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ABSTRACT

Emergency Medical Service is one of the most important health care services as it plays a vital role in
saving people’s lives and reducing the rate of mortality and morbidity. A peak of emergency demand can
determine overcrowding at the emergency department. In this operative context, a challenge is the definition
of proper real-time dispatching, routing and redeployment policies (DRRP) in such a way to maximize the
number of emergency requests served within a time threshold, and to minimize the waiting times. The
contribution of this paper is twofold. The former is a simulation model capable to deal with the real-time
management of the ambulances, and to generate new ad hoc instances. The latter is a set of simple online
algorithms to implement several DRRP. An extensive comparison among different DRRP is also provided.

1 INTRODUCTION

Emergency Medical Service (EMS) is one of the most important health care services as it plays a vital
role in saving people’s lives and reducing the rate of mortality and co-morbidity. The importance and
sensitivity of decision making in the EMS field have been recognized by researchers who studied many
problems arising in the management of EMS systems since the 1960s, as reported by Aringhieri et al.
(2017), Reuter-Oppermann et al. (2017) and Bélanger et al. (2018). Aboueljinane et al. (2013) present
a review of the many simulation models that have been developed over the years: most of the available
simulation approaches are based on a Discrete Event Simulation (DES) approach.

A peak of emergency demand can determine overcrowding (Paul et al. 2010) at the Emergency
Department (ED). Overcrowding is manifested through an excessive number of patients in the ED, long
waiting times and patients leaving without being seen. Sometimes patients being treated in hallways and
ambulances are diverted (Hwang and Concato 2004). Consequently, the ED overcrowding has a harmful
impact on the health care (George and Evridiki 2015).

Simulation is often exploited for the analysis of the overcrowding at the ED and its impact on ambulance
diversion. Nafarrate et al. (2010) found that the number of patients in the waiting room is a better trigger
for ambulance diversion than inpatient bed availability, as it provides the best balance between accessibility
and waiting times. Ramirez-Nafarrate et al. (2012) use a simulation model to determine the effect of
several ambulance diversion policies on the patient’s waiting time. More generally, van Buuren et al. (2012)
uses simulation to evaluate several dynamic dispatching strategies while Maxwell et al. (2009) evaluates
redeployment policies computed by approximate dynamic programming using simulation.

A first attempt to consider real-time redeployment policies is due to Ni et al. (2012). In their analysis,
the authors use simulation to devise and to evaluate redeployment policies. Jagtenberg et al. (2017) provide
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a bound existing online solutions in comparison with three different methods to compute the optimal offline
dispatching policy for problems with a finite number of incidents. The performance of the offline optimal
solution serves as a bound for the performance of an unknown optimal online dispatching policy. Then,
they compare such an offline solution to the closest idle vehicle dispatching policy obtaining a bound of
2.7 times on the fraction of late arrivals. Aringhieri et al. (2018) analyzes the interplay between the EMS
and the network of EDs operating on a given area at the system level. The analysis of a simple EMS
dispatching policy, based on the real-time workload of the EDs, showed that there is room to improve the
efficiency of the ED network reducing the patient waiting time. Further, such an improvement is more
significant as soon as the percentage of the patients transported by the EMS increases. van Barneveld
et al. (2018) evaluate the impact of typical factors influencing the performance of an EMS such as (i) the
frequency of redeployment actions, (ii) time bounds on the ambulance relocation, and (iii) the inclusion of
busy ambulances in the decision process. The main insights derived by their research are that adding more
relocation action is highly beneficial for rural areas and considering ambulances involved in dropping off
patients available for newly coming incidents reduces relocation times only slightly. Finally, Nasrollahzadeh
et al. (2018) develop a flexible optimization framework for real-time ambulance dispatching and relocation.
They formulate the problem as a stochastic dynamic program. Because of the unbounded state space,
the authors propose an approximate dynamic programming framework to generate high-quality solutions.
Their analysis is performed on an available benchmarks on an EMS system in Mecklenburg County, North
Carolina.

The analysis of the literature reveals an attention to real-time dispatching policies in contrast to a limited
attention to the redeployment of the ambulances in real time. From such an analysis, a list of insights
can be derived, that is (i) the number of patients in the waiting room is a better trigger for ambulance
diversion (Nafarrate et al. 2010), (ii) the use of the fraction of covered calls as efficiency measures (McLay
and Mayorga 2013), (iii) incorporating equity might lead to a lower service or negative outcomes (McLay
and Mayorga 2013), (iv) priority dispatching policies can improve the performance for urgent calls at the
price of a worsening of the performance for non-urgent calls (Bandara et al. 2014).

