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ABSTRACT

With the integration of renewable energy and advanced communication technologies, smart power grids
can enhance the cost-efficiency and reliability of energy generation, transmission, and distribution. The
communication network connecting numerous remotely distributed generators, devices, and controllers
plays a vital role in the control of power grids. However, it is vulnerable to cyber attacks. In particular,
because of its frequency and lasting impact, the Distributed Denial of Service (DDoS) attack poses an
important threat to smart power grids. This paper presents a simulation-based stochastic programming
approach to guide the unit commitment and economic dispatch decisions, which accounts for the prediction
uncertainty of wind power and the impact from DDoS attacks. The case study demonstrates that the
proposed approach can lead to a more cost-efficient and reliable operational decision guidance for smart
power grids.

1 INTRODUCTION

To overcome the issues of traditional energy systems, including increasing fuel costs, declining system
reliability, and limited modernization, the concept of smart power grids was proposed (Lo and Ansari
2012; Fang et al. 2012). They integrate modern technology to improve reliability, power quality, and
efficiency, being able to ensure electricity delivery from points of generation to end customers in a controlled
and interactive manner (Li and Yao 2010). To achieve this goal, smart power grids facilitate real-time
monitoring and information sharing to make dynamic decisions. Advanced communication technologies
are implemented to establish a two-way dynamic, interactive, and high-speed communication system (Zhou
et al. 2010; Wang and Lu 2013). It connects numerous devices in the smart grid and plays a crucial role
in controlling power generation and production (Wang and Lu 2013).

Such communication network is highly-distributed and hierarchical, which can be classified into three
levels: the Home Area Network (HAN), the Neighborhood Area Network (NAN), and the Wide Area
Network (WAN) (Chhaya et al. 2017). HAN is the lowest tier in the communication network and it only
covers a smart home (Wang and Lu 2013). HAN provides information sharing among smart meters and
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electric appliances in the smart home (Mo et al. 2012; Chhaya et al. 2017). Smart meters serve as gateway
device for communication with upper tier devices. They aggregate the information from all appliances in
HAN and then communicate with the control center in a bi-directional manner. The communication between
smart meters from various HANs and the control center is made through NAN, the intermediate level in
the smart grid communication system (Chhaya et al. 2017). A smart grid can have hundreds of NANs,
and all NANs are eventually linked together by WAN, which establishes the inter-domain communication.
Hence, it is the backbone communication network in a smart grid, and the general concept of the backbone
communication network architecture is depicted in Figure 1 (Wang and Lu 2013).

Figure 1: The backbone network in a smart grid.

In the backbone communication, to achieve long distance bulk information transmission, Supervisory
Control and Data Acquisition (SCADA) is widely implemented (Niyato et al. 2012; Chhaya et al. 2017). To
make the power system more efficient and reliable, the SCADA system adopts the ideas of communication
technologies. Thus, it is prone to cyber attacks as follows (Sadi et al. 2015):

• Packet drop attacks. Cyber attackers make packets drop before reaching the intended destination.
• Tampering communication data and signal attacks. The signal and data are delayed and forged by

the attackers.
• Distributed Denial of Service (DDoS) attacks. DDoS attacks overwhelm the communication and

computational resources of the smart grid by jam data, which result in delay or failure of data
communications (Li et al. 2012; Bhuyan et al. 2015).

Among these attacks, DDoS attacks are ubiquitous and could be long-lasting (Khalimonenko et al.
2016). According to Jin et al. (2011), smart grids are quite vulnerable to DDoS attacks. Furthermore,
with the expansive data collection and bi-directional data transmission through the Internet and increasing
usage of social media platforms, the likelihood of DDoS attacks against communication networks is on
the rise, which can bring severe consequences to smart grid operation (Fadlullah et al. 2011).

DDoS can attack gateway devices that enable the information flow between the local power infrastructure
and the control center. The gateway devices include smart meters, computers, and routers (Wang and Lu
2013). As shown in Figure 1, there exist many gateway devices and DDoS attacks could target any
of them. When DDoS attacks occur, the attacked devices are flooded by jam data, exceeding their
processing capability and thus making them unable to communicate with the control center. As a result, the
corresponding generators connected to the attacked devices are unable to receive updated commands from
the control center and they have to maintain the current production schedule. Thus, only the remaining
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unaffected ones can adjust the production levels. Consequently, either the smart grid is unable to produce
enough power to satisfy the customer demand, in which case a heavy penalty incurs, or the smart grid
cannot wind down its production and generates too much power, in which case the incurred production
cost is unnecessarily costly. Therefore, to control the operational cost, the impact of DDoS attacks should
be taken into account when making scheduling decisions for smart power grids.

