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ABSTRACT

Few problems in Operations Research are regarded as highly as the Vehicle Routing Problem (VRP).
Its relevance within management and industrial settings has led to the variants of this problem being
widely studied by the scientific community. With the aim of solving the VRP with stochastic demands
we analyze an extension of the classical GRASP metaheuristic. This work hybridizes a biased-randomized
GRASP (BR-GRASP) with a two-stage Monte Carlo simulation which has the ability to attain robust and
competitive solutions. In the first stage, a promising set of local optimum solutions is identified based on
a short simulation evaluation. In the second stage, the promising solutions are tested for reliability using a
larger number of simulation runs. The most reliable solution is the final solution. Experiment results are
provided that demonstrate that the proposed integrated algorithm leads to higher quality solutions than the
equivalent approach without such an integration.

1 INTRODUCTION

During the last two decades, we have experienced several methodological improvements in solving large-scale
combinatorial optimization problems. These methodological improvements have generated a noticeable
rise in the industrial demand for optimization tools. These new algorithms, which hybridize established
solution strategies with problem-specific implementation features, coupled with the availability of powerful
yet inexpensive computing technology, have led scientific research towards new horizons and challenges.
One of the recent challenges has been in the intensive research on stochastic optimization problems.
Given the non-deterministic nature of real-world scenarios, properly addressing stochasticity is essential
for embedding optimization techniques into each of the supply-chain systems that determine production,
scheduling, distribution, location-allocation, etc. With this aim in mind, we study one of the most iconic
problems in the landscape of stochastic combinatorial optimization, i.e., the Vehicle Routing Problem with
stochastic demands (VRPSD).

The vast majority of combinatorial problems are computationally intractable by nature, and the Vehicle
Routing Problem (VRP) is no exception. For a summary of the existing approaches to solving the classical
VRP, we refer the reader to three excellent resources on the topic: Toth and Vigo (2014), Laporte (1992), and
Golden et al. (2008). Due to the complexity of large-scale VRP instances, the typical solution techniques
mainly belong to the class of heuristic and metaheuristic algorithms. Some of the first attempts to incorporate
random sampling techniques into heuristic approaches for solving VRP instances are due to Faulin and
Juan (2008b) and Faulin et al. (2008a). The Greedy Randomized Adaptive Search Procedure (GRASP) is a
flexible metaheuristic technique proposed in Feo and Resende (1995). GRASP has proven to be successful in
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a very diverse set of combinatorial optimization problems: from scheduling and routing (Festa and Resende
2009b) to graph coloring and satisfiability (Laguna and Martı́ 2001; Felici et al. 2017). The versatility
shown in solving NP-hard deterministic problems, and the simplicity of its implementation, makes GRASP
an excellent solving methodology for the VRPSD. In this work, we discuss a recent extension of this
framework, the GRASP with biased randomization (BR-GRASP). In addition, we discuss how BR-GRASP
can be hybridized with Monte Carlo simulation in order to obtain reliable and competitive routing plans
when considering customers with stochastic demands.

The remainder of the paper is structured as follows: Section 2 summarizes previous approaches to
solving stochastic VRPs (SVRPs) and provides a brief survey of the results achieved using the simheuristic
paradigm to tackle hard stochastic problems. Section 3 formally introduces the VRP with stochastic
demands. The main concepts and implementation strategies of our method are described in Section 4.
Section 5 presents test results obtained on a well-established reference benchmark set. Lastly, Section 6
concludes this paper, by presenting the main conclusions and possible future research directions.

2 RELATED WORK

This section reviews two different types of related work. On the one hand, it discusses how exact and
metaheuristic approaches have been employed so far to cope with stochastic VRPs. On the other hand, it
reviews the basics of simheuristics and different applications of this simulation-optimization methodology.