The real-time management of the ambulances of an EMS is an online optimization problem in which
three main decisions should be addressed to serve an emergency request, that is (1) which ambulance
should be dispatched to serve an emergency request, (2) the selection of the ED facility to which the patient
will be transported, and (3) where to redeploy the ambulance at the end of its service. A challenge is the
definition of proper DRRP in such a way to maximize the number of emergency requests served within a
time threshold, and to minimize the waiting times. To the best of our knowledge, a comprehensive analysis
of the DRRP is missing. The contribution of this paper is twofold. The former is an ambulance simulation
model capable to deal with real-time management and to generate new ad hoc and realistic instances. The
latter is a set of simple online algorithms to implement several DRRP. An extensive comparison among
different DRRP is also provided.

The paper is organized as follows. The instance generator and the simulation model are described in
Sections 2 and 3, respectively. The DRRP are introduced in Section 4. The quantitative analysis is reported
in Section 5. Conclusions are discussed in Section 6.

2 INSTANCE GENERATOR

An instance is a planar graph G = (N,E) with n nodes and m arcs. Each node is a centroid representing
a small part of the whole area served by the EMS. Each arc models the connection between two nodes.
Two labels are associated to each arc: the former represents the length of the arc while the latter is the
average speed of a vehicle traveling on it. The number of arcs starting from a node u ∈ N is equal to au.
An example is reported in Figure 1.

The length of an arc and, more generally, distances in the graph are Euclidean. Further, a scale factor
fs determines the value of each pixel. The scale factor is useful to generate graph representing different
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type of areas such as urban or rural: for instance, in our settings for a urban area 1 pixel corresponds to
20 meters.

Figure 1: An example of realistic graph in its final version.

As highlighted in Figure 1, there are three type of nodes, that is the emergency demand generator (the
colored circle), the ambulance base (the colored square), and the ED facility (the white circle). Note that
an emergency request can be generated from an ambulance base node. Globally, we have nG, nB and nED
nodes (respectively generators, bases, and ED facilities) such that nG+nB+nED = n. Let NG, NB, NED ⊂N
be respectively the subsets of the nG +nB generator nodes, the nB bases, and the the nED ED facilities.

A generated graph can be manually adjusted adding or deleting nodes and arcs, and also moving nodes
and, by consequence, all connected arcs. For urban area, it is also possible to characterize each node as
residential, commercial, public utility, and offices. This classification is useful at running time to model in
a proper way the generation of the emergency demand: for instance, a residential node usually generates
more demand during the evening or night while a public utility node is likely to generate more demand in
the morning. Further, we can change the average speed of each arc by default set to medium (30 km/h) to
low (20 km/h) or high (40 km/h).

Figure 1 depicts the final version of an instance in which the yellows are the residential nodes, the
greens are the commercial nodes, the light blues are the public utilities, and the purple ones are the areas
with offices. Regarding the arcs, the light blue are those with medium speed while the blue and the gray
arcs are the faster and the slower ones, respectively. At the end of the process, the graph can be saved on
a file.

3 THE SIMULATION MODEL

The simulation model replicates how an EMS serves an emergency request. The EMS receives a phone
call from a citizen asking for an emergency care for himself or for a third person. The operators at the
EMS’s operation center are in charge of answering the calls and assigning a color code to each emergency
request, based on the severity of injury, through a phase called triage. After the triage phase the operator
dispatches an ambulance following a predefined dispatching policy. Ambulance crew rescues the patient
and, if necessary, transports him/her to a hospital. Note that usually the ambulance crew is in charge of
the patient until he/she is handed to the hospital staff.

The model takes in input seven parameters, that is (i) the duration I of the simulation (expressed in
days), (ii) the graph G = (N,E), (iii) the number Ab of ambulances for each base b ∈NB, (iv) the maximum
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number Amax
b of ambulances that can be positioned on each base b∈NB, (v) the emergency demand variation

table, (vi) the workload of the ambulances, and (vii) the capacity of the ED facilities. While the first four
parameters have a straightforward definition, the last three requires a detailed description, which is reported
in the following. Let us denote with A the total number of ambulances, given by A = ∑b∈NB Ab.