Due to the slow start constraint of the thermal generators, there exists a two-stage decision making
process for power grid scheduling (Ruiz et al. 2009; Tuohy et al. 2009). The first-stage decision is called
the unit commitment, which is made day-ahead. It determines the on-off status of thermal generators in
the planning horizon, i.e., when a thermal generator should be turned on or off. The second-stage decision
is called the real-time economic dispatch, which determines the actual energy output, i.e., the amount of
power generation for those committed generators. Thus, to provide reliable and cost-efficient scheduling
for energy systems, the two-stage stochastic unit commitment model integrating unit commitment and
real-time economic dispatch is widely used (see Zheng et al. 2015 for a detailed review).

However, to the best of our knowledge, the existing unit commitment literature typically ignores the
impact of cyberattacks (see, for example, Ruiz et al. 2009 and Tuohy et al. 2009). In this paper, we propose
a simulation-based unit commitment (SBUC) model for smart grids with high wind power penetration.
Here, we suppose that only thermal generators can be impacted by DDoS attacks, i.e., only commands
altering the production schedule sent from the control center are blocked. Further accounting for the
impact of DDoS attacks on wind farms is our on-going research, where both the information sharing on
the real-time wind energy supply and the commands changing the production output are simultaneously
blocked.

Therefore, in the proposed SBUC model, we consider two sources of risk: the prediction uncertainty
of wind power which is caused by the inherent randomness of wind power generation and the DDoS attack
uncertainty which arises because DDoS attacks could randomly stymie the communication and disrupt
the smart power grid operation. To provide a robust and cost-efficient decision guidance, we propose the
two-stage stochastic unit commitment model accounting for both sources of uncertainty.

In addition, we introduce a new constraint to model the system operating process under DDoS attacks.
If a committed thermal generator is under attack making it lose the communication with the control center,
the system operator cannot adjust its power generation. Then, the affected thermal generator continues to
operate by following the previous schedule if it is also committed during the last normal communication
hour before the DDoS attack. Or, it has the minimum production rate if the thermal generator is turned off
when the last communication between the thermal generator and the control center happens. Compared
to the classical Stochastic Unit Commitment (SUC) model, our model accounts for the impact of DDoS
attacks. Thus, it can lead to more robust and cost-efficient unit commitment decisions.

To solve for the optimal unit commitment decision, the sample average approximation (SAA) is used
to approximate the expected future cost occurring in the planning horizon (Shapiro et al. 2009; Wang
et al. 2012). A set of scenarios is generated with each scenario representing a possible realization of future
wind power prediction and DDoS attacks. Here, suppose that DDoS attackers act independently to target
power plants and intrude the gateway devices. The IT team constantly monitors the power grid operation.
Once a DDoS attack is detected, they start to tackle it and identify the attacker. Then, the power plant
communication is back to normal when the DDoS attackers are eliminated. Therefore, the entire process is
modeled as a queueing network. Each node is modeled by a G/G/1 queue with the cyber attack arrivals.
The IT team is regarded as the server who handles the attacks. Discrete-event simulation (DES) for the
queueing network is employed to generate DDoS scenarios.

The main contributions in this paper can be summarized as follows:

• As far as we know, our paper presents the first study considering the impact of cyberattacks on the
unit commitment decisions. The proposed model takes random DDoS attack events into account
when making decisions, which leads to more robust unit commitment and dispatch decisions,
hedging against DDoS attacks and renewable energy prediction uncertainty. The case study on
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Figure 2: A six-bus system.

a six-bus system indicates that our approach leads to more reliable and cost-efficient decisions
compared to the traditional unit commitment decision model.

• We propose modeling DDoS attacks on thermal generators by a queueing network. The attack
arrival and handling processes at each gateway device are modeled as a G/G/1 queue. Then,
the discrete-event simulation is used to generate DDoS scenarios. Our proposed approach can be
extended to other types of cyber attacks.

