
Proceedings of the 2018 Winter Simulation Conference
M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds.

SIMULATION-BASED AUTONOMOUS ALGORITHM SELECTION
FOR DYNAMIC VEHICLE ROUTING PROBLEMS WITH THE HELP OF

SUPERVISED LEARNING METHODS

Thomas Mayer
Tobias Uhlig
Oliver Rose

Department of Computer Science
Universität der Bundeswehr München

Werner-Heisenberg-Weg 39
Neubiberg, 85579, GERMANY

ABSTRACT

Multi-constrained Vehicle Routing Problems are gaining steadily in importance. Especially, the dynamic
version of the problem has become more emphasis due to modern service requirements, such as short-term or
express delivery. With a growing number of dedicated solution approaches for these problems, we investigate
a simulation-based supervised learning approach to determine the suitability of a particular algorithm from
a set of algorithms for a given dynamic problem instance based on a variety of its characteristics. This
decision is known as the Algorithm Selection Problem. We explore the performance space for Greedy
and Re-planning algorithms for different dynamic problem instances by simulation and an evolutionary
algorithm. For the algorithm selection we test several problem features in combination with two supervised
machine learning techniques. The applicability of our approach is demonstrated in a use case for autonomous
algorithm selection for Dynamic Vehicle Routing Problem instances.

1 INTRODUCTION AND RELATED WORK

Our modern way of life depends more and more on managing and solving complex Vehicle Routing
Problems (VRPs). For example, our groceries are delivered fast and fresh to our doorstep. We order
different goods for daily use over the Internet, we share cars and use on-demand transportation services,
and we expect everything to be in stock in the nearest supermarket. The fundamental Vehicle Routing
Problem (VRP) was introduced in Dantzig and Ramser (1959). Essentially, it encompasses the planning
of routes for vehicles to satisfy customer requests starting and ending at a depot. Today, they are a large
variety of VRP classes. A current survey and taxonomy is, for example, Lahyani et al. (2015). For static
VRP instances, all relevant information is available prior to solving the problem. This a priori information
can be either deterministic or stochastic if uncertainties like traffic are considered (Pillac et al. 2013). In
real-world applications, however, the evolution of the problem information over time is a major problem
characteristic (Psaraftis 1980). Partly, problem information becomes only available during route execution,
for example, due to additional customer demands. Problem information which changes over the time is
classified as dynamic (Pillac et al. 2013). Therefore, the problem class with changing information is
referred to as Dynamic VRP (DVRP). The DVRP was first introduced in Wilson and Colvin (1977) as an
extension of the VRP, with a description of a computer-controlled Dial-A-Ride system in Rochester, NY
(USA). A recent overview on dynamic and stochastic vehicle routing is Ritzinger et al. (2016). Simulation
is commonly used to handle the dynamic and stochastic aspects of vehicle routing. For example, Juan et al.
(2011) improve the heuristic from Clarke and Wright (1964) by using Monte Carlo simulation. Juan et al.

3001978-1-5386-6572-5/18/$31.00 ©2018 IEEE

Mayer, Uhlig, and Rose

(2015) provide an extensive review of approaches using simulation to solve combinatorial optimization
problems. These authors introduce the concept of Simheuristics, a methodology that integrates simulation
into the solution finding process for combinatorial optimization problems. This methodology is also used in
Gruler et al. (2017) to solve the Two-Echelon Location Routing Problem, a combination of the Capacitated
Location Routing Problem (CLRP) and a VRP. Psaraftis et al. (2016) provide a broad overview on solution
methods mainly addressing the DVRP. Since the late seventies, considerable research has focused on the
dynamic and stochastic aspects in vehicle routing. Pillac et al. (2013) and Psaraftis et al. (2016) describe
an explosion of the number of related papers after the year 2000. Most of these papers focus on algorithm
and solution development. With regard to the No Free Lunch Theorem introduced in Wolpert and Macready
(1997), we know that there is no strictly superior heuristic or parameterization for a solving framework that
outperforms all other heuristics or all other parameterizations for all problem instances. Due to the intense
research in this area and the increased number of algorithms and solution approaches for different variations
of the VRP, the following research questions arise: Which is the best solution approach or algorithm for
a specific problem instance? And, is it possible to distinguish between problem instances to select the
likely better performing algorithm? In addition, there will be difficulties in comparing published results
and employed approaches (Ritzinger et al. 2016).

The question about the best algorithm for a given problem instance is not only arising in the context
of vehicle routing. It is a general problem, formalized and introduced in Rice (1976) as the Algorithm
Selection Problem (ASP). Figure 1 visualizes a framework for the ASP proposed in Rice (1976). The
framework aims to support the prediction of the best algorithm performance for a problem instance based
on measurable features (Smith-Miles and Lopes 2012). The framework visualized in Figure 1 describes
the following four main components:

• the problem space P contains a set of problem instances;
• the feature space F represents a set of measurable features, which can be extracted from all problem

instances in P; the feature extraction process has to be less time-consuming compared to solving
the problem instances with algorithms from the algorithm space A;

• the algorithm space A contains a portfolio of algorithms that are able to solve the problem instances
from P;

• the performance space Y describes a mapping from algorithm results to a performance metric.

x ∈ P Problem Space

f (x) ∈ F Feature Space

y ∈ Y Performance Space

α ∈ A Algorithm Space

Feature
selection f

α∗ = S(f (x))

Learn selection mapping
based on features

y(α,x) apply
algorithm α

to problem x

Select α∗ to
maximize ||y||

Figure 1: A framework for the Algorithm Selection Problem (ASP) introduced in Rice (1976).