3.1 Distances and Travel Times

The graph G = (N,E) is an undirected and labeled graph. The labels on the arcs [u,v] are the distance `d
among u and v, and the average speed `s on that arc. We use such labels to compute both distances and/or
travel times among two nodes in G. To this end, we use an ad hoc version of the classic label-setting
shortest-path algorithm (e.g., Dijkstra).

3.2 The Emergency Demand Variation Table

As reported by many authors (see, e.g., Channouf et al. (2007), Setzler et al. (2009)), emergency demand
is not static, but, rather, fluctuates during the week, according to the day of the week, and hour by hour
within a given day. The emergency demand table (Table 1) would model the relative demand fluctuation
over the day with respect to different urban areas over the total demand (e.g. office nodes should have a
higher relative demand during the business hours of the day). In accordance with the characteristics of
the generator node, a negative (low) or positive (high) variation of the predefined (normal) generation rate
is possible. We denote as wi

u the generic entry of the table with respect to the time interval i = 1,2,3,4
(morning, afternoon, evening, night) and the node u.

Table 1: The Emergency Demand Variation Table.

1: [7−13] 2: [13−19] 3: [19−1] 4: [1−7] 1: [7−13] 2: [13−19] 3: [19−1] 4: [1−7]

residential normal normal high low public utility high high normal low
commercial normal high low low offices normal normal low low

low = 0.7 normal = 1.0 high = 1.3

3.3 The Workload of the Ambulances

The workload of the ambulances W A is clearly determined by the generation rate of each node in accordance
with their characteristics and the fluctuations over the day reported in Table 1. Our model allows to input
the number of total emergency requests that should be generated for each time interval along the day: the
total number of emergency requests is denoted by D which is equal to D1+D2+D3+D4 corresponding to
the number of requests to be generated during the morning, afternoon, evening, and night time intervals,
respectively.

During each time interval, the Di requests are spread to all the nodes belonging in NG as follows: for
each node u ∈ NG, let di

u be the number of nodes that should be generated by u during the time interval i,
and defined as

di
u =

wi
u Di

∑v∈NG
wi

v
.

Then, the generation rate of the node u is equal to di
u divided by the duration of the time interval i.

Alternatively, the workload W A can be fixed as a target percentage of utilization and determining – by
consequence – the corresponding values of Di, i = 1,2,3,4. First, for each node we compute the minimal
mission time as the minimum time required to serve an emergency request on a given node. Let tmin

u be
such a time computed by considering the shortest time needed to follow the path starting at the closest (to
node u) ambulance base, passing from u, and ending at closest ED facility (to node u), plus the average
service time required at the emergency scene and for releasing the patient at the ED. We note that the
assumption under the computation of tmin

u is to have an ambulance always available. After that, we compute
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the (arithmetic) average T min
u over all u ∈ NG. The total number of emergency requests D is then computed

as

D = A
T (i)
T min

u
,

where T (i) is the duration of the interval i= 1,2,3,4. Finally, the value Di are obtained from D as Di =D ri
∑i ri

where ri = 1,0.8,0.5,0.2. The basic idea is to spread the daily demand over the time interval in such a
way to have a peak in the morning.

Independently of its generation, the urgency code of each request is distributed in accordance with the
proportion observed in Aringhieri et al. (2016), that is about the 10% of red codes, 50% of yellow codes,
and 40% of green codes. Note that these percentages are due to the so called over triage, which is an over
estimation of the request urgency, made by the operators answering at the emergency request phone call.

3.4 The Capacity of the ED Facilities

The capacity of each ED facility located in u ∈ NED is derived from the total demand D plus the number
of patients D′ that will arrive at the ED by their own. First we compute the average service time T ED

S from
an estimate of the service time of each urgency codes. The minimum necessary hourly capacity of the ED
located at the node u ∈ NED is given by

Cu =
(D+D′)T ED

S
24nED

.

The main assumption underlying this computation is to have patients evenly distributed among the ED
facilities in such a way to have always one patient to exploit a unit of ED capacity as soon as it is released
by another patient. Finally, the capacity of the ED facilities is a parameter ranging in [1,2] in such a way
that the final capacity varies in [Cu,2Cu].

In our model we have therefore two sources of patients, that is those transported by the EMS and those
arrived by their own. In our setting, D′ = 4D, that is the number of patients transported by the EMS is about
the 20% of the whole emergency demand at the ED facilities. This setting is consistent with the analysis
in Aringhieri et al. (2018). The patients arriving by their own follow the same distribution observed in
our previous work Duma and Aringhieri (2017), that is 2% of red codes, 15% of yellow codes, and 83%
of green codes. To be consistent with such a distribution, the urgency code of the patients transported by
the EMS are changed in such a way to obtain the same above distribution decreasing a fraction of the red
code to yellow, and the yellow to green. Note that this is consistent with the common practice of an EMS
in which over triage determines an overestimates of the emergency demand.