2.1 Exact and Metaheuristic Methods to Solve Stochastic Routing Problems

The complexity of intractable combinatorial optimization problems, such as the VRP, heavily limits the
size of the instances that can be solved with exact methods. Nevertheless, driven by the attractiveness of
optimal solutions, several efforts have been made in the literature to design exact algorithms for routing
problems. Gendreau et al. (1995) provide optimal solutions to the VRP with stochastic customers and
demands by means of an integer L-shaped algorithm. In Laporte et al. (1992), a branch-and-cut method is
described for solving the VRP with stochastic travel times. Other examples of exact algorithms that have
been investigated are column generation (Taş et al. 2014) and branch-and-price (Christiansen and Lysgaard
2007). At the same time, in order to solve larger instances, a parallel stream of research has focused on
heuristic and metaheuristic algorithms. Thus, Gendreau et al. (1996b) propose a Tabu Search algorithm
for the VRP with stochastic customers and demands. For the VRP with stochastic demands, the work
of Marinakis et al. (2013) describes a particle swarm optimization method, while Bianchi et al. (2006)
compare the results achieved by five different well-known metaheuristics.

The common aspect shared by both exact and heuristic methods is the use of a dynamic approach,
in which some of the stochastic values are only revealed once vehicles reach customers, at which point
solutions can be dynamically re-optimized or updated with recourse actions.

2.2 Simheuristics: Bringing Together Optimization and Simulation

The simheuristic framework is one of the most successful examples of hybrid simulation-optimization
approaches. In this paradigm, the typical randomness of real-world optimization scenarios is effortlessly
accounted for in the solution strategy, whether it has to be included in a stochastic objective function
or a constraint. The main difference between techniques of this family and the majority of stochastic
approaches is that simheuristics do not assume that recourse actions are available to correct solutions during
the implementation of the solution. On the contrary, they try to achieve a ‘reliable’ solution by integrating
stochastic simulation within the search process.

One essential idea in the simheuristic concept is the strong relation between the strategy devised for
solving a classical deterministic problem and the simulation of the random variables. These two different
perspectives to the problem are handled respectively by the heuristic (or metaheuristic) core and by a
stochastic simulation (in any of its forms). Thus, given a stochastic optimization problem, a first step of
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a simheuristic approach consists of the transformation of the stochastic variables into their deterministic
counterparts. This allows the approach to efficiently obtain a deterministic solution by means of a heuristic
algorithm. Subsequently, the quality of the constructed solution is evaluated in a stochastic environment to
determine its real value in scenarios with uncertainty. This two-step process establishes a feedback system
between the deterministic optimization algorithm and the stochastic simulation. This feedback system is
not only able to more accurately evaluate solution quality, but also to better guide the exploration of the
search space.

The scientific literature has recently seen several successful applications of simheuristic algorithms to
a broad variety of stochastic combinatorial optimization problems. In Guimarans et al. (2016), a hybrid
simheuristic is proposed to solve a variant of the capacitated VRP. This variant combines vehicle routing
and packing constraints, and so it is known as the two-dimensional VRP with stochastic travel times. The
multi-start randomized simheuristic, presented in Juan et al. (2014b) for the single-period and stochastic
Inventory Routing Problem with stock-outs, shows how personalized refill policies can be crucial to enable
significant cost reductions in comparison to what can be achieved by other algorithms employing standard
refill policies. Gonzalez-Martin et al. (2018) tackle the Arc Routing Problem (ARP) with stochastic
demands by embedding Monte Carlo simulation into a classical strategy for the capacitated ARP. Without
being exhaustive in our review, other notable efforts in the literature can be found in the area of Permutation
Flow Shop Problems (Juan et al. 2014a; Ferone et al. 2016a; Gonzalez-Neira et al. 2017), and facility
location problems (de Armas et al. 2017).

3 THE VEHICLE ROUTING PROBLEM WITH STOCHASTIC DEMANDS

As in the case of other notable stochastic combinatorial optimization problems, a Stochastic Vehicle
Routing Problem (SVRP) emerges whenever a random component is included in the mathematical model
of a classic VRP formulation. The most-common examples of such random components are mainly related
to the stochasticity of customer availability, customer demands, and travel times.