The remaining sections are organized as follows. In Section 2, we state the problem of interest and
propose our method. In Section 3, we use a six-bus smart grid to empirically study the performance of
our proposed model. We draw conclusions and suggest future research directions in Section 4.

2 PROBLEM STATEMENT

We consider a smart power grid system, including both thermal generators and renewable energies. It
consists of B buses with I thermal generators and W wind farms. In this paper, we use the six-bus system
in Figure 2 for illustration. The three thermal generators, denoted by G1, G2, and G3, are located on
buses 1, 2, and 6. There is one wind farm, denoted by W , located on bus 4. The power generation needs
to meet the loads, denoted by L1, L2, and L3, at Buses 3, 4, and 5. The buses are connected by seven
transmission lines, denoted by solid lines. The produced electricity can be transmitted through those lines in
a bi-directional manner as shown in Figure 2. In the system, a control center is used to guide the electricity
production and transmission processes, which is connected to loads, wind farm, and thermal generators by
the communication network, denoted by the dash lines. Smart meters or computers can serve as gateways
for the buses to connect with the control center (Mo et al. 2012; Wang and Lu 2013). The information flow
is also in bi-directional fashion. The gateway devices collect and aggregate the load information, and then
send it to the control center through the communication network. At the same time, the devices receive
commands from the control center and adjust the energy production and transmission.

The decision makers need to make two sets of decisions. The first one includes the unit commitment
decisions, which are made one day ahead. We denote the unit commitment decision for thermal generator i
at the t-th hour as ui,t , where t = 1, . . . ,T and T represents the planning horizon length. It is a binary variable:
ui,t = 1,0 means the thermal generator will be on or off at the t-th hour. The second set of decisions
includes the real-time economic dispatch, which is the actual hourly power production for committed
thermal generators and wind farms. We let Pi,t , Pwc

w,t , and Pens
b,t denote the output for thermal generator i, the

wind farm curtailment for wind farm w and the amount of unsatisfied demand on bus b at time period t.
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The objective is to minimize the expected cost occurring in the planning horizon with length T = 24
hours,

min G(ui,t) =
T

∑
t=1

I

∑
i=1

(CiFmiui,t +SUi,t +SDi,t)

+E

[
min

Pi,t ,Pens
b,t ,P

wc
w,t

T

∑
t=1

I

∑
i=1

CiFaiPi,t +
T

∑
t=1

B

∑
b=1

CensPens
b,t +

T

∑
t=1

W

∑
w=1

CwcPwc
w,t

]
.

(1)

Six types of costs are included in the objective, while the costs SUi,t , SDi,t , and CiFmiui,t incur at the first
stage and the remaining three incur at the second stage. The start-up cost SUi,t incur when the generator i
is turned on, and it is defined as SUi,t ≡ Pon

i max(ui,t−ui,t−1,0), where Pon
i is the start-up cost per time for

generator i. If generator i is not committed at hour (t−1), i.e., ui,t−1 = 0, while it is committed at hour
t, i.e., ui,t = 1, ui,t − ui,t−1 = 1, a start-up cost for generator i happens at hour t. Similarly, the turn-off
cost SDi,t happens when generator i is shutdown and SDi,t ≡ Po f f

i max(ui,t−1−ui,t ,0), where Po f f
i is the

turn-off cost per time for generator i. If a generator is committed at hour (t−1), i.e., ui,t−1 = 1, while it
is not committed at hour t, i.e., ui,t = 0, then, the generator is shut down at hour t and turn-off cost incur.
In addition, once thermal generator i is committed, it has to produce above the minimal production level.
Thus, a minimal thermal operation cost incurring at the first stage is denoted by CiFmiui,t , where Ci is the
fuel price and Fmi is the amount of fuel consumption for the minimal output for generator i (Wang et al.
2018). The remaining three costs incur at the second stage. Since the thermal generator consumes the extra
fuel to produce Pi,t , the additional production cost is CiFaiPi,t , where Fai is the additional fuel consumption
requirement needed to generate Pi,t power production. If the smart grid could not produce enough energy to
satisfy the load demand, a shortage penalty may incur. Then, the penalty cost of non-satisfactory demand
for bus b at time period t is CensPens

b,t , where Cens is the unit load shedding price and Pens
b,t is the amount of

unmet load at bus b in time period t. Lastly, for the wind power, we may not use up all its capacity Pc
w,t