The main challenge of the ASP is to find a selection mapping S(f (x)) for a problem instance x ∈ P with
feature vector f (x) into the algorithm space A. The mapping has to maximize the performance metric ||y||
for y(α,x), where α is an algorithm in A. In general, there is a lot of research in the area of performance

3002

Mayer, Uhlig, and Rose

prediction for algorithms that can be related to the ASP. A broad discussion about algorithm selection across
a variety of disciplines is given in the survey paper Smith-Miles (2009). In the domain of vehicle routing,
Smith-Miles et al. (2010) investigate the Traveling Salesman Problem (TSP) difficulty by learning from
a large number of instances. The work uses an evolutionary algorithm to evolve TSP instances that are
intentionally easy or hard for algorithms based on the Lin-Kernighan heuristic method (Lin and Kernighan
1973). Features are derived from the problem instances and the impact of these features for the difficulty of
the algorithms is investigated. Mersmann et al. (2012) investigate the success of 2-opt-based local search
algorithms for solving the TSP and show important features that make problem instances hard or easy for
2-opt approaches. Wagner et al. (2018) study algorithm selection for the Traveling Thief Problem (TTP)
based on TSP features. The TTP is a combination of the TSP and the Knapsack Problem (KP). Earlier work
focuses on the impact of problem features to the problem difficulty in general. For example, Cheeseman
et al. (1991) demonstrate that the variance of the distance matrix correlates with the TSP difficulty for
exact solution approaches. Ridge and Kudenko (2007) show that this is also true for heuristic solution
approaches.

Early work in the domain of dynamic vehicle routing focuses on intrinsic characteristics of problem
instances independently from algorithm selection. Lund et al. (1996) introduced the Degree of Dynamism
(DOD), a measure of the dynamism of a routing problem. The DOD describes the ratio between dynamic
customer requests and the sum of dynamic and static customer requests. The DOD can be interpreted as
a very general feature f (x) ∈ F for a dynamic routing problem x ∈ P in the context of the ASP. Larsen
(2000) developed a framework based on the DOD. The framework classifies weak, moderate, and strong
dynamic systems and recommends solution approaches for these classes of dynamic routing problems.
Larsen (2000) also introduced the Effective Degree of Dynamism (EDOD) as extension to the DOD. The
EDOD considers the planning horizon T for the calculation of the measure of the dynamism of a routing
problem. Larsen (2000) also studies the relation between DOD, EDOD, and routing costs for the Partially
Dynamic Traveling Repairman Problem (PDTRP). In Mayer et al. (2017) we introduced the Location-based
Degree of Dynamism (LDOD) capturing the location of the dynamic customer request. We show that there
is a positive correlation between the proposed LDOD and the resulting DVRP solution quality for Greedy
and Re-planning algorithms. In the context of the ASP, the LDOD is also a very predictive feature f (x)
of the feature space F for a DVRP.

An evolutionary hyper-heuristic which is able to evolve and generate sophisticated sequences of existing
low-level heuristics to solve a DVRP is introduced in Garrido and Riff (2010). A hyper-heuristic uses a
higher-level heuristic to select among simpler heuristic search algorithms (Burke et al. 2003) and can be
discussed within the ASP Framework shown in Figure 1. In the context of a hyper-heuristic, features F
are not intrinsic characteristics of the problem instances like the DOD or the LDOD. The performance of
the simpler heuristics can be seen as features F (Smith-Miles and Lopes 2012).

Our research focuses on the investigation, whether the discussed intrinsic characteristics and new ones
can be used to distinguish between problem instances, and if it is possible to autonomously select algorithms
based on the measured features between instances. Therefore, we take the existing DVRP instance features
from the literature and use them in combination with new problem features for algorithm performance
prediction and autonomous algorithm selection. The basis for the implemented supervised learning approach
is data which were collected with the help of simulation. To this end, we first generate dynamic problem
instances from existing static instances with the help of the general purpose metaheuristic optimization
framework SEREIN (Uhlig 2015). Existing and new problem features that capture the dynamism of the
generated instances are applied. The performance space is constructed based on Greedy and Re-planning
algorithms, which we implemented in the open-source Rich Vehicle Routing Problem Simulator (RVRP
Simulator) introduced in Mayer et al. (2016). The problem and performance space generation is outlined in
Section 2. With the help of the results from the simulations, we are able learn the relationship between the
problem features and the algorithm performance. Section 3 focuses on the feature space and the comparison
of two machine learning techniques that we used to represent the relationship between features and algorithm

3003

Mayer, Uhlig, and Rose

performance. Our approach is evaluated by algorithm performance prediction for fresh problem instances,
which we outline and discuss in Section 4. Our approach shows its validity for automated algorithms
selection for DVRP instances. Conclusions are drawn in Section 5.