Given the critical importance of understanding the influence of uncertainty over decisions, which is
a crucial matter in logistics and operations management, solving SVRPs is vitally important to both the
simulation-optimization community and industry (Gendreau et al. 1996a). One of the initial contributions to
the VRP with stochastic demands can be found in Bertsimas (1992), where the author tries to: (i) determine
a fixed routing sequence covering all potential customers; and then (ii) update the solution according to
two different criteria once the information regarding customer demands becomes available. The approach
of Bertsimas (1992) is to generate a deterministic solution and to re-optimize it in real-time as uncertainties
materialize. Such a strategy has clear advantages for tractable problems, as in the case of Shortest Path
Problems (Ferone et al. 2016b; Ferone et al. 2017). However, for problems that are characterized by their
hard complexity or whenever a reduced amount of computing resources are available to complete a reactive
strategy, then allowing for stochasticity in the initial solution process is beneficial. This is the approach
taken in this work, whose aim is to generate a ‘reliable’ or ‘stable’ solution for the VRPSD, i.e., a set of
routes that can achieve a good performance not only in terms of average cost but also by being able to
support moderate levels of variability in the values of the random customer demands.

The VRPSD is formally stated on a graph G = (V,E), where the set of nodes includes both the depot,
usually denoted by 0, and the location of customers, V \{0}. A fleet of vehicles with restricted capacity is
available at the depot, which is the starting and ending point for each trip. Moreover, a non-negative cost
function c : E→ R+ associates a cost (either based on distance or on travel time) to each edge in E. For
each i ∈ V \{0}, a random variable xi indicates the demand of goods that customer i requires. The goal
of the problem is to find a set of routes with minimal total expected cost while serving all customers and
satisfying the capacity constraints.
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4 OUR SIMULATION-OPTIMIZATION APPROACH

This section begins by discussing the classical GRASP metaheuristic framework. Then, it analyzes how this
basic GRASP version can be easily enhanced by making use of biased-randomization concepts. Finally,
the BR-GRASP is hybridized with Monte Carlo simulation in order to address the stochastic component
of the VRPSD that is considered in this paper.

4.1 GRASP Framework

GRASP is a well-known metaheuristic framework for hard combinatorial optimization problems. Initially
proposed in Feo and Resende (1995), it has achieved many benchmark results for large-scale instances of
NP-hard problems. The reader is referred to Festa and Resende (2009a) and Festa and Resende (2009b)
for a detailed analysis of its theoretical foundations as well as some of its most popular applications.

The classical GRASP version is made up by two main components (Algorithm 1): a constructive phase
and a local search. In the former, a solution is built iteratively by adding one component at a time from
a candidate set. In each iteration, the element to be added to the solution under construction is selected
uniformly at random among the elements of a restricted candidate list (RCL). The RCL collects all the
best insertion candidates according to some greedy score function. It includes all the elements whose score
is better than a user-specified percentage of the best score. This adaptive thresholding process is guided
by a parameter, α , which tunes the greediness of the constructive phase.
Upon completion of the first phase, a feasible solution is obtained. At this point, the local search attempts to
reach a local optimum with respect to some suitably-defined neighborhood structure. Given the randomness
of this framework, the two phases are repeatedly applied in a multi-start fashion. At the end of the process,
the best solution found is returned as the final result.

4.2 GRASP with Biased Randomization

Our solution method relies on a recent extension of the classical GRASP paradigm: GRASP with biased
randomization or BR-GRASP (Algorithm 2).

Algorithm 1: Construction phase with
RCL

Input: α ∈ [0,1]
1 s← /0
2 initialize candidate set: CL ← E
3 order CL according to c(·)
4 while solution s is not complete do
5 cmin←minx∈CL{c(x)}
6 cmax←maxx∈CL{c(x)}
7 thr← cmin +α(cmax− cmin)
8 RCLsize← |{x ∈CL : c(x)≤ thr}|
9 pos←

UnifRand(1,2, . . . ,RCLsize)
10 s← s∪{CL[pos]}
11 CL←CL\{CL[pos]}
12 Reorder CL

end
13 return s

Algorithm 2: Construction phase
with Biased Randomization

Input: Distribution D; Parameter β

1 s← /0
2 initialize candidate set: CL ← E
3 order CL according to c(·)
4 while solution s is not complete do
5 Randomly select

pos ∈ {1, . . . , |CL|} according
to distribution D(β )