and there exists a wind farm curtailment Pwc
w,t . Since the monetary incentives are provided for wind power

production, we lose the monetary reward if we curtail wind farm production (Wang et al. 2018). Then,
the wind curtailment cost at the t-th hour for wind farm w is CwcPwc

w,t , where Cwc is the per-unit monetary
reward for the wind production and Pwc

w,t is the amount of wind curtailment.
The smart power grids composed of the power system and its communication network can be studied

as a cyber-physical system. In the unit commitment problem, various sources of uncertainty exist. On
the physical side, there exists the wind power prediction uncertainty (Zhou et al. 2013; Hargreaves and
Hobbs 2012; Jiang et al. 2012). In addition, the load could be uncertain. However, in the short term, the
prediction on wind energy is much more uncertain than the load forecasting (Bessa et al. 2012). Hence,
without loss of generality, we assume that the load demand is deterministic in our formulation (Tuohy et al.
2009; Wang et al. 2018).

On the cyber side, there exists the DDoS attack uncertainty. When a DDoS attack occurs, it prevents
the normal communication between attacked thermal generators and the control center. If the time-sensitive
real-time dispatch decisions made by the control center are impacted by DDoS attacks, the affected thermal
generator cannot receive the commands on time, which can cause the disruption of smart grid operation (Lu
et al. 2011). Since both DDoS attacks and wind power generation uncertainty bring sudden and unexpected
changes to smart grid power production, they should be accounted for. Let ξ and η represent random wind
power generation and DDoS attack events. Therefore, the expectation in Objective (1) is taken over both
ξ and η .

Constraints in Equations (2)–(8) are for both first- and second-stage decision variables. The first-stage
decision variable ui,t is binary. Any thermal generator i must keep the same operating status for a minimal
amount of time and it cannot be changed too frequently. Specifically, if generator i is turned on at time t, it
must keep operating for a minimum of T on

i hours (Wang et al. 2018). At the same time, if generator i is turned
off at time t, it has to be off for a minimum of T o f f

i hours. Constraints (2) and (3) formulate the minimum
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up- and down-time requirements. To give readers a better understanding how these two constraints work,
we use the six-bus system in Figure 2 as an example for demonstration. In the six-bus system, the thermal
generator G1 has a four-hour requirement for both minimum on and off requirements, i.e., T on

1 = 4 and
T o f f

1 = 4. Suppose that G1 is turned on at the 9th hour, i.e., u1,9 = 1 while u1,8 = 0. Hence, u1,9−u1,8 = 1.
Equation (2) dictates that for k = 9, . . . ,12, u1,k ≥ u1,9−u1,8 = 1. Hence, u1,9 = u1,10 = u1,11 = u1,12 = 1
is mandated in Equation (2). Similar restrictions can be obtained from Equation (3) if G1 is turned off at
the 9th hour, in which case u1,9 = u1,10 = u1,11 = u1,12 = 0.

ui,t −ui,t−1 ≤ ui,k ∀k = t, . . . ,min(T, t +T on
i −1) (2)

ui,k ≤ 1+ui,t −ui,t−1 ∀k = t, . . . ,min(T, t +T o f f
i −1) (3)

I

∑
i=1

Pi,t +
W

∑
w=1

(Pc
w,t −Pwc

w,t ) =
B

∑
b=1

(PD
b,t −Pens

b,t ) (4)

−PL`,max ≤
B

∑
b=1

G`−bPD
b,t +

I

∑
i=1

G`−iPi,t +
W

∑
w=1

G`−w(Pc
w,t −Pwc

w,t )≤ PL`,max (5)

ui,tPi,min ≤ ui,tPi,t ≤ ui,tPi,max ∀i, ∀t (6)
ui,kPi,k = ui,k · [ui,t−1Pi,t−1 +(1−ui,t−1)Pi,min] ∀k = t, . . . ,min(T, t ′) (7)

ui,t binary (8)

For second-stage economic dispatch decisions Pi,t , Pwc
w,t and Pens

b,t , four sets of constraints exist. Con-
straint (4) is the nodal power balance equation, which enforces the amount of production by wind farms and
thermal generators equal to the amount of power consumption. ∑