2 PROBLEM AND PERFORMANCE SPACE

The DVRP is a very generic problem where different authors consider different variations (Psaraftis et al.
2016). All variations have in common that they are addressed with the help of simulation. The changing
problem information over time makes the DVRP well suited for Discrete Event Simulation. Currently,
our research focuses on the most basic version of a DVRP. We not consider any capacity constraints or
any restrictions regarding the customer requests such as time windows or service times. The focus lies on
problem instances with one depot and one vehicle only. Note that instances that are partly dynamic, i.e.,
0 < DOD < 1, are considered only. In general, there is a lack of DVRP instances. Our research shows that
out of 50 recent papers discussing solution approaches for the DVRP, > 60% are evaluating their solutions
purely with random problem instances, or instances which are based on real-world data. Another > 25%
are randomizing static problem instances. Only 9% of the considered papers are evaluating their approaches
with existing public DVRP instance repositories. Most of these papers are using instances introduced in
Kilby et al. (1998) or Bent and Van Hentenryck (2004). The reason for this small percentage is the lack
of DVRP instances with various restrictions and constraints. Due to the described shortage of suitable
dynamic problem instances, we are following the approach to derive dynamic from static instances. Figure
2 visualizes the four static VRP instances from Christofides (1976) that we considered for our research.
They have either equally distributed (CMT01, CMT04) or clustered (CMT11, CMT12) customer requests.

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Visualization of CMT01

●Depot
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

Visualization of CMT04

●Depot
●

●
●

●●
●
● ● ●

●●● ●●
●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●
●●

● ●●●

● ●● ● ●

●

● ●
●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

Visualization of CMT11

●Depot
●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●
●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●●

●
●

●

●

●●

●
●●

●

●

●

●

●

Visualization of CMT12

●Depot

Figure 2: A subset of static VRP instances introduced from Christofides (1976), considering equally
distributed (CMT01, CMT04) and clustered (CMT11, CMT12) customer requests which are represented
by dots.

To derive dynamic from static DVRP instances, two decisions have to be made. The first decision is
which customer requests should be dynamic and the second is when the requests appear during the planning
time horizon. The number of dynamic customer requests is determined by the DOD, which, in our case,
is smaller than 1. To expand the performance space Y for an algorithm α ∈ A, compare Figure 1, as wide
as possible, the decision which customer requests should be dynamic is made by a genetic algorithm. The
main task of the genetic algorithm is to find dynamic problem instances where the algorithm performs
very well and also instances where the same algorithm performs very badly. For our research, we applied
the genetic algorithm implemented in the general purpose metaheuristic optimization framework SEREIN
(Uhlig 2015). SEREIN evaluates the created instance by means of the RVRP Simulator introduced in Mayer
et al. (2016). The RVRP Simulator provides a set of standard algorithms to handle the dynamic requests.
For the evaluation, we choose a simple Greedy algorithm provided by the simulator. For a more detailed
description of the implemented algorithm see Mayer et al. (2017). The second decision, when the dynamic
requests appear, is not made by the genetic algorithm. Currently, we intend to minimize the influence of
the time ti when request i appears. It is obvious that requests appearing very late are probably producing
higher routing costs. For example, if all dynamic requests appear when the vehicle finished its initial route

3004

Mayer, Uhlig, and Rose

planned for the static customer requests, the employed algorithm cannot integrate the dynamic requests into
the existing route. Every time a dynamic request appears, the vehicle has to start from the depot to service
the customer, which results in high routing costs. To prevent this interdependency, we partly follow the
approach introduced in Mayer et al. (2017) and determined the time ti for a dynamic request i as evenly
distributed between 0 and the time horizon T . So, for all created points in time ti for all dynamic requests n
the following rule is valid: ti+1− ti = di;di = di+1∀i, where tn+1 = T . T is determined by solving the static
instance with the Jsprit framework (Schröder 2018). To prevent the interdependency between the location
of request i and the time ti, we executed the simulation to evaluate the dynamic problem instance several
times with different assignments between ti and i. Additionally, we simulated the instances in a reversed
routing order. For example, if a routing starts with servicing the static customer A, B, and ends at static
customer C, additional simulations in reversed order where the routing starts at customer C and ends with
servicing customer A are performed. To generate one dynamic problem instance created from SEREIN,
we had to determine 6 different routing costs with the help of simulation. The average of these routing
costs is used by SEREIN to unfold the search space, identifying instances which are easy and hard to solve
for the Greedy algorithm. SEREIN created 2,000 dynamic problem instances for each combination of
DOD ∈ {0.1,0.2, . . . ,0.9} and problem instance shown in Figure 2. This results in 72,000 dynamic problem
instances which got evaluated with 432,000 simulations, only to investigate the performance space Y for
the Greedy algorithm. Each of the 72,000 problem instances we also solved with a Re-planning algorithm
which we implemented for the RVRP Simulator. We did not use the Re-planning algorithm described in
Mayer et al. (2017). A new algorithm using the R package tspmeta from Mersmann et al. (2013) was
implemented. The implementation bases on a 2-opt optimization algorithm, which was one of the first
successful algorithms to solve larger TSP instances and which is still widely used in practice (Mersmann
et al. 2013). Due to the stochastic characteristics of the Re-planning algorithm, each dynamic problem
instance was simulated several times. Overall, we used an additional 432,000 simulations (also considering
simulations in reverse customer request order) to collect the results for the Re-planning algorithm. An
excerpt of the results of the simulations is shown in Figure 3.