6 s← s∪{CL[pos]}
7 CL←CL\{CL[pos]}
8 Reorder CL

end
9 return s
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The aim of the BR-GRASP is to guide the construction process towards more favorable regions of the
search space, with the goal of achieving diversification without excluding any potentially good candidate
elements. More specifically, while in the classical GRASP the RCL implementation is obtained by the
two-step process described above (thresholding plus uniform selection), this new paradigm guides the
constructive phase using a skewed (non-uniform) probability distribution and without using a RCL.

Different skewed probability distributions can be considered within this extension. As suggested in
Grasas et al. (2017), we use a geometric distribution with parameter β . The result of this process is
a constructive phase that is able to balance greedy bias and search diversification. A depiction of the
differences among the selection processes of the classical GRASP and the BR-GRASP can be found in
Figure 1.

Candidate list
Restriction

Solution
element

(a) (b)

Solution
element

Probability
of being
selected

Probability
of being
selected

Figure 1: Differences in the selection processes of the classic GRASP (a) and the BR-GRASP (b).

Biased-randomization techniques have been successfully used in the past to solve different VRP
variants, including the two-dimensional loading VRP (Dominguez et al. 2014; Dominguez et al. 2016) or
the multi-depot VRP (Juan et al. 2015).

4.3 Our SimGRASP Approach for the VRPSD

Metaheuristic frameworks were originally conceived for tackling deterministic problems. Accordingly, the
classic GRASP is not designed to consider uncertainty within the input data. From a technical perspective,
this represents a major drawback when dealing with real-life scenarios, for which the use of a deterministic
model could represent an oversimplification which leads to suboptimal solutions (Lucas et al. 2015).

With the aim of allowing for the inherent uncertainty within logistics and transportation problems,
our algorithm embraces the paradigm of simheuristics (Grasas et al. 2016). The resulting framework,
the SimGRASP, incorporates Monte Carlo simulation at two different stages of the BR-GRASP approach.
Incorporating simulation within an optimization algorithm is not on its own enough to guarantee a reliable
solution. The performance of the stochastic solution obtained by the simheuristic is tightly linked to the
quality of the deterministic optimization algorithm, that is, both components are complementary to the
quality of the final solution. In this work we use BR-GRASP as the deterministic optimization component.
The operation flow of our simulation-optimization technique is summarized in Figure 2.

As in the deterministic case, the algorithm begins with a biased-randomized constructive phase. The
output is a first feasible solution s. This first phase is then followed by a local search, with the aim
of improving s to achieve a deterministic local optimal solution, s∗, according to a two-opt exchange
neighborhood structure N(x).

2993



Festa, Ferone, Pastore, Juan, and Bayliss

Initialize BR-
GRASP parameters

Biased randomized constructive phase

Use 2-opt exchange local search
to reach a local optimum s∗

Run a short simulation to es-
timate stochastic cost of s∗

Add s∗ to Elite Set if it improves
the current best stochastic solution

Stopping
criterion
met?

Run extended simulation on the Elite Set

Return the best
solution of Elite Set

yes

no

Figure 2: Flowchart of our SimGRASP algorithm.

The deterministic local optimum s∗ is then evaluated in a stochastic environment, which represents the
first of two applications of Monte Carlo simulation, in which a limited number of simulation replications are
used. Within each single run of the simulation, all customers’ demands are randomly generated accordingly
to the corresponding probability distributions. The number of runs performed in this first simulation stage
is denoted nItershort . This use of a limited number of simulations runs provides a mechanism for controlling
the trade-off between run times and accuracy. Subsequently, the initial solution s∗ is set as the current best
solution, and the ‘elite set’ (ES) is initialized with s∗ as its only element.