W
w=1(P

c
w,t −Pwc

w,t ) is the actual wind farm
production and ∑

B
b=1(P

D
b,t −Pens

b,t ) is the actual amount of demand the smart grid is able to satisfy, where
PD

b,t denotes the load from bus b at time t. Constraint (5), called the DC power flow constraint, models the
power flows through the transmission network (Van den Bergh et al. 2014; Wang et al. 2018). The total
power flow on any transmission line ` is ∑

B
b=1 G`−bPD

b,t +∑
I
i=1 G`−iPi,t +∑

W
w=1 G`−w(Pc

w,t−Pwc
w,t ) and it must

be within a specified range, denoted by [−PL`,max,PL`,max], where G`−b, G`−i and G`−w are corresponding
shift factor matrices for transmission line `. For a detailed introduction on the DC power flow, see Van den
Bergh et al. (2014). The actual output from generator i must be within a predetermined range, between
the minimum output Pi,min and the maximum Pi,max. Constraint (6) enforces that requirement.

Finally, Constraint (7) stipulates the power production constraint resulted from DDoS attacks. DDoS
attacks affect the smart grid operation if they delay the delivery of the time-critical real-time dispatch
commands. Specifically, suppose the control center sends the t-th hour real-time dispatch decision exactly
at the t-th hour sharp to generators. If a DDoS attack on generator i is launched right before the t-th hour
and ends right after hour t ′, between hour t and t ′, the communication between the control center and
the generator is not available. Hence, the last information update of generator i happens at the (t−1)-th
hour and the communication resumes its normal function after the t ′-th hour. Therefore, if generator i is
committed any time between t-th hour to t ′-th hour, it cannot receive the corresponding dispatch command
from the control center during the attack. Specifically, if generator i is committed at the k-th hour during
the attack, the generator either operates based on the last available production command from the (t−1)-th
hour if generator i is also committed at time t− 1. Or, the generator i keeps the minimum output level
Pi,min if the generator is turned off at hour t−1.

We use the six-bus system in Figure 2 to demonstrate how Constraint (7) works. Suppose that the
thermal generator G1 is attacked by DDoS cyber-attackers and loses its connection with the control center.
The attack is launched before the 9th hour and ends after the 11th hour. Then, three hours are affected,
namely, t = 9,10,11 and the last communication between G1 and the control center occurs at the 8-th hour.
During the three-hour period, G1 cannot receive the updated commands to alter its power production if it
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is committed. If G1 is also committed during the 8th hour, i.e., u1,8 = 1, for any committed hour during the
attack period, its energy generation is set equal to that at the 8th hour, u1,kP1,k = u1,kP1,8, for k = 9,10,11.
Otherwise, G1 is turned off at 8-th hour, i.e. u1,8 = 0, there is no existing power production schedule.
Then, the minimal output is maintained for any committed hour during the three-hour attack period,
u1kP1,k = u1,kP1,min, for k = 9,10,11. Combining these two cases, we obtain Constraint (7).

2.1 Scenario Generation

Since E[minPit ,Pens
bt ,Pwc

wt ∑
T
t=1 ∑

I
i=1CiFiPi,t +∑

T
t=1 ∑

B
b=1CensPens

b,t +∑
T
t=1 ∑

W
w=1CwcPwc

w,t ] usually does not have a
closed-form expression, we use the sample average approximation (SAA) to estimate the total cost,

min
ui,t

Ḡ(ui,t) =
T

∑
t=1

I

∑
i=1

(CiFmiui,t +SUi,t +SDi,t) (9)

+ 1
S ∑

S
s=1 minPs

i,t ,P
s,ens
bt ,Ps,wc

wt

[
∑

T
t=1 ∑

I
i=1CiFaiPs

i,t +∑
T
t=1 ∑

B
b=1Cens ·Ps,ens

b,t +∑
T
t=1 ∑

W
w=1CwcPs,wc

wt

]
where s = 1, . . . ,S denotes the index of scenarios for wind power ξ and DDoS attack η .