Table 2: Distributions used in the simulation model (Exp=exponential, Tr=triangular).

Distribution Parameters Unit of measure

Ambulance request Exp
(

1
λ

)
λ =

1
6Di

patients/h

Autonomous arrivals to ED Exp
(

1
λ ′

)
λ ′ =

1
6D′i

patients/h

Ambulance rescue duration Tr(τmin,τmax,τmod) τmin,max,mod = 10,20,15 min
Urg. patient release at ED Tr

(
τ

ry
min,τ

ry
max,τ

ry
mod

)
τmin,max,mod = 6,10,8 min

Non-urg. patient release at ED Tr
(
τ

g
min,τ

g
max,τ

g
mod

)
τmin,max,mod = 6,20,13 min

Probability distributions used to generate the total patient demand, the service times for the ambulance
rescue and the release times (of a patient) are reported in Table 2. Further, the ED Length of Stay (EDLOS)
is a discrete distribution used to generate the patient treatment duration within the ED is obtained empirically
from the real case data-set of the ED studied in Duma and Aringhieri (2017), truncating times exceeding
25 h.
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4 REAL-TIME POLICIES

Our main aim is to evaluate real-time policies for the management of the ambulances evaluating their impact
in terms of performance of the ambulances and overcrowding of the ED facilities. In this perspective, we
recall that the ambulance real-time management is an online optimization problem in which the following
three main decisions should be addressed: (1) which ambulance should be dispatched to serve an emergency
request, (2) the selection of the ED facility to which the patient will be transported, and (3) where to
redeploy the ambulance at the end of its service.

Before introducing the DRRP, we define an estimate of the number of ambulances needed at each base
b ∈ NB. Let Nc

1 , . . . ,N
c
nB

a partition of N in such a way that each node u belongs to Nc
b (with b = 1, . . . ,nB)

if and only if the j-th base is the closest one to the node u. Let Wb the sum of the morning weights in
Table 1 of the nodes in Nb, that is Wb = ∑u∈Nb

w1
u. We use morning weights since we supposed to have a

peak of demand in the morning. The number Ae
b of estimated ambulance of base b ∈ NB is finally given by

Ae
b = A

Wb

∑u∈NG∪NB Wu
.

4.1 Ambulance Dispatching

The most common dispatching policy is that of assigning an ambulance available at the closest base
(Cuninghame-Greene and Harries 1988), which has been proven to perform, on average, uniformly better
than the other dispatching rules in accordance with (Larsen et al. 2002). In the following, we refer to this
policy as D-Closest.

Alternatively, the dispatched ambulance can be selected from a list of enough close bases, that is those
capable to reach the request within the time threshold for the urgency of that request. Let LB be such a list
of enough close bases. The D-LLCB policy selects the ambulance to be dispatched from the base

argmaxb∈LB:Aa
b>0{Aa

b−Ae
b}

where Aa
b is the number of ambulances available in b at the moment of the decision. The D-LLCB policy

is similar to those reported in Bandara et al. (2014), Haghani et al. (2004).
The cutoff priority queue (D-CPQ) and the smart assignment (D-SA) are two possible extensions of the

two policies above reported. The D-CPQ consists in temporarily stop serving all the emergency requests
having green urgency code when the overall number of available ambulance is less than a given threshold.
The rationale here is to free up potential resources to deal with the ongoing peak of emergency demand.
The D-SA consists in considering for dispatching not only the ambulances available in a base but even
those who are in the redeployment phase, that is moving from an ED to an ambulance base. In a real
setting, this means to have a sort of tracking system that allows us to follow the ambulance in real time.

When D-SA is active, the D-LLCB should be slightly modified accordingly. First, we consider the
list LR of the destination bases of the redeploying ambulances that are capable to reach the request within
the time threshold. This means to assign the value Aa

b−Ae
b to each redeploying ambulance corresponding

to the destination base. Then we select a base according to

argmaxb∈LB∪LR:Aa
b>0{Aa

b−Ae
b} :

if the selected base b ∈ LB, we dispatch an ambulance from the base B; on the contrary, we dispatch the
redeploying ambulance if b ∈ LR. Finally, if the base b ∈ LR belongs also to LB, we dispatch the closest
ambulance between the redeploying ambulance and one of the those available in the base.