Thereafter, as in the classical GRASP paradigm, the procedure is repeated in a multi-start fashion
until the stopping criterion is satisfied. In each iteration, new deterministic solutions are generated and
consequently improved by means of the local search, hence obtaining new deterministic local optima s∗∗.
Each of the locally optimal solutions is evaluated in nItershort simulation runs. If in this stochastic analysis
it is found that the performance of s∗∗ is better than those obtained by the current best solution, then s∗∗

is added to ES and the current best solution is accordingly replaced.
Once the multi-start process has finalized, all the solutions belonging to ES are evaluated through a

second simulation stage, this time using a higher number of simulation runs, nIterlong, for each evaluation of
a candidate solution. This second simulation stage is only applied to a reduced set of ‘promising’ solutions,
which limits the necessary computing time. The aim of this second simulation stage is to thoroughly assess,
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with a higher degree of accuracy, the stochastic quality of the solution generated during the heuristic search
process.

5 COMPUTATIONAL EXPERIMENTS

In this section, a series of computational experiments are described and their results analyzed. These
numerical experiments contribute to verify and validate the proposed simulation-optimization methodology.

5.1 Experimental Settings and Benchmarks

An assessment of the performance of our SimGRASP was obtained by comparison with the multi-start
simheuristic discussed in Juan et al. (2013). In this paper, the authors use a multi-start algorithm that is
later combined with simulation to estimate the expected distribution costs. Both the multi-start algorithm
and our SimGRASP make use of a geometric probability distribution to benefit from biased-randomization
techniques (Grasas et al. 2017). In addition, the multi-start algorithm (SimMultiStart) uses a splitting
strategy, which tries to improve each solution by dividing it into smaller problems. The SimMultiStart
approach considers the concept of safety stocks to prevent running out of goods due to the occurrence
of higher-than-expected demands. Finally, the local search employed in the SimMultiStart algorithm
implements a cache-memory to store past routes, while the local search in our BR-GRASP incorporates a
2-opt exchange operator. In the interest of a fair analysis, the simulation paradigm considered for the two
algorithms follows the same construction mechanism. The demands di used in the deterministic benchmark
set are replaced by their stochastic counterpart, Di, according to a Log-Normal probability distribution,
with E[Di] = di. Also, Var[Di] = k ·di, where k > 0 is a design parameter. The experiment results reported
here were obtained with a variance level of k = 0.25. Consequently, the Log-Normal distribution can be
described through the location (µi) and scale (σi) parameters as follows:

µi = ln(E[Di])−
1
2
· ln

(
1+

Var[Di]

E[Di]
2

)

σi =

∣∣∣∣∣∣
√√√√ln

(
1+

Var[Di]

E[Di]
2

)∣∣∣∣∣∣
In order to obtain a reliable evaluation, the method presented here was applied to the well-established
benchmark instances of types A and B that were proposed in Augerat et al. (1998) for the capacitated
VRP. The SimGRASP was implemented as a Java application and run directly on Eclipse using a personal
computer with an Intel i7 Quad core, 2.67 GHz clock, and 6 GB RAM. After a quick fine-tuning of the
BR-GRASP parameters, the following values were set: for the threshold parameter in Algorithm 1, α = 0.3;
for the Geometric distribution parameter in Algorithm 2, β = 0.5. The algorithm was executed with a time
limit of 10 seconds.

5.2 Analysis of Results

Table 1 summarizes the results generated in the testing phase. The comparison of the solutions obtained
by: (i) the coupling of a multi-start heuristic and simulation; and (ii) the SimGRASP approach shows how
this new technique outperforms the multi-start one in each instance. The measured gap, indeed, is negative
for all instances in the benchmark set, with an average value of −9.81% over all instances. These good
results are mainly due to the optimization paradigm used in the implementation of our BR-SimGRASP,
mainly due to the incorporation of an enhanced local search operator.
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Table 1: Performance of BR-GRASP and SimGRASP for the VRP.

