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ABSTRACT 

Researches of AI planning in Real-Time Strategy (RTS) games have been widely applied to human 
behavior modeling and war simulation. Due to the fog-of-war, planning in RTS games need to be 
implemented under partially observable environment, which poses a big challenge for researchers. This 
paper focuses on extending Hierarchical Task Network (HTN) Planning in partially observable 
environment, and proposes a partially observable adversarial hierarchical task network planning with 
repairing algorithm named PO-AHTNR. By adding sensing action into HTN domain knowledge, a 

reconnaissance strategy and a history-based single belief state generation method are presented to obtain 
the best action. In order to verify the proposed algorithm, an empirical study based on µRTS game is carried 
out, and the performance of modified algorithm is compared to that of AHTNR and other state-of-the-art 
search algorithms developed for RTS games. 

1 INTRODUCTION 

Real-Time Strategy (RTS) games are popular real-time war simulation games in which players instruct 

units to gather resources, build structures, destroy opponent’s buildings to win the game. As typical agent-
based game, RTS games pose a huge challenge for AI researchers due to the large state space, limited 
decision time and dynamic adversarial environment involved. Especially for the commander agent 
modeling, which refers to the global planner research. And AI planning becomes an important research area 
for real-time adversarial planning and non-deterministic decision (Buro 2004). 

Previous works in this area such as Min-Max algorithm (Stanescu et al. 2014), Alpha-Beta Considering 

Duration algorithm (Churchill and Buro 2012), Monte Carlo Tree Search (Lanctot 2009; Shleyfman et al. 
2014) and Hierarchical Task Network (HTN) algorithm (Ontañón and Buro 2015) have been widely used 
in agent technology and war simulation. Among them, the HTN algorithm achieves satisfying result in 
solving complex problem since its planning process is similar to human decision process and its hierarchical 
network is more sufficient to handle the large state space than other planning algorithms (Ghallab et al. 
2004).However, previous HTN algorithms are most conducted in fully observable environment, few work 

has been accomplished in the partially observable environment, which still remain a substantial challenge. 
Comparing with fully observable environment, planning in partially observable environment includes 

following characteristics (Ontañón 2013): (1) The initial state is small; (2) The environment information 
under the fog-of-war is not available even though the area has been explored before; (3) The environment 
information needs to be collected and fused. Due to the rapid changes and short decision-making time in 
RTS games, the application of traditional Markov decision-making process to HTN planning will lead to 
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numbers of branches and increase the difficulty in decision-making. Seeking a simple and efficient plan 
method for partially observable environment is an important direction of automatic planning research. 

We address this problem by integrating single belief state generation with adversarial hierarchical task 
network repairing algorithm (AHTNR), using determinization theory to incorporate observed state and 
history state into belief state. In the remainder of this paper, after discussing related work, we first present 
the definition of PO-AHTNR description and the architecture of PO-AHTNR algorithm. Then we propose 

reconnaissance strategy based on sensing action and history-based single belief state generation method, 
followed by extensions to apply it to µRTS games, a minimalistic RTS game used for planning algorithm 
evaluating. 

2 RELATED WORK 

HTN is an automatic plan method which decomposes complicated task into sub-tasks until all the sub-tasks 
can be executed, first proposed by Sacerdoti (1975). Rather than exploring the entire combination of 

possible actions, HTN planning can guide the search direction based on domain knowledge to reduce the 
search space. Since the planning process is similar to human reasoning process, HTN planning is widely 
used to solve complex problems. Combining HTN planning with search methods has been demonstrated to 
speed up planning dramatically, and this has led to the application of HTN methods to RTS games (Kelly 
and Botea 2007; Humphreys 2013).  

Muñoz-Avila and Aha (2004) first attempted to employ HTN planner to provide human players with 

explanations for the reasons which lead to current states or events. After that, Laagland (2014) presented 
the design, implementation, and evaluation process of HTN planner in an open source RTS game denoted 
as Spring, and further summarized the advantages and disadvantages of HTN planning in RTS games. 
Naveed et al. (2010) employed HTN planners to reduce the size of path-finding search space in RTS games, 
and tested their algorithm in games developed using ORTS. Ontañón and Buro (2015) combined the 
hierarchical task network planning approach with game tree search denoted as adversarial HTN (AHTN) 

algorithm. Most recently, Sun et al. (2017) proposed a modified AHTN planning algorithm with failed task 
repairing component denoted as AHTN-R, making planning process dynamic and repairable. Of the above 
studies, we note that no HTN researches for RTS planning have considered extending HTN algorithms to 
solve the partially observable RTS games. 