Both D-CPQ and D-SA are introduced and discussed by Aringhieri et al. (2016) while D-CPQ is also
analyzed by Yoon and Albert (2017). To the best of our knowledge, D-SA is surprisingly never cited in
the literature: the closest approach we retrieved is that reported in Lee (2014) in which the centrality-based
dispatching policy is improved by taking into account both idle and busy ambulances.
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4.2 Emergency Department Facility Selection

The H-Closest policy selects the closest ED facility. Again, this is a common choice in the real settings. The
rationale here is to provide as soon as possible a more accurate medical treatment to the patient. Anyway,
the ED managers usually complain about the fact that the workload is not evenly distributed among the
ED facilities of a given area. Their claim is that a more fair distribution of the workload could improve
the overall efficiency of the ED facility network. Such a claim seems proved by the analysis reported in
Aringhieri et al. (2018).

Here, we tested two simple policies addressing the problem of reducing overcrowding at the ED facility
in accordance with the remark discussed in Nafarrate et al. (2010), and reported at the beginning of the
chapter. The first policy, say H-SAQ selects the ED facility having the shortest admission queue counting
only those patients that have same or higher urgency code. The second policy, say H-WLB tries to balance
the workload of the ED facility taking into account the time needed to treat all patients in the admission
queue. Note that H-WLB implements a policy from the ED point of view while H-SAQ implements a
policy from the patient point of view. Finally, note that the two policies are applied only to those patients
having yellow or green urgency code, while the H-Closest is always applied to the red ones.

An estimate of the workload Fu of the ED facility u ∈ NED is given by

Fu = tr
w pr

u + ty
w py

u + tg
w pg

u

where tr
w, ty

w and tg
w are respectively the average ED length of stay for a red, yellow and green code, while

pr
u, py

u and pg
u are respectively the number of patients inside the ED facility (both waiting for admission

and under treatment) for a red, yellow and green code.
To counterbalance the effect of the longer travel times in the case of ED facilities less overcrowded but

far from the emergency request, the policies H-SAQ and H-WLB are applied only taking into account the
ED facilities no farther than the radius of G, that is half of the longest travel time between a node u ∈ N
and the current ED facility.

4.3 Ambulance Redeployment

In the real practice, a simple policy is that of redeploying the ambulance to its original base. In the following
we refer to this policy as R-Base. Alternatively, the aim of the EMS management should be to make an
ambulance available as soon as possible redeploying it to the closest base. Therefore, the R-Closest policy
redeploys the ambulance to the closest base at the end of the mission. This is one of the most used policy
in the real settings.

A third version of the above two policies is the R-LCBT policy: it redeploys the ambulance to the
less covered base b within a given time threshold T R as follows

argminb∈LR
{Aa

b−Ae
b}

where LR is the list of the bases that can be reached from the current ED facility within T R. Note that
T R is a parameter introduced to counterbalance the effect of the longer travel times as remarked in van
Barneveld et al. (2018).

5 QUANTITATIVE ANALYSIS

In this section we provide an analysis of the proposed policies in order to evaluate their impact when are
used separately or together.

In order to evaluate the proposed DRRP, we define in Table 3 several performance indices taking into
account the ambulance utilization and the most important aspects for the patient safety and satisfaction,
which regard the waiting time from the moment of the phone call to the arrival of the ambulance and the
waiting time at the ED. Observe that red code patients do not queue at the ED, then their waiting times
are omitted.
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Table 3: Performance indices.

Index Definition Index Definition

r Average time to reach a request (min) u+ Ambulance utilization considering also redeployment (%)
fg Fraction of green code reached within 20 min (%) uED ED utilization (%)
fry Fraction of red and yellow code reached within 8 min (%) wg Average waiting time of green code at the ED (min)
u Ambulance utilization considering only mission time (%) wy Average waiting time of yellow code at the ED (min)

The set of configurations taken into account in our analysis is reported in Table 4 and defined as different
combination of the DRRP. All the possible policy combinations have been tested for each scenario, but
we report the most significant ones for reasons of synthesis. Given a certain scenario, we start from the
baseline configuration (0), in which the basic policies are used, and we change one at a time the policies
for ambulance dispatching (1), for ED facility selection (2–3) and ambulance redeployment (4–5). The
same policies are defined enabling the D-SA option (0s–5s). Other configurations changing more than one
policy w.r.t. the baseline (6 and 7s–9s) have been chosen because they highlight interesting aspects for the
analysis. For the same reason, two configuration (6t and 0st) have been selected to study the impact of the
option D-CPQ.

