplier’s manufacturing cost rate, capacity, and price for the aircraft structure 
were constant across all three scenarios.  

Table 1: The experimental scenarios. 

Scenario Investment Made? Hourly Rate Price 

1 No (Required) 100% 100% 
2 Yes (Required) 105% 105% 

3 No (Not Required) 110% 110% 

 
In the first scenario, the T2 supplier decides not to invest in another NDI machine due to the cost 

involved despite the anticipated increase in demand, since they do not incur any penalties for late deliveries. 
In the second scenario, the T2 supplier decides to invest in another NDI machine in order to generate more 

profit once demand increases. The price of the NDI machine was paid in three installments; the first and 
second payments were valued at 25% of the machine’s price and were paid two years and one year prior to 
the installment date respectively. The remaining 50% was paid on the date the machine was installed. The 
investment causes the T2 supplier’s overheads to rise as the machine is depreciated, increasing their hourly 
manufacturing cost rate by 5% compared to scenario 1. To compensate, the T1 supplier agrees to a price 
increase of 5% for all the machined parts delivered. In the third scenario, another T2 supplier is identified 

by the T1 supplier. The T2 supplier already has enough capacity to support the T1 supplier’s production 
and does not need to invest. However, they are more expensive; their hourly cost rate and prices for 
machined parts is 10% higher compared to scenario 1. 
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Each scenario was run for a simulated period of 5 years with an additional warmup time of 5 months 
to accommodate for the materials’ long lead times and safety lead time buffers. Each simulation run took 
about 15½ minutes to execute on a Dell Inc. Precision 7710 with an Intel(R) Core(TM) i7-6820HQ CPU 

@ 2.70GHz, 16GB RAM, 4 Core(s), 8 Logical Processor(s) and a 64-bit operating system. The primary 
aim of using simulation in this paper was to capture the dynamic build-up of WIP in the system, and identify 
the key trends in the system as a result of investing in capacity (or not). As a result, the simulation models 
were deterministic and thus only required one replication per scenario. 

3.2 Tier 2 Supplier Performance 

The first set of results explore the impact of the increasing demand on the T2 supplier’s IHC and CCF 

(Figure 4). In scenario 1, the T2 supplier quickly becomes unstable due to the buildup of inventory in front 
of the NDI machine. The date when this behavior began was used to determine when an additional NDI 
machine was needed in scenario 2. While the T2 supplier’s inventory levels in scenarios 2 and 3 rise due to 
the increasing production rate, the additional capacity stabilizes the inventory in both scenarios at a new 
level. Interestingly, the inventory levels in scenarios 2 and 3 are the same. This could be explained by the 
MRP system outputting the same procurement and production schedules in both scenarios. 

In all three scenarios, the CCF was initially less than zero due to paying for raw materials before they 
can be sold. In scenario 1, the CCF steadily increased alongside demand until the T2 supplier’s maximum 
capacity was exceeded, at which point the rate levelled out. In scenario 2, the additional NDI machine was 
purchased and installed in time to meet the increasing demand, represented by the steeper gradient of the 
CCF after the installation date. The T2 supplier in scenario 3 experienced the greatest CCF. This was due 
to the extra profit on the products despite their higher manufacturing costs by meeting the rising demand 

without needing to invest in another NDI machine. 

 

Figure 4: T2 supplier’s A) IHC and; B) CCF. The triangle marks when the effect due to increasing demand 
sets in and the extra capacity is available in scenario 2. The data are normalized. 

3.3 Tier 1 Supplier Performance 

Figure 5 shows the financial penalties paid by the T1 supplier at each point in time. Since the T2 supplier 
fails to support the T1 supplier’s production once demand exceeded capacity in scenario 1, this causes a 
backlog of late deliveries to accumulate at the T1 supplier. As a result, the lateness penalties paid to the 

OEM increase. However, this only began several months after the T2 supplier exceeded their capacity. The 
use of safety lead time buffers absorbed the disruptions for a significant period of time before the OEM 
experienced late deliveries. This did not occur in scenarios 2 and 3, since the T2 supplier had sufficient 
capacity to support the T1 supplier’s production and ultimately meet the OEM’s demand. 

The T1 supplier’s IHC mirror those of the T2 supplier (Figure 4). Late deliveries from the T2 supplier 
delayed the assembly and delivery of aircraft structures to the OEM, thus causing an increase of WIP around 
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the T1 supplier’s assembly jig. By pushing material onto the shop floor, the MRP system escalated this 
behavior. In scenarios 2 and 3, the IHCs are identical despite the increased prices for the machined parts; 
the price increase for the machined parts was minor compared to the price for an aircraft structure, making 

their effect unnoticeable. The IHC increase in distinct steps as the production increases before stabilizing, 
suggesting a steady flow of material through the T1 supplier. The impact of the T2 supplier’s capacity on 
the T1 supplier’s CCF is clear. In scenario 1, the T2 supplier’s inability to support the T1 supplier’s 
increasing production limited the maximum CCF that the T1 supplier could achieve. The CCF in scenario 
1 starts diverging from that of scenarios 2 and 3 when the lateness penalties are incurred. These lateness 
penalties eventually caused the T1 supplier’s CCF to peak as they began to outweigh the revenue from 

deliveries. The CCF in scenarios 2 and 3 are identical due to the timely deliveries from the T2 supplier 
enabling the T1 supplier to benefit from the additional revenue by meeting the OEM’s increased demand. 