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 500 1000 1500 2000

70
0

75
0

80
0

85
0

90
0

95
0

Routing costs for instance CMT12 with dod = 0.6

R
ou

tin
g

co
st

s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Greedy Algorithm
Re−planning Algorithm

●
●●
●●
●●●●
●●●●●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●

●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●
●●●

●●●
●●●

●●
●●

●●●
●●

●●●
●●

●●●
●●●

●●
●●

●●●
●●●

●●●
●●

●●●
●●●

●●●
●●

●●
●●●

●●●
●●

●●
●●

●●●
●●●

●●●
●●●

●●
●●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●
●●
●●●●●
●●●●
●●●●●●●
●●●●●
●●

●●●
●●
●
●

●

0 1000 2000 3000 4000

70
0

75
0

80
0

85
0

90
0

95
0

Routing costs for instance CMT12 with dod = 0.6

R
ou

tin
g

co
st

s

● Greedy and Re−planning Algorithm sorted
Regression analyses

Performance class 2

Performance class 1

Performance class 0

Figure 3: The left diagram shows the routing costs determined with the help of simulation for the Greedy
and Re-planning algorithm. All problem instances are derived from CMT12 with a DOD of 0.6 with the
help of SEREIN. The right diagram shows the sorted routing costs and determined performance classes.

The left diagram in Figure 3 shows the average routing costs for the DVRP instances with a DOD of
0.6. The instances are derived from the static VRP instance CMT12. We observe that there are instances

3005

Mayer, Uhlig, and Rose

hard to solve (high costs) and easy to solve (low costs) for both algorithms. The performance of the
Re-planning algorithm is more or less average for all instances. We conclude that there are instances
where the Greedy algorithm outperforms the Re-planning algorithm and vice versa. Our research challenge
is now to distinguish between these instances based on measurable instance features to make reasonable
algorithm selections (Figure 1). Two different machine learning techniques to identify these instances
are implemented, a classification and a regression model. Both approaches are realized with Artificial
Neural Networks (ANN), see the following Section. A regression analysis estimates the relationships
among variables, in our case the relation between the problem instance and the algorithm performance. A
classification model assigns categories to given inputs. Therefore, for the classification model, the routing
costs and created performance classes had to be evaluated first. For the human eye it is easy to see that
instances with routing costs below 750 are somehow special or different from instances with routing costs
above 750 due to the density of the visualized results. The same is valid for instances with routing costs
around 860. To determine these borders algorithmically, a regression analysis with breakpoint estimation
was applied to the sorted routing costs. We used the regression model introduced in Muggeo (2003). With
this model, the borders of the performance classes can be estimated very well, see the right diagram in
Figure 3. For each created DVRP instance the associated performance class for each algorithm is defined.
Three performance classes for each instance of each DOD are considered. In summary, we obtained the
performance of each algorithm for the generated instances. From there, a differentiation between these
instances based on measurable features is needed. We try to learn which features have an influence and
are significant to predict algorithm performance. By understanding which feature combination leads to
good algorithm performance, algorithm performance prediction for unseen instances which is the base for
automated algorithm selection gets possible. In the following Section, the selected features that are used
to distinguish between problem instances are discussed. The following Section will also introduce our
implemented machine learning approaches, which were employed to learn the relation between features
and algorithm performance.

3 FEATURE SPACE AND SELECTION MAPPING

There are several features for TSP instances available in the literature. For example, Wagner et al. (2018)
base their case study on algorithm selection for the TTP on 47 different TSP features. We applied a subset
of these features to determine statistics for the dynamic requests, see Table 1. Additionally, we developed
new features mainly describing a ratio between the location of the dynamic and the location of all customer
requests, also part of Table 1. They are capturing the dynamism of the problem instance and are partially
based on existing TSP features.

We calculated all features from Table 1 for all 72,000 created DVRP instances. We standardize all
values using the standard scalar method implemented in Pedregosa et al. (2011). These standardized
feature vectors are the input for both models (classification and regression). Artificial Neural Networks
(ANNs) map an un-labeled input (the standardized feature vector) to a label (output) using internal data
structures. The performance classes associated to the instances in a one-hot encoded form are the output
for the classification model. The outputs for the regression model are the standardized routing costs of
the instances. For each algorithm (Greedy, Re-planning) we constructed a classification and a regression
model. In total, we trained and tested four ANNs. Due to its popularity, we used Tensorflow from Google
Brain introduced in Abadi et al. (2016) for the implementation. Both ANNs used for classification have
4 hidden layers with 11, 10, 9, and 8 neurons. The input layer has 18 neurons and the output layer
has 3. The neurons from the input and hidden layers are using the activation function RELU (Nair and
Hinton 2010), the neurons from the output layer use SOFTMAX (Bridle 1990). The structure of the ANNs
used for regression is slightly different. Here, we implemented 4 hidden layers with 9, 10, 11, and 12
neurons. The input layer has 30 and the output layer has 1 neuron. All neurons are using the activation
function RELU. The structures of the classification and the regression model were set up using systematic
trial and error, a common approach to approximate the optimal number of hidden layers and neurons

3006

Mayer, Uhlig, and Rose

Table 1: TSP instances features we applied on dynamic customer requests and features describing a ratio
between the location of the dynamic and all customer requests.

TSP instances features Description
ANGLEMEAN ,
ANGLEVAR

Statistics of the distribution of the angle between a dynamic customer
request and its two next dynamic neighbors

MSTMEAN ,MSTVAR Construct minimum spanning tree (MST) for dynamic customer requests,
then calculate the statistics of the distances

NNDMEAN ,NNDVAR Distribution of distances of dynamic customer requests to its neighbors.
DISTANCEDIST INCT ,
DISTANCEVAR

Computes statistics describing the distribution of pairwise distances between
dynamic customer requests.