For traditional automated HTN planning domains, studies have addressed partially observable 
problem. Nau et al. (2003) proposed Cond-SHOP2 algorithm to solve the problem of planning in partially 

observable system, which modified the SHOP2 planner (Nau et al. 1999) by integrating forward-chaining 
planners. It represented states in the form of state variables. During the algorithm execution, Cond-SHOP2 
decomposed the task network and uses the execution actions to transfer part of the states, and branched the 
possible partially states generated by the sensing actions. 

In RTS games, determinization is one of popular techniques used for solving imperfect information, 
which sampled states from an information set and analyzed the corresponding games of perfect information 

(Schwalbe and Walker 2001). Since the game tree of imperfect information games tended to be complex 
even for simple games, researchers attempted to use approximation algorithms to simplify game state. 
Zinkevich et al. (2007) presented Counterfactual Regret Minimization to sample all the different states. 
Lanctot et al. (2009) avoided sampling all the states by using Monte Carlo sampling. Uriarte and Ontañón 
(2017) investigated sampling a single belief state consistent with a perfect memory of all the past 
observations in the current games, and proposed a single belief state generation for partially observable 

RTS games.  
In this paper, taking the advantage of sensing action and single believe-state generation strategy, we 

add the sensing action and information set to HTN planning algorithm, specifically focus on the 
simplification of partially observable environment in RTS games. By combining the sensing strategy and 
history-based single belief state generation, a modified AHTNR algorithm for partially observable RTS 
games is proposed. 
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3 PO-AHTNR ALGORITHM 

In this section, an extended AHTN description is proposed to describe partially observable RTS games. 
Then the overall framework of the PO-AHTNR algorithm is provided, and the state reasoning component 
is explained. Finally, the reconnaissance strategy and belief state updating strategy is proposed. 

3.1 Definition of PO-AHTNR Description 

According to the partially observable context in RTS games, we modify the representation of AHTN 

planning model (Ontañón and Buro 2015) and add observation state and history state to record the  partially 
observable features, which integrated into the current belief state. We use history information and domain 
knowledge to overcome the insufficiency of information caused by the partial observation.. The adversarial 
HTN planning model in partially observable environment can be expressed as a multivariate group. 
 

PO − AHTNR =< 𝑃, 𝑍, 𝐵, 𝑅, 𝑇𝑁𝑚𝑎𝑥, 𝑇𝑁𝑚𝑖𝑛 ,𝑀𝑚𝑎𝑥,𝑀𝑚𝑖𝑛, 𝑂𝑚𝑎𝑥, 𝑂𝑚𝑖𝑛, 𝑆, 𝛾 > 

 
𝑃 is the current observed state set. 

Z is the history state set, consisting of a period of game times. 

B = P ∪ Z is the belief state set. 

𝑅(𝑝) → 𝑧 is the updating strategy, planner converts current observed state P to belief state. 

𝑇𝑁𝑚𝑎𝑥, 𝑇𝑁𝑚𝑖𝑛 is the current task network. It is a tree whose nodes are tasks, methods, or phases. 

𝑀𝑚𝑎𝑥,𝑀𝑚𝑖𝑛 is the set of task decomposition methods of player and opponent player. Each method        

m ∈ M can be applied to decompose a task into a set of subtasks. 

𝑂𝑚𝑎𝑥, 𝑂𝑚𝑖𝑛 is the set of operators for player and opponent. Each operator o ∈ O is an execution of a    

primitive task. 

𝑆 is the set of world state, consisting of all information that relevant to the planning process. 

𝛾 is the state transform function. Given s ∈ S, γ(s, o) defines the transition of the state when an      

action is executed. 