 

Figure 5: T1 supplier’s A) lateness penalties; B) IHC; and C) CCF. The triangle marks when the effect due 
to increasing demand sets in and the extra capacity is available in scenario 2. The data are normalized. 

4 DISCUSSION 

Whether the T2 supplier had sufficient capacity to meet the increasing demand was the most influential 

factor on the T1 supplier’s financial and operational performance. This was expected since the financial 
penalties for late deliveries on the T1 supplier began to outweigh incoming revenue as observed in scenario 
1. The T1 supplier’s performance was identical in scenarios 2 and 3; having additional capacity available 
earlier than required made no difference and the price increase for the machined parts was marginal 
compared to the price of the T1 supplier’s end product. 

The practical significance of this in decision making is twofold. First, having a T2 supplier who can 

support the MS led to generating a greater CCF compared to using a slightly cheaper alternative who 
increases the risk of late deliveries and causes the T1 supplier to incur lateness penalties. The reason for 
this is due to the effects of the price increase for the machined parts, which was outweighed by the value of 
the aircraft structure and the lateness penalties. Increasing the price for the machined parts may have had a 
greater effect if they accounted for a greater portion of the total aircraft structure’s value. The second point 
is more subtle; having the additional capacity available in the T2 supplier before it is required is irrelevant 

unless there is a possibility of demand from the OEM increasing earlier than forecasted. Having the 
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available capacity would only be advantageous if there was sufficient risk of disruption due to uncertainty 
in the OEM’s aircraft demand forecasts to justify even a marginal price increase. 

With that said, the above points fail to consider the T2 supplier’s financial performance. While the T2 

supplier in scenario 1 doesn’t yield the potential revenue available by supporting the increasing production 
rate, their CCF is still higher compared to scenario 2, as they needed to pay for the CE (Figure 4). The T2 
supplier could either choose to invest in additional capacity and risk financial instability from having cash 
tied up in capital, or they can choose not to invest and risk disrupting the Tier 1 supplier’s material and 
financial cash flows instead (Figure 5).To compensate for their losses due to the lateness penalties in 
scenario 1, the T1 supplier could apply a lateness penalty to the T2 supplier. Such an action is likely to be 

a short-term solution as their financial performance would quickly deteriorate, thus increasing the risk of 
the T2 supplier becoming unable to support future production. From considering the T2 supplier’s financial 
position, the methodology in this paper suggests that an OEM would prefer scenario 3 as it holds the least 
risk of disruption through exceeding capacity or financial instability in the SC. This is despite the increase 
in price due to the lack of practical difference to the T1 supplier’s performance. With this methodology it 
is possible to reveal such risks in the wider SC to the OEM to support their outsourcing decisions. 

5 CONCLUSION 

Due to the disruption capacity constraints can cause to an aerospace SC’s material and financial cash flows, 
whether the SC has enough capacity to support the OEM’s production is a critical factor in their outsourcing 
decisions. If a capacity constraint is identified, the decision to invest in additional capacity is risky due to 
the expense and difficulty in reversing such decisions. If it is identified upstream of a T1 supplier, these 
decisions are beyond the OEM’s control due to their lack of direct communication with the wider SC 

beyond their T1 suppliers. Analytical and simulation modeling techniques have typically been applied to 
resolve the financial and operational implications of CP decisions respectively. This paper presents a hybrid 
simulation and analytical modeling approach to capture the impact of increasing demand and capacity 
constraints on the operational and financial performance of aerospace SCs. 

The results show how the increased productivity due to investment can enable firms to improve SC 
performance. Despite this, the cost of investment can force a firm to operate with cash tied up in capital for 

prolonged periods of time. This may force a sub-tier supplier to choose between not investing in additional 
capacity or risk financial instability. Such actions can have serious consequences for downstream suppliers 
due to financial penalties for late deliveries. While applying lateness penalties to upstream suppliers could 
provide an incentive to support downstream production, this option should be exercised with caution as it 
may threaten financial instability in sub-tier suppliers. Instead, the methodology could be used to identify 
such risks and possible solutions by having a greater understanding of the implications of CP decisions on 

the wider SC. One example of this was the financial risk that the T2 supplier took by investing in an 
additional NDI machine; making payments for the machine in advance caused the T2 supplier to operate 
with a large amount of cash tied up in capital, which could threaten their financial stability. From the OEM’s 
perspective, it may be preferable for a T1 supplier to have a more expensive T2 supplier that has or will 
have the capacity to minimize the risk of disrupting the physical flow and materials and financial cash flow. 

The model in this paper was deterministic to demonstrate how simulation can be used to capture the 

dynamic build-up of WIP the system and identify the defining trends. Future work could introduce 
stochastic behavior such as uncertain process cycle times, scrap, and rework. The developed methodology 
could also be applied to more complex SCs by including more SC members and connections between them. 
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