CLUST ERNUMBER Mean distances from all dynamic requests in a cluster to its centroid.
Ratio Features Description
DOD The Degree of Dynamism introduced in Lund et al. (1996).
EDOD The Effective Degree of Dynamism introduced in Larsen (2000)
LDOD The Location based Degree of Dynamism (Mayer et al. 2017)
LDODDEPOT Ratio between the distances of dynamic requests to all requests to the depot.
AREA The ratio between the covered area of dynamic to all requests.
CENT ROIDMEAN ,
CENT ROIDSUM

The ratio between the mean and the sum of distances of dynamic requests
to the centroid to all customer requests to the centroid.

(Basheer and Hajmeer 2000). All neurons of each layer are fully connected to all neurons of the following
layer. We applied the optimization function Adam introduced in Kingma and Ba (2015) to determine the
weights of the edges between the neurons of the ANNs. Especially for classification problems addressed
with ANNs, balancing the training data is important (Basheer and Hajmeer 2000). It is recommended
that the input data are evenly distributed between the classes (Swingler 1996). It should be prevented
that the network is biased towards the over-represented classes. In our case, we had to ensure that not
only the performance classes 0, 1, and 2 are evenly distributed, we also had to ensure that all instances
with all DODs and all performance classes are evenly represented in the training and test data for the
classification models. Therefore, we determined the minimum available datasets with the same instance,
DOD, and performance class mini−DOD−pc. This minimum defines the maximum of datasets with the same
combination of instance, DOD, and performance class we considered for the training and testing of our
classification ANNs. The total number of datasets we consider for one algorithm is determined as follows:
numbertotal = numberinstance ∗numberDOD ∗numberclasses ∗mini−DOD−pc. For the Greedy algorithm, where
mini−DOD−pc is 38, we used 4,104 out of the 72,000 available datasets. The reason for the gap is the very
over-represented performance class 1, compare Figure 3. For the Re-planning algorithm, mini−DOD−pc is
< 20. To avoid working with too little data, we defined a minimum of 20 for mini−DOD−pc. For combinations
of instances, DOD, and performance classes where the defined minimum is not reached, all available datasets
are taken into account. As a consequence, those concerned combinations are under-represented in the ANN
trainings and test data. For the regression models, we only had to balance the input data regarding instances
and DOD. Beside testing our approach with unseen problem instances, see the following section, we applied
the grouped cross validation method to validate our trained ANNs. The method divides the available data
into k groups and constructs k different ANNs using k−1 data groups. The kth group is used for testing
the constructed ANN (Twomey and Smith 1997). The error is determined using the mean of testing set
errors of the groups. The grouped cross validation method is currently considered as the gold standard for
testing ANNs. We had to ensure that the combinations of instances, DOD, and performance classes are
evenly distributed within all created groups. For our validation we defined 5 data groups. The results of
the validation of our constructed ANNs are shown in Table 2. The shown value for categorical accuracy

3007

Mayer, Uhlig, and Rose

for the classification model can be interpreted as percentage of how often the predicted value matches the
true value. The applied metric for the regression model is the mean squared error (MSE), see for example,
Lehmann and Casella (2006).

Table 2: Grouped cross validation results of our constructed ANNs. σ is the Standard deviation.

Classification model Regression model
Algorithm Categorical accuracy (+/- σ) Mean square error (+/- σ)
Greedy 70.84% (+/- 2.97%) 0.079 (+/- 0.098)
Re-planning 85.60% (+/- 4.07%) 0.067 (+/- 0.103)

With a categorical accuracy greater than 70 percent, our classification ANNs perform significantly
better than a random classification method. A random method would have an average accuracy of 33%
considering the three performance classes to predict. But, nevertheless, in close to 30% or 15% of all
cases our classification models predicted the wrong performance class. The main reason is the amount of
data for training and testing. Due to the small number of instances with the performance classes 0 and
2, compare Figure 3, the overall data for learning and training is small. The evaluation of the wrongly
classified problem instances shows that the wrongly predicted performance classes are usually neighbors
of the correct classes. For example, if the ANN predicts the wrong performance class 2, usually the correct
class is 1 and not 0. Additionally, these instances are usually close to the artificially defined performance
class borders. That means that in general the distinction between instances with good and bad performance
is possible based on our selected features. The problems arise at the performance class borders which
would have a less negative effect if there were more data for training and testing. For the regression model,
which uses all the available data, the MSE is reasonably low, the predicted results differ on average only
8% from the true values. The results show a relatively high standard deviation compared to the mean. That
means that for some randomly created groups of data (cross validation) the prediction is very successful
and for others only moderately successful. A deeper discussion about the performance and future work is
given in Section 5. In the following Section, we will use the classification and the regression models for
algorithm selection for unseen problem instances.

4 ALGORITHM SELECTION FOR UNSEEN PROBLEM INSTANCES

To test our classification and regression models with unseen problem instances, we created dynamic instances
from a subset of VRP instances introduced in Christiansen and Lysgaard (2007). The employed instances are
shown in Figure 4. We created 500 random instances for each instance for each DOD ∈ {0.3,0.4, . . . ,0.8}
and determined the routing costs with the Greedy and the Re-planning algorithm. Each simulation needed
to determine the costs for one instances for one algorithm is repeated five times. The average of the
simulation results for one instance i is defined as costs (rgreedy.i, rreplan.i). The sum of these routing costs
for each algorithm, R = ∑

n
i=0 ralgorithm.i, is shown in Table 3 (column Greedy and Re-planning). Based

on the known routing costs for the Greedy and for the Re-planning algorithm, we have been able to
determine the correct algorithm selection for each problem instance. The correct selected algorithm is the
one which produces the lower costs. The sum of the routing costs, based on a correct algorithm selection,
Correct = ∑

n
i=0 min(rgreedy.i,rreplan.i), is also shown in Table 3 (column Correct). Additionally, Table 3 shows

the sum of the routing costs based on an algorithm selection with the classification (column Classification)
and the regression (column Regression) models. Note, that we cannot make a statement about which
algorithm to select if the predicted performance classes from the Greedy and the Re-planning classification
models are identical. In this case, a random algorithm is chosen. Due to this limited explanatory power
for identically predicted performance classes, we introduced an approach that uses the regression model to
select algorithms if the classification models predict the same performance class. The sum of the routing
costs based on this mixed approach is also shown in Table 3 (column Mixed).