Instance SimMultiStart
(1)

SimGRASP
(2)

% Gap
(1)-(2)

A-n32-k5 993.20 890.95 -10.30
A-n33-k5 815.40 750.63 -7.94
A-n33-k6 912.60 837.63 -8.21
A-n37-k5 795.00 734.44 -7.62
A-n38-k5 885.10 824.37 -6.86
A-n39-k6 1010.60 926.11 -8.36
A-n45-k6 1184.30 1091.36 -7.85
A-n45-k7 1502.00 1336.08 -11.05
A-n55-k9 1408.40 1258.72 -10.63
A-n60-k9 1795.70 1579.79 -12.02
A-n61-k9 1330.60 1224.44 -7.98
A-n63-k9 2203.70 1897.29 -13.90
A-n65-k9 1555.30 1437.84 -7.55
A-n80-k10 2328.40 2177.10 -6.50
B-n31-k5 855.70 757.60 -11.46
B-n35-k5 1255.50 1098.00 -12.54
B-n39-k5 695.90 621.34 -10.71
B-n41-k6 1103.20 1005.62 -8.84
B-n45-k5 904.60 828.04 -8.46
B-n50-k7 945.80 859.48 -9.13
B-n52-k7 944.40 848.71 -10.13
B-n56-k7 920.00 845.37 -8.11
B-n57-k9 2199.70 1885.69 -14.27
B-n64-k9 1179.60 1064.53 -9.75
B-n67-k10 1404.50 1247.67 -11.17
B-n68-k9 1754.70 1515.88 -13.61
Average -9.81

Furthermore, the results show that the performance of the stochastic solutions are enhanced by the
biased-randomized construction with respect to the classical GRASP paradigm. Another example of the
effect of the quality of the solution generated in the construction phase and stochastic value of the final
solution can be found in the radar chart presented in Figure 3. This plot illustrates the solution values
obtained, for instances A-n33-k5 and B-n31-k5, by three different algorithmic approaches: SimMultiStart,
SimGRASP, and SimGRASP with BR. Thus, values closer to the center of the triangle represent a lower-cost
value. Figure 3 shows how the biased-randomized SimGRASP achieves the best results among the three
approaches.

6 CONCLUSIONS AND FURTHER POSSIBLE EXTENSIONS

This work is motivated by the benefits of accounting for stochasticity when solving hard combinatorial op-
timization problems. In our view, successfully incorporating stochasticity within deterministic optimization
approaches depends on a careful integration of well-performing optimization tools in industrial settings.
More specifically, we have proposed the use of an approach that combines simulation and metaheuristic
optimization to solve one of the most difficult and widely studied stochastic optimization problems: the
Vehicle Routing Problem with Stochastic Demands.
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Figure 3: Comparison of a MS simheuristic, SimGRASP with BR, and SimGRASP without BR.

The simheuristic proposed here is based on a recent extension of the classical GRASP framework, the
GRASP with biased randomization. This extension has been shown to be a successful meeting point between
performance and simplicity of implementation. The algorithm has been tested over a set of stochastic
instances obtained from an established benchmark set for the deterministic version of the problem. The
results show that our method is able to attain high-quality solutions over all instances in reasonably low
computing times. In particular, our results provide results supporting the idea that high-quality deterministic
local optimal solutions are complementary to the quality of the robust solutions that are derived from the
proposed hybridization of BR-GRASP and Monte Carlo Simulation.

Future extensions of the present work are two-fold: a first stream of investigation can be based on
improving implementation features that enhance the performance of the heuristic core of our algorithm. Path
relinking, for example, is a feature that has been successfully embedded in multiple GRASP frameworks
(Laguna and Marti 1999; Resendel and Ribeiro 2005; Ferone et al. 2016c). On the other hand, to
improve the quality of the solutions generated specifically for the vehicle routing problem, some problem-
specific intensification-diversification strategies can be devised, such as granular search, or the restricted
neighborhood structure as applied in Toth and Vigo (2003).

REFERENCES

Augerat, P., J. Belenguer, E. Benavent, A. Corberán, D. Naddef, and G. Rinaldi. 1998. “Computational
Results with a Branch-and-cut Code for the Capacitated Vehicle Routing Problem”. Technical Report
R.495, IASI-CNR.