3.2 Architecture of PO-AHTNR Algorithm 

The overall framework of PO-AHTNR algorithm is illustrated in Figure 1, consisting of four components: 
state reasoning component, plan generation component, execution component, and task repairing 
component.  In each planning cycle, player for which we can treat as commander agent, execute the 

planning process following these four components.  
Comparing with AHTNR algorithm framework, state reasoning component is added to form the belief 

state. For AHTNR algorithm, the game state is fully observable, so the AHTN algorithm can generate the 
original plan. But in partially observable environment, we cannot obtain the whole world state, so we use 
the state reasoning component to obtain. In each decision cycle, state reasoning component executes 
reasoning when there are units without task. First, sensing strategy is used to obtain more information about 

the environment. After that, by analyzing the belief state, state reasoning component combines the current 
observed information with the history information to construct belief state, which is the input of plan 
generation component. 

Plan generation component works out the unit actions for execution component. AHTN algorithm 
generates the best plan to plan execution component and provides a list of alternative plans to the task repair 
component. Execution component executes the plan and sends failed tasks to task repairing component. 

The task repairing component selects suitable alternative plan, repairs the failed tasks and returns the 
repaired tasks to plan generation component. 
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Figure 1: Overall framework of the PO-AHTNR algorithm. 

3.3 Sensing Action and Single Belief State Generation 

Comparing with fully observable environment, the search space in partially observable environment 
becomes larger since the value of each observation is no longer a single state but a state set. In this paper, 
we use the determinization theory to improve plan efficiency, including pre-control strategy and post-
control strategy. Pre-control strategy use the initiative executing sensing action to sensor the game 
environment. Post-control strategy use information reasoning strategy to obtain the unobserved 

environment information. 

3.3.1 Sensing Action 

In automatic planning, sensing action is an action to sense environment and decrease non-deterministic 
(Ghallab et al. 2004). Unlike other actions, sensing action is designed on current state to get more 
information about the initial state of next planning turn, which only affects the validity of the planning 
algorithm and does not directly determine the success of games. Sensing action can be executed by 

following categories of actions: 
Instantaneous sensing action are actions which can immediately perceive the information in part of 

game area, such as some specific skills of hero units. The main constraint of instantaneous sensing actions 
is the resource consumed by executing the action. Since it is not general exist in RTS games, this article 
does few research on it. Delayed sensing action are sensing actions that need executing time, which means 
this kind of sensing actions cannot immediately perceive the information of current game state, this article 

mainly studies about this kind of action.  
Delayed sensing action can be classified in two kind: fixed sensing actions and mobile sensing actions. 

For fixed sensing actions, units can expand its sensor radius by switching the unit state. For example, in 
StarCraft, Zerg insects can convert from ground state to flight state, which can expand its sensing radius 
without position moving. For mobile sensing actions, units observe the environment by moving to unknown 
area and get the information among its sensor radius. We add sensing action into the domain knowledge of 

AHTNR, assuming that each unit has a sensor to get information around, which classifying sensing action 
into three primary actions: turn on sensor, turn off sensor, expand sensor radius. When the sensor is turned 
on, the environment information within sensor radius can be obtained. When the sensor is turned off, the 
surrounding environment information cannot be obtained. When the sensor radius expands, the sensing area 
expands. In RTS games, it is usually default that the sensor is on. Therefore, the mobile sensing action can 
be simplified into planning of move actions. A mixed evaluation function for state s is used to calculate 

whether executing the sensing action or not: if E(s) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, execute the sensing action; if E(s) ≤
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, not execute the sensing action. The 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is the threshold value set according by different 
player preference. 
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E(s) =
∆Info

Cost
, ∆Info =∑∆𝐻(𝑠) ∗ 𝑤(𝑠) , Cost = 𝐶(𝑠𝑒𝑛𝑠𝑖𝑛𝑔_𝑎𝑐𝑡𝑖𝑜𝑛) ∗ occupy(unit) (1) 