3008

Mayer, Uhlig, and Rose

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

Visualization of A−n33−k5

●Depot

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

Visualization of A−n60−k9

●Depot

●

●

●

●
●

●
●

●

●

●

●
●

●

●

● ●
●

● ●

●

●

●

●

Visualization of E−n22−k4

●Depot ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Visualization of P−n50−k8

●Depot

Figure 4: A subset of the stochastic VRP instances introduced in Christiansen and Lysgaard (2007). The
dots represent the customer requests.

In general, the results show that we are able to successfully select algorithms for unseen problem
instances with our approach. All our created selection methods (Classification, Regression, and Mixed)
perform better compared to only taking either the Greedy or the Re-planning algorithm. The values from
the correct selection (Table 3 column Correct) show, that both algorithms perform quite similar for all
problem instances. The benefit of selecting the better performing algorithm amounts to approximately
1.5% for all randomly created dynamic problem instances based on the instances shown in Figure 4. This
makes algorithm selection very difficult, because there are no problem instances where both algorithms
perform significantly different. The predicted algorithm performance for both algorithms is likely to be
very close to each other and the error probability is therefore high. On average our selection methods make
the correct decision in 60% of the cases. Our results show that, in summary, decisions made with our
selection methods are correct. In particular, whenever a decision has a significant impact, i.e., instances
where different algorithms lead to considerably different results.

Table 3: Validation results of our constructed ANNs for unseen instances.

3,000 instances of Greedy Re-planning Correct Classification Regression Mixed
A-n33-k5 2012196 2001882 1981276 2001861 2001140 2001506
A-n60-k9 2796131 2781403 2752825 2781382 2781195 2781284
E-n22-k4 1244571 1241528 1229514 1241331 1241393 1241245
P-n50-k8 1690522 1690202 1669857 1690191 1688828 1689087

5 CONCLUSION AND OUTLOOK

Our results show that our approach is able to reliably autonomously select the better performing algorithm
for various known and unseen DVRP instances. Based on simulation results, we were able to derive
characteristic DVRP instances from static problem instances, and developed and calculated features for
these instances. The features in combination with the simulation results were the basis for our developed
classification and regression models, which we trained to predict algorithm performance. The prediction of
algorithm performance is the base for our successful autonomous algorithm selection. Currently, we only
consider two different algorithms which perform similarly for different problem instances, compare Section
4. Future work will be the training and testing of classification or regression models based on simulation
results of different DVRP algorithms and also of solving frameworks using different parameterization.
Currently, a new DVRP solution approach based on the results from Mayer et al. (2017) is developed
by us. For our performance prediction models, currently only 4 different structured problem instances
are considered, compare Figure 2. The idea is to build a stronger basis for our performance prediction
by considering more problem instances. We plan to include the very artificial structured VRP instances
introduced in Golden et al. (1998) in our research. Another area of our future research considers the
problem features. Currently, 16 features to describe the DVRP instances are used for our research. We
have to investigate whether additional features lead to better performance prediction and thereby to better

3009

Mayer, Uhlig, and Rose

algorithm selection. Beside considering more instances and more algorithms or features, the question
occurs which evolved instances are good for training and testing purposes, compare Section 3. Currently,
we are not verifying if an evolved instance is a good representative of the performance class. In future
work, we have to find a metric which provides information about how good a certain instance represents
a certain algorithm performance. A general future task is a deeper comparison between the classification
and regression models. The predictions from the regression models are varying stronger, compare Table 2.
But, the performance of the regression models is on average better for unseen problem instances. But, note
that the classification models have limited explanatory power for instances where the different classification
models predict the same performance classes. Even if the true algorithm results would vary strongly
(compare Figure 3), if they are predicted to be in the same class, no reasonable algorithm selection can be
done. A solution would be to have more classification models based on the results from more algorithms
or to introduce more performance classes. But, more classes might lead to more wrong predictions for
instances near to the new performance class borders, compare Section 3. In general, the artificially defined
performance class borders which are needed for classification models lead to difficulties, e.g., on how to
define them and on how to distribute the instances between them.

REFERENCES

Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng. 2016. “TensorFlow: A System for Large-scale Ma-
chine Learning”. In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, 265–283. Berkeley, CA, USA: USENIX Association.

Basheer, I. A., and M. Hajmeer. 2000. “Artificial Neural Networks: Fundamentals, Computing, Design,
and Application”. Journal of Microbiological Methods 43(1):3–31.

Bent, R. W., and P. Van Hentenryck. 2004. “Scenario-based Planning for Partially Dynamic Vehicle Routing
with Stochastic Customers”. Operations Research 52(6):977–987.