Table 4: Configurations of DRRP set for the analysis.

id Dispatching ED Selection Redeployment id Dispatching ED Selection Redeployment

0 D-Closest H-Closest R-Base 2s D-Closest, D-SA H-SAQ R-Base
1 D-LLCB H-Closest R-Base 3s D-Closest, D-SA H-WLP R-Base
2 D-Closest H-SAQ R-Base 4s D-Closest, D-SA H-Closest R-Closest
3 D-Closest H-WLP R-Base 5s D-Closest, D-SA H-Closest R-LCBT (T R = 20 min)
4 D-Closest H-Closest R-Closest 7s D-Closest, D-SA H-SAQ R-LCBT (T R = 20 min)
5 D-Closest H-Closest R-LCBT (T R = 20 min) 8s D-LLCB, D-SA H-WLP R-Base
6 D-Closest H-SAQ R-Closest 9s D-LLCB, D-SA H-WLP R-LCBT (T R = 20 min)
0s D-Closest, D-SA H-Closest R-Base 6t D-Closest, D-CPQ H-SAQ R-Closest
1s D-LLCB, D-SA H-Closest R-Base 0st D-Closest, D-SA, D-CPQ H-Closest R-Base

After fixing a policy configuration and a scenario through the model parameters, we execute 30
simulation runs over a time horizon of I = 6 days: the first day is used for the warm-up, while the values
of the performance indices are collected over the other five days. The simulation model is implemented
using AnyLogic 7.3.7.

All tests are made on the graph illustrated in Figure 1, composed by n = 248 nodes and m = 512
arcs on a metropolitan area of 880 km2, among which nED = 7 hospital and nB = 14 bases are distributed
approximately in a balanced way. High-speed roads have been drawn through maximum speed arc paths,
while traffic areas are located in different points using minimum speed arcs.

Six different scenarios are analyzed in our analysis. Scenarios 1–3 are obtained ranging the ambulance
workload W A in {30%,40%,50%} and setting the total ED capacity equal to 1.5 times the minimum
capacity needed to deal with the demand. Then, scenarios 4–6 are defined for the same values of W A but
keeping the same total ED capacity, which is 1.7Cu, 1.275Cu and 1.02Cu when W A = 30%, 40% and 50%,
respectively. The initial number of ambulances Ab per base is fixed equal to 2 in all scenarios, while the
constraint about the maximum number Amax

b is relaxed in such a way to allow a higher flexibility to the
redeployment policies, and to analyze their impact in the most favorable situation.

Results of Scenarios 1–3 are reported in Table 5 focusing on indices regarding only performance of
the ambulances. As expected, the increasing of the ambulance workload W A causes a robust lengthening
of waiting times, which pass from 6 to 110 min on average for the baseline configuration, and a general
worsening of the indices. Such an increasing allows us to appreciate the impact of different configurations,
that is for scenarios 2 and 3. Enabling only the policy D-LLCB with respect to the baseline configuration,
a slight general worsening can be observed, while H-SAQ and H-WLP provide small variations depending
on the considered scenario. More significant is the impact of the redeployment policies and in particular
R-Closest, which worsens the fraction fry of the urgent patients reached within 8 min by an ambulance of
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Table 5: Results: ED capacity is 1.5Cu, that is proportional to demand.

Scen.1 - W A = 30% Scen.2 - W A = 40% Scen.3 - W A = 50%
id r fg fry u u+ r fg fry u u+ r fg fry u u+