 
The evaluation function E(s) is the ratio of information entropy to consumption value. ∆Info is the 

dispersion of information entropy caused by executing sensing action, 𝐶𝑜𝑠𝑡 is the total resources consumed 
for executing the sensing action. ∆𝐻(𝑠) is the uncertainty of the game state, which can simply as the 
increment of sensing area, and 𝑤(𝑠) is the importance of information, different type of units have different 
importance. 𝐶(𝑠𝑒𝑛𝑠𝑖𝑛𝑔_𝑎𝑐𝑡𝑖𝑜𝑛) is the cost of executing one sensing action, and 𝑜𝑐𝑐𝑢𝑝𝑦(𝑢𝑛𝑖𝑡) is the 

summation of units which execute sensing action. 
For example, in game state s, player can execute a sensing action or not. Using Equation 1, we can 

calculate the cost and the E(s). The cost for executing sensing action 𝐶(𝑠𝑒𝑛𝑠𝑖𝑛𝑔_𝑎𝑐𝑡𝑖𝑜𝑛) is 5 resources, 
and will occupy a worker to execute occupy(unit) = 1, the Cost is 5. By the increment of observed grids 
is 3 by executing the sensing action, and no new unit is observed, so ∆𝐻(𝑠) = 3, 𝑤(𝑠) = 1, ∆Info = 3. 

E(s)=5/3. Assuming the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑=1, then in this state, E(s) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , the sensing action will be 

executed. 

3.3.2 Single Belief State Generation 

By using sensing action, the partially observable environment has been minimized but still cannot be fully 
observed. Since the decision time is short, using probabilistic method to plan will bring a huge search space. 
Single belief state generation (Uriarte and Ontañón 2017) is a method to get valuable information from the 
observed state, consisting of three strategies: target tracking strategy, incomplete memory strategy, 

complete memory strategy. These strategies make use of the observed state to generate the belief state. For 
example, when dealing with unobserved units, one of the most recent invisible positions is randomly 
selected as the inferred position. These generation strategy can quickly generate the belief state but the units’ 
history information and characteristics of adversarial antagonism are not taken into account. 

A history-based single belief state generation method is proposed to obtain the unobserved game state. 
First, information sets of units’ positions are created, consisting of history state set, current state set and 

belief set. Among them, history state set records the history information of each unit, which has multi layers 
to record periods of history state, current state set records the current information of each unit, and belief 
state set records the current belief information of each unit which reasoned from history state set and current 
state set. Then, at each planning process the information sets are updated as follow: if the unit’s state is 
observable in current state set, record it in belief state set; if the unit’s state is not observable in current state 
set but is observable in history state set, then compare different phase history sets’ records about the unit 

state, and choose the highest frequency position or the nearest reachable position to the observation area as 
the unit’s belief state. Lastly, the belief state set is used for planning and decision. 

The process of single belief state generating algorithm is as follow: Line 1-2 show that, player obtains 
the observation set of all units and saves it as this observation record. Line 3-4 show that the observed states 
of all the opponents’ units are added or removed from the history state record. Line 5-14 show the principle 
of update belief state, which is about the belief state set’s generation from the history state set and observed 

state set. Line 15-17 show the output of algorithm. 
 
class Single_Belief_State_Generation { 

1    While exist unit to be planned 

2         Get the game state denoted to observed_state 

3         Add the observed_state to history_state_set 

4         Remove the invalidate history 

5         For unit ∈ observed_state_set 

6             If unit belongs to opponent then 
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7                 Get unit state applied to fix_unit_set 

8             End If 

9             If unit ∈ history_state_sets then 

10                  Get belief_state by o_s and h_s 

11             Else 

12                 Get belief_state by r_s and o_s 

13             End If 

14       End For 

15       Set belief_state by reasoning 

16    End While 

17   Return belief_state 

}; 

4 EXPERIMENTAL RESULTS 

In order to verify the proposed algorithm, an empirical study based on µRTS game is carried out, and the 
performance of modified algorithm is compared to that of AHTNR and to the performances of other state-
of-the-art search algorithms developed for RTS games on µRTS games, which has been used in the past to 
evaluate various algorithms applied in RTS games. 

4.1 Experimental Environment and Setting

We evaluate the performance of PO-AHTNR using the free-software µRTS 
(https://githubs.com/santiontanon/microrts), which has been used by several researchers to validate new 
algorithms for RTS games. Figure 2 shows a screenshot of a µRTS game, in which two players compete to 
destroy the opponent’s units.  