Bridle, J. S. 1990. “Probabilistic Interpretation of Feedforward Classification Network Outputs, with
Relationships to Statistical Pattern Recognition”. In Neurocomputing, edited by F. F. Soulié and
J. Hérault, 227–236. Berlin, Heidelberg: Springer.

Burke, E., G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg. 2003. ”Hyper-Heuristics: An
Emerging Direction in Modern Search Technology”, In Handbook of Metaheuristics, edited by F.
Glover and G. A. Kochenberger, 457–474. Boston, MA: Springer US.

Cheeseman, P., B. Kanefsky, and W. M. Taylor. 1991. “Where the Really Hard Problems Are”. In Proceedings
of the 12th International Joint Conference on Artificial Intelligence - Volume 1, edited by J. Mylopoulos
and R. Reiter, 331–337. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Christiansen, C. H., and J. Lysgaard. 2007. “A Branch-and-price Algorithm for the Capacitated Vehicle
Routing Problem with Stochastic Demands”. Operations Research Letters 35(6):773–781.

Christofides, N. 1976. “The Vehicle Routing Problem”. Revue française d’automatique, informatique,
recherche opérationnelle. Recherche opérationnelle 10(V1):55–70.

Clarke, G., and J. W. Wright. 1964. “Scheduling of Vehicles from a Central Depot to a Number of Delivery
Points”. Operations research 12(4):568–581.

Dantzig, G. B., and J. H. Ramser. 1959. “The Truck Dispatching Problem”. Management Science 6(1):80–91.
Garrido, P., and M. C. Riff. 2010. “DVRP: A Hard Dynamic Combinatorial Optimisation Problem Tackled

by an Evolutionary Hyper-heuristic”. Journal of Heuristics 16(6):795–834.
Golden, B. L., E. A. Wasil, J. P. Kelly, and I.-M. Chao. 1998. “The Impact of Metaheuristics on Solving the

Vehicle Routing Problem: Algorithms, Problem Sets, and Computational Results”. In Fleet Management
and Logistics, edited by T. G. Crainic and G. Laporte, 33–56. Boston, MA: Springer US.

Gruler, A., A. Klüter, M. Rabe, and A. A. Juan. 2017. “A Simulation-Optimization Approach for the
Two-Echelon Location Routing Problem Arising in the Creation of Urban Consolidation Centres”. In

3010

Mayer, Uhlig, and Rose

Simulation in Produktion und Logistik 2017, edited by S. Wenzel and T. Peter, 129–138. Kassel: kassel
university press.

Juan, A. A., J. Faulin, S. E. Grasman, M. Rabe, and G. Figueira. 2015. “A Review of Simheuristics:
Extending Metaheuristics to Deal with Stochastic Combinatorial Optimization Problems”. Operations
Research Perspectives 2:62–72.

Juan, A. A., J. Faulin, J. Jorba, D. Riera, D. Masip, and B. Barrios. 2011. “On the use of Monte Carlo
Simulation, Cache and Splitting Techniques to Improve the Clarke and Wright Savings Heuristics”.
Journal of the Operational Research Society 62(6):1085–1097.

Kilby, P., P. Prosser, and P. Shaw. 1998. “Dynamic VRPs: A Study of Scenarios”. University of Strathclyde
Technical Report:1–11.

Kingma, D. P., and J. Ba. 2015. “Adam: A Method for Stochastic Optimization”. In Proceedings of the
International Conference on Learning Representations (ICLR). May 7th-9th, San Diego, CA, USA.

Lahyani, R., M. Khemakhem, and F. Semet. 2015. “Rich Vehicle Routing Problems: From a Taxonomy to
a Definition”. European Journal of Operational Research 241(1):1–14.

Larsen, A. 2000. The Dynamic Vehicle Routing Problem. Ph. D. thesis, Institute of Mathematical Modelling,
Technical University of Denmark.

Lehmann, E. L., and G. Casella. 2006. Theory of Point Estimation. 2rd ed. New York: Springer Science
& Business Media.

Lin, S., and B. W. Kernighan. 1973. “An Effective Heuristic Algorithm for the Traveling-salesman Problem”.
Operations Research 21(2):498–516.

Lund, K., O. B. Madsen, and J. M. Rygaard. 1996. “Vehicle Routing with Varying Degree of Dynamism”.
Technical Report IMM-REP-1996-1, IMM Institute of Mathematical Modelling, Lyngby, Denmark.

Mayer, T., T. Uhlig, and O. Rose. 2016. “An Open-source Discrete Event Simulator for Rich Vehicle
Routing Problems”. In 2016 IEEE 19th International Conference on Intelligent Transportation Systems
(ITSC), edited by R. Rossetti and D. Wolf, 1305–1310. New York, USA: IEEE.

Mayer, T., T. Uhlig, and O. Rose. 2017. “A Location Model for Dynamic Vehicle Routing Problems”. In
Simulation in Produktion und Logistik 2017, edited by S. Wenzel and T. Peter, 149–158. Kassel: kassel
university press.

Mersmann, O., B. Bischl, J. Bossek, H. Trautmann, M. Wagner, and F. Neumann. 2012. “Local Search and
the Traveling Salesman Problem: A Feature-Based Characterization of Problem Hardness”. In Learning
and Intelligent Optimization, edited by Y. Hamadi and M. Schoenauer, 115–129. Berlin, Heidelberg:
Springer.