Suppose that the wind power ξ follows F , i.e., ξ ∼ F . The Monte-Carlo sampling can be used to
generate the scenarios of ξ (Ruiz et al. 2009). For the DDoS attack scenario generation, we propose a
queueing network model consisting of independent G/G/1 queues. Specifically, for each thermal generator
i, suppose that cyber-attackers randomly intrude the communication network and act independently without
cooperation. Thus, DDoS attacks can be modeled as an arrival process. Denote the distribution of the
inter-arrival time as FA

i for i = 1, . . . , I. A DDoS attack then causes generator i to lose its connection with
the control center and blocks the information flow between them. On the other hand, an IT team constantly
monitors the communication network. Once the team detects a DDoS attack event, the team is occupied to
address attackers. The attack terminates when the IT team successfully eliminates the intruders. The team
addresses attackers at the gateway for the generator one-by-one, and the communication network gets back
to the normal operation status when all attacks are successfully eliminated. The IT team’s handling time
is independent for each attack. Thus, the attack elimination process can be modeled as a serving process.
The distribution of the serving time follows FD

i . Thus, the DDoS attack arrival-addressing process can be
modeled as a G/G/1 queue with the distributions for inter-arrival and service times following FA

i and FD
i .

Since attacks on generator i do not impact other generators, the cyberattacks to a smart grid can be modeled
as a queueing network having mutually independent G/G/1 queues. Then, the discrete-event simulation
model can be implemented to generate DDoS realizations.

3 CASE STUDY

The six-bus system in Figure 2 is used for the case study (see the detailed information on this example
in Wang et al. 2018). It consists of three thermal generators, one wind farm, and seven transmission
lines, through which the electricity is transmitted to customers. For the transmission lines on the six-bus
system, Table 1 provides the basic information. Table 2 describes the characteristics of three thermal
generators. The start-up cost of generator i per unit time are the product of the start-up fuel consumption
and the fuel price Ci. Similarly, the shutdown cost for generator i are the product of Ci and the shutdown
fuel consumption. For generator i, the actual power production follows Fi = ai +bi ·Pi + ci ·P2

i . Thus, the
minimal production fuel consumption is Fmi = ai +bi ·Pi,min +ci ·P2

i,min, and the additional production fuel
consumption Fai is Fai = ai +bi ·Pi + ci ·P2

i −Fmi. Linearization techniques are used to transfer Fai into a
piecewise linear function (Wood, Wollenberg, and Sheblé 2013).

We consider the day-ahead unit commitment decision problem for the six-bus system under high wind
penetration and potential DDoS attacks. The goal is to find the unit commitment decision for thermal
generators minimizing the total expected cost. According to Objective (1), the total operational cost for the
six-bus system includes the start-up cost, the turn-off cost, the minimal production cost, the additional thermal
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Table 1: Transmission line data.
Line No. From Bus To Bus Flow Limit (MW)
1 1 2 200
2 1 4 100
3 2 4 100
4 5 6 100
5 2 3 200
6 4 5 200
7 3 6 200

Table 2: Thermal generator data.

Unit Pmax(MW) Pmin(MW) Ini.State (h) Min Off(h) Min On (h)
G1 220 90 4 -4 4
G2 100 20 2 -3 2
G3 30 10 -1 -1 1

Table 3: Fuel consumption data.

Unit
Fuel consumption function. Start up

Fuel
(MBtu)

Shut down
Fuel
(MBtu)

Fuel
Price
($)

a
(MBtu)

b
(MBtu/MWh)

c
(MBtu/MW2h)

G1 176.9 13.5 0.0004 180 50 1.2469
G2 129.9 32.6 0.001 360 40 1.2461
G3 137.4 17.6 0.005 60 0 1.2462

generator production cost, the load shredding penalty cost, and the wind curtailment penalty. The first four
types of cost are related to the fuel consumption of thermal generators. The corresponding consumption
costs are provided in Table 3. Additionally, the load shedding penalty Cens is set at 3,500$/MWh and the
wind curtailment penalty Cwc is fixed at 50$/MWh for unused wind power capability (Wang et al. 2018).

3.1 Wind Power Sampling

Since in the short term the load forecasting is significantly more accurate than the wind energy forecasting
(Bessa et al. 2012), without loss of generality, we assume deterministic loads and focus on stochastic
wind power supply in our study (Tuohy et al. 2009). Following Wang et al. (2018), we use the 2006
data of the U.S. Illinois power system for the load and the wind supply. In particular, one representative
day (September 10th) data are selected for discussion in this section. The normal distribution is one of
the widely used distributions for wind power in the research community. Hence, in the study, the wind
power is assumed to be normally distributed, i.e., for each time t, the wind power follows a normal
distribution with mean µt and standard deviation σt . Further, the standard deviation σt is assumed to be
proportional to the corresponding mean µt (Wang et al. 2008; Wang et al. 2012). To test our proposed
SBUC approach under varying environments, we consider different settings for the standard deviation σt ,
namely σt = 1%µt ,5%µt ,10%µt ,20%µt .