 

Figure 2: A screenshot of the µRTS game environment. The two players are distinguished according to the 
blue and red outline colors. The green squares are resources. The light gray squares are bases. The dark 
gray squares are barracks. The gray circles are workers, the yellow circles are heavy attackers, and the 
orange circles are light attackers. The number in base, resources or workers refer to the number of resource 
carried by them. 

To test PO-AHTNR algorithm, we craft two different HTN domain knowledge: Low Level domain 
knowledge and flexible domain knowledge. The operators are primitive tasks, the tasks are compound tasks, 
the methods are approaches to achieve the tasks. Low Level domain knowledge contains 10 operators 
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(primitive tasks) and 9 methods for 3 types of tasks (destroy-player, destroy-player-internal, unit-order). 
Each method is a Flexible domain knowledge contains 12 operators, but provides 49 methods for 9 types 
of tasks (destroy-player, destroy-player-rush, destroy-player-rush-reserved-unit, destroy-player-rush-
reserved-unit-rounds, worker-rush-unit-behavior, worker-rush-unit-behavior, destroy-player-light-rush, 
destroy-player-light-rush-reserved-unit, light-rush-unit-behavior).  

The maps used in our experiments are three: M1 (8 × 8 tiles), M2 (12 × 12 tiles), and M3 (16 × 16 

tiles). Maximum game time of M1 is limited to 3000 cycles, of M2 is 3000 cycles, and of M3 it is to 10000 
cycles. A round-robin tournament is conducted, in which each algorithm plays 20 games (with various 
starting positions) against all other algorithms in each of 3 different maps (11 × 11 × 20 × 3 = 7260 games 
in total). The method used to compute the score of each algorithm is: the winner of each game is awarded 
1 point, and both algorithms are awarded 0.5 points in the event of a tie. Each of the two AI players in all 
competitions begins with a single base, an equivalent resource value, and a single worker. 

4.2 Experimental Results and Analysis 

In this section, we compare the performance of PO-AHTNR with other algorithms in terms of the average 

score in three maps. Each algorithm plays 220 games against the other algorithms as player 1 or player 2 

and 20 games against itself. Because data is collected from both players, the average score of each algorithm 

shown in Figure 3 is obtained effectively over 660 games. 

The comparison evaluation considers the PO-AHTNR algorithm in addition to the following collection 
of search algorithms. 

 
1. Random: A random strategy AI which executes actions randomly. 
2. PO-LightRush: A hard-coded strategy AI, which only produces light attackers, and commands them 

to attack the enemy immediately. 
3. PO-UCT: A Monte-Carlo AI, which employs an implementation with the extension for 

accommodating simultaneous and durative actions, with the single belief state strategy. 

4. AHTNR-LL\F: An AHTNR AI with Low Level\ Flexible domain knowledge. 
5. AHTNR-LL\F-Belief state: An AHTNR-LL\F AI with belief state generation strategy. 
6. AHTNR-LL\F-Sensing action: An AHTNR-LL\F AI with sensing action. 
7. PO-AHTNR-LL\F: An AHTN-LL\F AI with both sensing action and belief state generation 

strategy. 

 

Figure 3: The average score of each algorithm obtained over the 660 games of the round-robin competition 
for map M1(8 × 8 tiles), M2(12 × 12 tiles), M3(16 × 16 tiles) with respect to the CPU time from 20 to 200 
ms. The playout time is 100 cycles. 

Figure 3 presents the comparison of the average scores obtained for each algorithm during the round-

robin competition with respect to the CPU time from 20 ms to 200 ms for three maps. According to the 
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results, we can see that whether in low level or flexible domain knowledge, the PO-AHTNR algorithm 

outperforms all the other algorithms on all three maps under different CPU times. In addition, the 

performance of PO-AHTNR varies little with the increasing scale of the maps, and is very stable with 

respect to CPU time. PO-AHTNR outperforms AHTNR because of the consideration of unobserved 

environment, which allows PO-AHTNR to make more comprehensive plan with the available units and 

resources. PO-AHTNR-F performs best because it uses an flexible HTN domain knowledge for guiding the 

game tree search, which yields a good plan in a relatively short time.  