Bertsimas, D. J. 1992. “A Vehicle Routing Problem with Stochastic Demand”. Operations Re-
search 40(3):574–585.

Bianchi, L., M. Birattari, M. Chiarandini, M. Manfrin, M. Mastrolilli, L. Paquete, O. Rossi-Doria, and
T. Schiavinotto. 2006. “Hybrid Metaheuristics for the Vehicle Routing Problem with Stochastic De-
mands”. Journal of Mathematical Modelling and Algorithms 5(1):91–110.

Christiansen, C. H., and J. Lysgaard. 2007. “A Branch-and-price Algorithm for the Capacitated Vehicle
Routing Problem with Stochastic Demands”. Operations Research Letters 35(6):773–781.

de Armas, J., A. A. Juan, J. M. Marquès, and J. P. Pedroso. 2017. “Solving the Deterministic and
Stochastic Uncapacitated Facility Location Problem: From a Heuristic to a Simheuristic”. Journal of
the Operational Research Society 68(10):1161–1176.

Dominguez, O., A. A. Juan, B. Barrios, J. Faulin, and A. Agustin. 2016. “Using Biased Randomization for
Solving the Two-dimensional Loading Vehicle Routing Problem with Heterogeneous Fleet”. Annals of
Operations Research 236(2):383–404.

2997



Festa, Ferone, Pastore, Juan, and Bayliss

Dominguez, O., A. A. Juan, and J. Faulin. 2014. “A Biased-randomized Algorithm for the Two-dimensional
Vehicle Routing Problem with and without Item Rotations”. International Transactions in Operational
Research 21(3):375–398.

Faulin, J., M. Gilibert, A. A. Juan, X. Vilajosana, and R. Ruiz. 2008a. “SR-1: A Simulation-based Algorithm
for the Capacitated Vehicle Routing Problem”. In Proceedings of the 2008 Winter Simulation Conference,
edited by S. Mason et al., 2708–2716. Piscataway, New Jersey: IEEE.

Faulin, J., and A. A. Juan. 2008b. “The ALGACEA-1 Method for the Capacitated Vehicle Routing Problem”.
International Transactions in Operational Research 15(5):599–621.

Felici, G., D. Ferone, P. Festa, A. Napoletano, and T. Pastore. 2017. “A GRASP for the Minimum Cost
SAT Problem”. In Learning and Intelligent Optimization, edited by R. Battiti et al., 64–78. Cham,
Switzerland: Springer International Publishing.

Feo, T. A., and M. G. Resende. 1995. “Greedy Randomized Adaptive Search Procedures”. Journal of
Global Optimization 6(2):109–133.

Ferone, D., P. Festa, A. Gruler, and A. A. Juan. 2016a. “Combining Simulation with a GRASP Metaheuristic
for Solving the Permutation Flow-shop Problem with Stochastic Processing Times”. In Proceedings
of the 2016 Winter Simulation Conference, edited by T. M. K. Roeder et al., 2205–2215. Piscataway,
New Jersey: IEEE.

Ferone, D., P. Festa, A. Napoletano, and T. Pastore. 2016b. “Reoptimizing Shortest Paths: From State of the
Art to New Recent Perspectives”. In 18th International Conference on Transparent Optical Networks
(ICTON), edited by M. Ferrari et al., without page numbers. Piscataway, New Jersey: IEEE.

Ferone, D., P. Festa, A. Napoletano, and T. Pastore. 2017. “Shortest Paths on Dynamic Graphs: A Survey”.
Pesquisa Operacional 37(3):487–508.

Ferone, D., P. Festa, and M. G. Resende. 2016c. “Hybridizations of GRASP with Path Relinking for the
Far from Most String Problem”. International Transactions in Operational Research 23(3):481–506.

Festa, P., and M. G. C. Resende. 2009a. “An Annotated Bibliography of GRASP – Part II: Applications”.
International Transactions in Operational Research 16(2):131–172.

Festa, P., and M. G. C. Resende. 2009b. “An Annotated Bibliography of GRASP - Part I: Algorithms”.
International Transactions in Operational Research 16(1):1–24.
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