3.2 DDoS Scenario Generation

We use DES to generate DDoS attack scenarios. For the three thermal generators in the six-bus communi-
cation network, we assume the same attack arrival and service processes, i.e., FA

i = FA and FD
i = FD. Here,

we use the M/M/1 queue to model the impact of cyberattacks. We assume that the attack arrivals follow
the Poisson distribution, i.e., FA ∼ Poi(λ ) and the duration distribution follows the exponential distribution,
i.e., FD ∼ Exp(α). The summary statistics of DDoS attacks on the Internet reported by Arbor (2016) are
used in this study. Tables 4 and 5 report the frequency and duration of general DDoS statistics from the report.
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Table 4: Frequency of DDoS attacks per month.

Frequency
per Month

Percentage
Cumulative
Probability

less than 1 14.6% 0.146
1-10 30.9% 0.455
11-20 10.6% 0.561
21-50 6.5% 0.626
51-100 12.2% 0.748
101-500 13.0% 0.878
Over 500 12.2% 1

Table 5: Duration of DDoS attacks.

Duration in Hours Percentage
Cumulative
Probability

less 0.5 h 86.0% 0.86
0.5 -1 h 5.0% 0.91
1-3 h 4.0% 0.95
3-6 h 1.0% 0.96
6-12h 1.0% 0.97
12-24h 2.0% 0.99
over 24 h 1.0% 1

To obtain the parameters λ and α , the last columns in Tables 4 and 5 provide the empirical cumulative
distribution functions (ECDF) for the frequency and duration of DDoS attacks. Therefore, we can use the
least square fitting to find the λ and α parameter estimates (Brunel and Comte 2009). Specifically, for
the k-th row in Tables 4 and 5, the ECDFs of duration and arrival can be denoted by ECDFD(t(k)) and
ECDFA(n(k)), where t(k) and n(k) are the corresponding upper bounds of duration and frequency reported
in the k-th row. Then, we want to find the parameters λ and α that minimize the sum of least squares
between the input models and ECDF for the first six rows. The last row is ignored, since all distributions
have probability 1 for the last row. Hence, for the duration, we want to find α such that

min
α

6

∑
k=1

(
1− e−αt(k)−ECDFD(t(k))

)2

where 1− e−αt is the CDF of the exponential distribution. We denote the fitted α as α̂ . Similarly, for the
cyberattack arrivals, we want to find λ such that

min
λ

6

∑
k=1

(
eλ

n(k)

∑
i=0

λ i

i!
−ECDFA(n(k))

)2

where eλ
∑

n(k)
i=0

λ i

i! is the CDF of the Poisson distribution. Then, the fitted parameters α̂ = 3.6 and λ̂ = 94.1
are used in the simulation.

3.3 Numerical Test

In this section, we compare the performance of our model with the classical SUC model, which ignores the
impact of DDoS attacks on the system operation. We denote ûsbuc,?

i,t as the optimal unit commitment decisions
obtained by our SBUC model and the optimal decision obtained by the classical SUC as ûsuc,?

i,t . Then,

we evaluate their true objective values G(ûsbuc,?
i,t ) and G(ûsuc,?

i,t ). Since E[minPi,t ,Pens
b,t ,P

wc
w,t ∑

T
t=1 ∑

I
i=1CiFiPi,t +

∑
T
t=1 ∑

B
b=1Cens ·Pens

b,t +∑
T
t=1 ∑

W
w=1CwcPwc

w,t ] does not have a closed-form expression, the SAA for Objective (9),

denoted as Ḡ(ûsbuc,?
i,t ) and Ḡ(ûsuc,?

i,t ), are used for evaluation. To determine a proper scenario size Se that can

correctly estimate the true value G(ûsbuc,?
i,t ) and G(ûsuc,?

i,t ), we conducted a side experiment, including ten
macro-replications. Here, we focus on the setting σt = 20%µt , since it is the most volatile setting tested in
our study and hardest to obtain the accurate estimation for the objective value. Furthermore, we consider
our model since it accounts for both wind power prediction uncertainty and random DDoS attacks.