0 6.1 98.2 78.3 27.0 32.4 24.8 59.1 42.8 41.8 52.7 110.0 14.1 14.0 57.9 75.5
1 6.9 98.0 75.8 27.6 33.4 24.3 58.6 41.1 42.1 53.2 111.8 13.7 13.3 58.1 75.7
2 6.0 98.4 78.9 27.0 32.5 22.1 60.8 43.5 41.7 52.6 111.0 14.3 13.9 57.9 75.5
3 6.8 96.1 74.2 28.9 35.6 28.7 51.1 37.0 43.8 56.0 108.0 13.9 14.1 57.6 75.2
4 8.5 96.0 57.9 28.8 31.8 11.2 85.5 46.8 40.2 44.3 32.5 41.0 25.4 54.0 59.1
5 7.0 96.6 70.7 27.8 32.0 11.4 81.4 54.9 39.6 45.3 45.6 31.8 26.3 55.0 62.3
6 8.6 95.2 57.3 29.1 32.2 10.8 87.0 47.5 40.0 44.1 34.9 38.7 24.8 54.6 59.8
0s 5.8 99.0 79.4 25.9 31.6 7.8 94.5 65.4 37.0 42.9 20.7 58.4 37.2 52.3 56.8
1s 6.9 98.6 75.9 27.6 32.4 8.9 93.0 61.3 38.1 44.0 20.3 58.8 36.2 52.8 57.3
2s 5.8 99.1 79.0 27.0 31.8 7.9 94.4 64.6 37.4 43.4 18.7 61.7 38.3 52.0 56.7
3s 6.1 98.8 76.1 28.5 34.1 8.9 91.0 58.9 39.8 46.4 19.4 59.0 35.5 53.6 58.6
4s 8.4 96.4 58.6 28.6 31.5 9.7 91.3 51.1 39.4 42.9 19.8 59.5 32.3 52.9 55.6
5s 6.7 97.2 72.0 27.5 31.4 8.4 92.4 62.7 37.8 42.6 18.6 62.5 40.1 51.7 55.4
7s 6.7 97.1 72.6 27.6 31.5 8.2 92.8 63.8 37.6 42.5 19.1 60.7 39.8 51.9 55.5
8s 7.3 97.6 71.5 29.2 34.7 9.9 89.6 55.8 40.7 47.1 21.2 55.2 33.5 54.4 59.1
9s 7.9 95.7 67.9 29.7 33.7 9.7 92.0 51.0 39.3 42.8 21.2 56.0 35.2 54.0 57.5

average uED = 64.9% average uED = 65.1% average uED = 65.2%

about 20%, but it halves the waiting times in scenario 2 and reduce them of more than 70% in scenario
3. However, a more relevant impact is observed enabling the D-SA: regardless of which policies are
enabled, it always allows better performance than when it is not activated. In particular, considering the
best configuration with and without enabling the D-SA, fry raises from 54.9% to 65.4% in scenario 2 and
from 26.3% to 40.1% in scenario 3 confirming the results on the real case study reported in Aringhieri
et al. (2016).

As a counter intuitive result, we observe that the configuration with the highest average waiting time
r in scenario 2 (0) becomes the better just enabling the D-SA (0s). Similarly, in scenario 3 the value of
r passes from 110 to 21 min (−81%) with only the contribution of the D-SA. Finally, we observe that
ambulance utilizations u and u+ are consistent with the value of the parameter W A and little variations
cause significant differences in performance. The same observation worths for the ED utilization, which
have not significant variations among configurations and whose average value is reported in the last row
of Table 5.

Table 6: Results: ED capacity is fixed, that is 1.7Cu, 1.275Cu and 1.02Cu in scenarios 1, 2 and 3, respectively.

Scen.4 - W A = 30% Scen.5 - W A = 40% Scen.6 - W A = 50%
id r fg fry wg wy r fg fry wg wy r fg fry wg wy

0 6.2 97.5 77.6 1.8 0.6 21.5 61.5 44.9 41.7 4.6 110.0 13.7 13.8 230.0 5.5
2 6.0 98.2 78.7 1.4 0.7 23.2 58.5 41.1 35.0 4.8 114.4 12.8 12.9 204.2 5.6
4 6.7 96.5 74.1 0.3 0.1 26.7 50.8 37.1 36.4 5.1 69.6 27.1 18.5 199.3 5.6
6 8.5 95.8 57.4 1.9 0.8 11.9 83.2 43.3 28.6 4.8 37.1 34.5 20.5 203.7 5.6
0s 5.8 98.9 79.6 2.3 0.7 7.9 94.6 64.9 40.6 4.7 26.1 52.5 33.6 245.9 5.6
2s 5.9 99.0 79.0 1.4 0.6 8.4 93.0 61.3 26.7 4.9 21.6 52.5 33.6 188.9 5.6
4s 6.2 98.6 75.7 0.3 0.1 9.4 89.6 56.6 28.4 4.9 20.3 56.9 35.1 177.2 5.8
9s 9.4 92.6 52.1 0.2 0.1 11.3 85.4 43.3 29.5 4.9 22.7 51.9 31.9 178.4 5.8