Mersmann, O., B. Bischl, H. Trautmann, M. Wagner, J. Bossek, and F. Neumann. 2013, October. “A
Novel Feature-based Approach to Characterize Algorithm Performance for the Traveling Salesperson
Problem”. Annals of Mathematics and Artificial Intelligence 69(2):151–182.

Muggeo, V. M. 2003. “Estimating Regression Models with Unknown Break-points”. Statistics in
medicine 22(19):3055–3071.

Nair, V., and G. E. Hinton. 2010. “Rectified Linear Units Improve Restricted Boltzmann Machines”. In
Proceedings of the 27th International Conference on Machine Learning (ICML), edited by J. Fürnkranz
and T. Joachims, 807–814. USA: Omnipress.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg et al. 2011. “Scikit-learn: Machine learning in Python”. Journal of machine
learning research 12(11):2825–2830.

Pillac, V., M. Gendreau, C. Guéret, and A. L. Medaglia. 2013. “A Review of Dynamic Vehicle Routing
Problems”. European Journal of Operational Research 225(1):1–11.

Psaraftis, H. N. 1980. “A Dynamic Programming Solution to the Single Vehicle Many-to-many Immediate
Request Dial-a-ride Problem”. Transportation Science 14(2):130–154.

Psaraftis, H. N., M. Wen, and C. A. Kontovas. 2016. “Dynamic Vehicle Routing Problems: Three Decades
and Counting”. Networks 67(1):3–31.

3011

Mayer, Uhlig, and Rose

Rice, J. R. 1976. “The Algorithm Selection Problem”. Advances in Computers 15:65–118.
Ridge, E., and D. Kudenko. 2007. “An Analysis of Problem Difficulty for a Class of Optimisation Heuris-

tics”. In Proceedings of the 7th European Conference on Evolutionary Computation in Combinatorial
Optimization, edited by C. Cotta and J. Van Hemert, 198–209. Berlin, Heidelberg: Springer.

Ritzinger, U., J. Puchinger, and R. F. Hartl. 2016. “A Survey on Dynamic and Stochastic Vehicle Routing
Problems”. International Journal of Production Research 54(1):215–231.

Schröder 2018. “Jsprit”. https://github.com/graphhopper/jsprit. Accessed July 2nd, 2018.
Smith-Miles, K., and L. Lopes. 2012. “Measuring Instance Difficulty for Combinatorial Optimization

Problems”. Computers & Operations Research 39(5):875–889.
Smith-Miles, K., J. van Hemert, and X. Y. Lim. 2010. “Understanding TSP Difficulty by Learning from

Evolved Instances”. In Proceedings of the 4th International Conference on Learning and Intelligent
Optimization, edited by C. Blum and R. Battiti, 266–280. Berlin, Heidelberg: Springer.

Smith-Miles, K. A. 2009. “Cross-disciplinary Perspectives on Meta-learning for Algorithm Selection”.
ACM Computing Surveys (CSUR) 41(1):6.

Swingler, K. 1996. Applying Neural Networks: A Practical Guide. London: Academic Press.
Twomey, J. M., and A. E. Smith. 1997. “Validation and Verification”. In Artificial Neural Networks for

Civil Engineers: Fundamentals and Applications, edited by N. Kartam et al., 44–64. New York, NY,
USA: American Society of Civil Engineers.

Uhlig, T. 2015. Self-Replicating Individuals. München: Verlag Dr. Hut.
Wagner, M., M. Lindauer, M. Misir, S. Nallaperuma, and F. Hutter. 2018. “A Case Study of Algorithm

Selection for the Traveling Thief Problem”. Journal of Heuristics 24(3):295–320.
Wilson, N. H., and N. J. Colvin. 1977. “Computer Control of the Rochester Dial-a-ride System”. Technical

Report 77-22, Massachusetts Institute of Technology, Center for Transportation Studies, Cambridge,
Massachusetts.

Wolpert, D. H., and W. G. Macready. 1997. “No Free Lunch Theorems for Optimization”. IEEE Transactions
on Evolutionary Computation 1(1):67–82.

AUTHOR BIOGRAPHIES

THOMAS MAYER is working as Research Assistant and PhD student at Universität der Bundeswehr
as a member of the scientific staff of Prof. Dr. Oliver Rose. His focus is on solving vehicle routing
problems, and algorithm selection based on machine learning techniques. He has received his M.S. degree
in Computer Science from Dresden University of Technology. His email address is thomas.mayer@unibw.de.

TOBIAS UHLIG is a postdoctoral researcher at the Universität der Bundeswehr München, Germany.
He holds a M.Sc. degree in Computer Science from Dresden University of Technology and a Ph.D.
degree in Computer Science from the Universität der Bundeswehr München. His research interests include
operational modeling and heuristic optimization. He is a member of the ASIM and the IEEE RAS Tech-
nical Committee on Semiconductor Manufacturing Automation. His email address is tobias.uhlig@unibw.de.

OLIVER ROSE holds the Chair for Modeling and Simulation at the Department of Computer Science
of the Universität der Bundeswehr Munich, Germany. He received a M.S. degree in Applied Mathematics
(1992) and a Ph.D. degree in Computer Science (1997) from Würzburg University, Germany. His research
focuses on the operational modeling, analysis, and material flow control of complex manufacturing facilities,
in particular, semiconductor factories and assembly systems. He is a member of INFORMS Simulation
Society, ASIM (German Simulation Society), and GI (German Computer Science Society). Currently, he
is member of the board of the ASIM and the ASIM representative at the Board of Directors of the WSC.
His email address is oliver.rose@unibw.de.

3012