Therefore, in each macro-replication, we first solve our SBUC model with the scenario size S = 50
and obtain a unit commitment decision ûsbuc,?

i,t . Then, we draw Se scenarios and obtain Ḡ(ûsbuc,?
i,t ) by

solving the second-stage problem in Equation (9) given the first-stage commitment ûsbuc,?
i,t and calculate

relativeError ≡ |Ḡ(ûsbuc,?
i,t )−G(ûsbuc,?

i,t )|/G(ûsbuc,?
i,t ), where G(ûsbuc,?

i,t ) denotes the objective value obtained
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Table 6: The maximum absolute relative difference for G(ûsbuc,?
i,t ) estimation.

Se 102 5×102 103 5×103 104 5×104

relativeError 3.0% 1.7% 1.2% 1.1% 0.9% 0.1%

Table 7: Statistical performance of SBUC and SUC approaches.

G(ûsbuc,?
i,t ) G(ûsuc,?

i,t ) ∆Gp

mean SE mean SE mean SE
σt = 1%µt 91501 969 93308 728 -1807 789
σt = 5%µt 98989 1633 99641 1404 -653 1360
σt = 10%µt 108440 2770 112380 3050 -3940 1790
σt = 20%µt 146967 6152 158332 5743 -11365 3722

by using 105 scenarios. We suppose that 105 is large enough so that the estimation error of G(ûsbuc,?
i,t ) is

negligible. The maximum relative error obtained from ten macro-replications is recorded in Table 6. We
observe that Se = 1,000 achieves accuracy with the maximum relative error not exceeding 1.5%. Balancing
the computational cost and the accuracy, we use Se = 1,000 in the true objective evaluation.

We consider various settings with σt = 1%µt ,5%µt ,10%µt , and 20%µt . For each setting, we set the
scenario size S = 50. The simulation is utilized to generate scenarios for DDoS attacks by using the fitted
M/M/1 queue with α̂ = 3.6 and λ̂ = 94.1. Then, we implement the proposed SBUC model to find the
optimal unit commitment decision ûsbuc,?

i,t accounting for both random wind power and DDoS attacks. Since
the classical SUC only accounts for wind power prediction uncertainty and it does not account for the
impact of DDoS attacks, Constraint (7) is not included in the SUC model. We denote the optimal unit
commitment decision obtained by the SUC model as ûsuc,?

i,t . To evaluate the performance of our model, we

estimate the true objectives G(ûsbuc,?
i,t ) and G(Îsuc,?

i,t ) with Se number of scenarios. We record the pair-wise

objective difference between G(ûsbuc,?
i,t ) and G(ûsuc,?

i,t ) obtained from each macro-replication, and denote it

as ∆Gp ≡G(ûsbuc,?
i,t )−G(ûsuc,?

i,t ). A negative difference suggests that the optimal unit commitment decision

ûsbuc,?
i,t leads to a lower cost.

The mean and standard error (SE) results obtained from 100 macro-replications are recorded in Table 7.
The results show that our model outperforms the SUC model in all four cases. Specifically, when the wind
power penetration is low and the system operating uncertainty is also small, the impact of DDoS attacks
is limited and the performances of two methods are relatively close. For two low uncertainty cases with
σt = 1%µt and σt = 5%µt , our proposed approach brings 1.9% and 0.6% cost savings, respectively. When
the wind power prediction uncertainty or penetration is high, the impact of DDoS attacks is substantial and
our proposed SBUC model can provide the significant savings compared to the classical SUC model. For
σt = 10%µt , our model can provide 3.5% savings on average, while the average saving increases to 7.1%
when σt = 20%µt .

4 CONCLUSION

In this paper, we propose a new simulation-based unit commitment model for smart power grid scheduling
decision making, which takes into account potential DDoS cyberattacks and renewable energy prediction
uncertainty. Specifically, we consider the case that the gateway devices in the smart grid system could
be under attack. Consequently, the relevant thermal generators in the smart grid system would lose the
communication connection with the control center, and they cannot receive real-time production schedule
demands from the control center. The case study on the six-bus example indicates that our proposed SBUC
is more cost-efficient and robust when there are high wind power penetration and DDoS attacks. Possible
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future research directions include incorporating wind farms as potential attack victims, and considering the
generator failures caused by DDoS attacks.
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