average uED = 57.1% average uED = 76.2% average uED = 93.2%

In Table 6 we summarize the most significant configuration to analyze the impact of ED facility selection
on the waiting time for the ambulance arrival and the admission at the ED. Scenarios 4–6 are obtained
ranging the value of W A as well as for scenarios 1–3 but fixing the total ED capacity, which is equal to
1.7Cu, 1.275Cu and 1.02Cu, respectively. Such scenarios allow us to analyze the trade-off between the
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indices regarding the ambulance performance and those about the ED performance. The impact on the
ED waiting times is evident: policy H-SAQ give a significant decreasing, but H-WLP is the best policy,
up to −13% in scenarios 2 and 3. Both policies perform better enabling the D-SA, although this is not its
goal. However, these improvement are not always concurrently with the best solution for the fast arrival of
ambulance. For instance, in scenario 2 configuration 0s have better values of r, fg and fry than configuration
2s, but green code patients have a waiting time 52% higher at the ED. In some cases, a good compromise
can be found combining policies, as happens in scenario 2 for configuration 6 with respect to the other
configurations without D-SA. In the last row of Table 6, we can observe the model consistency about the
fixed ED workload parameters. The trade-off between the average time to reach an emergency request
and the average waiting time at the ED confirms the fact that incorporating equity might lead to a lower
service or negative outcomes as reported in McLay and Mayorga (2013).

The impact of the cut-off on the ambulance dispatching is studied in Table 7, where results of 2
configurations (with and without D-SA) with a good trade-off between ambulance and ED indices are
reported. The threshold parameter of the policy D-CPQ ranges between 5% and 50% of the total number of
ambulances. We observe that waiting times of urgent and non-urgent patients are sensitive to the D-CPQ:
at the increasing of the threshold, the formers have an improving at the expense of the latters. However, in
this scenario the use of the D-CPQ seems to be inadvisable, because of the possible high negative impact
on green code patients to obtain a slight time saving for the other patients. This confirms the fact that
priority dispatching policies can improve the performance for urgents at the price of a worsening those of
non-urgents, as reported in Bandara et al. (2014).

Table 7: Results: impact of the D-CPQ policy varying the threshold (Scenario 2).

id threshold r fg fry u u+ wg wy id threshold r fg fry u u+ wg wy

6t 5% 11.0 86.3 47.1 40.2 44.4 7.6 2.4 0st 5% 8.1 93.3 64.4 37.7 43.7 10.6 2.3
6t 15% 11.2 85.3 46.6 40.4 44.5 6.6 2.0 0st 15% 8.1 93.8 63.7 37.8 43.8 10.7 2.4
6t 25% 11.3 84.7 48.2 40.2 44.3 6.8 2.3 0st 25% 8.1 92.0 64.7 37.4 43.3 10.5 2.3
6t 30% 11.7 81.8 47.5 40.4 44.5 6.7 2.1 0st 30% 8.4 89.9 64.8 37.6 43.6 9.5 2.2
6t 35% 13.6 75.2 49.3 40.1 44.2 7.1 2.3 0st 35% 9.5 82.2 65.4 37.9 43.8 9.1 2.3
6t 40% 14.3 70.6 50.3 39.9 44.1 6.9 2.2 0st 40% 11.4 73.7 64.9 38.3 44.2 9.4 2.2
6t 45% 23.4 54.0 50.2 40.8 44.9 6.0 2.1 0st 45% 16.3 57.5 65.9 38.8 44.5 8.3 2.1
6t 50% 40.2 40.5 52.0 40.6 44.7 6.3 2.0 0st 50% 30.7 34.3 67.0 39.8 45.5 8.8 2.1

6 CONCLUSIONS

In this paper, several DRRP have been presented and analyzed for the ambulance real-time management.
We provided a comprehensive analysis of the EMS system that allows us to make an extensive comparison
among different policies. In particular, we provided a general analysis of the smart assignment policy,
which confirms the significant results reported by Aringhieri (2010) and Aringhieri et al. (2016) for the
EMS of Milano, Italy. The impact of such a policy on sufficiently crowded scenario is huge and allows
us to have performance better than using any other combination of policies. Regarding the other policies,
results shown a trade-off among their impact on a fast arrival of the ambulance and the waiting times
for the admission in the ED confirming the insight reported by McLay and Mayorga (2013) for which
incorporating equity might lead to a lower service or negative outcomes. More generally, the trade-off
among the outcomes of the different policy combinations justify the need of a modeling approach to support
decision making in the EMS management.
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