With respect to other algorithms, we note that AHTN-LL\F-Sensing action algorithm and AHTN-LL\F-

Belief state algorithm have both improved AHTNR algorithm in partially observable environment, and the 

combination of two strategy which noted PO-AHTNR performs even better. However, the performance of 

both PO-AHTNR-LL and PO-AHTNR-F deteriorate whether the map size is too small or large. The 

performances of both players deteriorate in map M1 because the sensing radius is relatively bigger, and the 

improvement of belief state strategy become relatively smaller. While in map M3, more units are produced 

on the larger maps and the domain knowledge is too simple to adapt to such a complex game. For AHTNR 

and PO-AHTNR, the Low Level domain knowledge means that the previous plan may not be suitable for 

the current condition, and it would be better to construct a new plan. The relative performances of the 

scripted methods Random, PO-Light-Rush and PO-UCT are also observed to improve with increasing map 

size, which is owing to the underperformance of PO-AHTNR and AHTNR on larger maps.  

With respect to CPU time, the performances of all AI players change very little for all three maps. This 

is because all AI players require little time to make decisions. However, if the CPU time is very short, the 

performance will deteriorate. Because the performances of all AI players are similar under different CPU 

time settings, we employ a single CPU time setting of 100 ms in subsequent experiments. 

Table 1: Average Scores of each HTN algorithm with different domain knowledge. 

Domain 

Knowledge 
AHTNR AHTNR-Sensing action AHTNR-Belief state PO-AHTNR 

Low Level 0.42 0.46 0.513 0.65 

Flexible 0.483 0.48 0.786 0.823 

 

Table 1 shows the average scores of each HTN algorithm with different domain knowledge. We can 

find that adding sensing action strategy improve win rate about 9% with Low Level domain knowledge, 

but not obvious improving with the Flexible domain knowledge. The addition of belief state generation 

strategy can bring a huge improvement for both domain knowledge, which is 22% for low level domain 

and 62% for flexible domain. And the win rate increment for proposed PO-AHTNR algorithm reaches to 

54% and 70% for two domain knowledge.  

Figure 4 shows the average decision times of AHTNR, AHTNR-LL\F-Belief state, AHTNR-LL\F-
Sensing action, PO-AHTNR algorithms obtained over 20 games against with the 11 algorithms. We find 
that PO-AHTNR usually requires more decision time than AHTNR when they have similar domain 
knowledge. This is caused by the added time of reasoning the belief state and the enlarged decision space 
by the added of sensing action. Both the modifications will increase the decision time, adding the sensing 

action bring an average time increment of 38% for low level domain and 13% for flexible domain, adding 
the belief state generation bring an average time increment of 330% for low level domain and 214% for 
flexible domain. And the PO-AHTNR algorithm bring an average time increment of 384% for low level 
domain and 323% for flexible domain. However, the time increment is within one order of magnitude 
compared to the decision time of AHTNR. Therefore, although PO-AHTNR requires greater decision time 
than AHTNR, it is within an acceptable range.  
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Figure 4: The average decision times of eight AHTNR algorithms obtained over 20 games against each of 
the 11 algorithms, where the CPU time is 100 ms for map M1 (8 × 8 tiles). The playout time is 100 cycles. 

5 CONCLUSIONS AND FUTURE WORK 

In summary, we have performed both experimental and theoretical study of planning in partially observable 

environment. An extended HTN description employing three additional elements denoted as history state 

set, observed state set and belief state set are introduced to express player’s comprehend about the partially 

observed environment. In correspondence to dispose the unobserved environment, reconnaissance strategy 

based on sensing action and history-based single belief state generation are employed in PO-AHTNR 

algorithm. The experimental results in µRTS game successfully verify the algorithm’s validation. 

In future work, the PO-AHTNR algorithm can be extended in multiple directions. Our experiments 

demonstrate that the level of domain knowledge of the HTN has a significant influence on the performance 

of AHTN-R. However, encoding perfect knowledge in an HTN is a difficult and time-consuming process 

even for domain experts. The automatic extraction of HTN domain knowledge from thousands of RTS 

game replays may provide an efficient approach. In addition, we note that using probability to handle the 

non-deterministic problem may improve the veracity of planning. Therefore, a modified PO-AHTNR 

algorithm using probability may enhance its performance in partially observable environment. 
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