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ABSTRACT

During arrival and departure procedures at an airport, aircraft generate noise. High levels of noise during
these terminal procedures can have a negative impact on the communities located near the airport. We
assess the impact of the noise generated by a standard instrument departure of a twin-engine narrow body
mid-range aircraft over the communities nearby Amsterdam Airport Schiphol, the Netherlands. During the
departure procedure, we consider a stochastic flight trajectory that is subject to lateral position errors. We
estimate, using Monte Carlo simulation, the distribution of the sound exposure level and of the number of
awakenings generated by a departure. We also identify the residential areas where the number of awakenings
are overestimated or underestimated, when comparing a stochastic and a deterministic departure approach.
Lastly, we approximate the distribution of the noise level for a generic aircraft departure, which can be
further employed for further optimization of departure procedures.

1 INTRODUCTION

The noise generated by aircraft during an arrival/departure at an airport is of continuous concern for the
people living in the vicinity of an airport. High levels of noise during a flyover can generate annoyance
and even awake people during nighttime.

To reduce the negative impact of the aircraft noise on the communities nearby large airports, over the
years, several noise abatement measurements have been adopted. One frequently employed measure is to
enforce a maximum yearly number of flight operations, as well as a day-evening-night maximum noise
level allowed around the airport. Moreover, for a single flight, the International Civil Aviation Organisation
(ICAO) defined two noise abatement departure procedures such that the total area impacted by the noise
is limited (ICAO 1993). Several improvements of the noise abatement terminal procedures have been
proposed in the last years. (Visser and Wijnen 2003; Hartjes et al. 2014; Ho-Huu et al. 2017) have
developed a tool that optimizes aircraft arrival and/or departures with respect to fuel consumptions and
number of awakenings. Similar techniques have been developed in (Zou and Clarke 2003). (Prats et al.
2010a; Prats et al. 2010b) have developed a lexicographic optimization technique to deal with aircraft
departure trajectories such that noise annoyance is minimized. (Atkins and Xue 2004; Xue and Atkins 2006)
have proposed a dynamic programming technique for minimizing noise in runway-independent aircraft
operations.

In the trajectory optimization techniques above, however, the inherent uncertainty of a flight trajectory,
such as, for instance, aircraft position errors, the impact of wind and other atmospheric estimation errors on
the nominal trajectory, are not taken into account. In (Ramasamy et al. 2013) a 4D trajectory optimization
is performed to minimize fuel consumption, flight time, operative cost, noise impact and persistent contrail
formation. Following optimization, the reference trajectory is subject to stochastic parameters such as
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position error, velocity error, mass errors. The impact of system uncertainties is evaluated by means of
Monte Carlo simulation. (Bera and Pokoradi 2015) estimates the noise load of a helicopter by means of
a Monte Carlo simulation. An analysis of the sound exposure level around JFK airport is conducted in
(Allaire et al. 2014) by means of a Monte Carlo simulation. A noise contour plot of the mean sound
exposure level around JFK airport for one day of operations is determined.

In this paper we assess the impact of stochastic aircraft position error on the distribution of the sound
noise exposure and the expected number of awakenings generated by a single aircraft departure. We make
use of a Geographic information system (GIS) of the population density for residential areas located in
the vicinity of Amsterdam Airport Schiphol (AMS) and of a noise computation methodology introduced
by the Federal Aviation Administration. A Monte Carlo simulation of a standard instrument departure
(Spijkerboor) from AMS, the Netherlands, is conducted. The simulation results are compared against a
nominal departure procedure, where the influence of system uncertainties is not considered. We show that, in
comparison to the simulation approach, the deterministic approach overestimates the number of awakenings
in the residential areas nearby the nominal trajectory and underestimates the number of awakenings in the
areas further away from the nominal trajectory. We also approximate the distribution of the sound exposure
level for a twin-engine narrow body mid-range aircraft departure, which can be further used to speed-up
noise optimization methods, while taking into account system uncertainties.

This paper is organized as follows. In Section 2 we define an aircraft point-mass model that takes
into account aircraft lateral measurement errors, the sound exposure level model, following the INM
methodology, and the awakenings model. In Section 3 we outline the results of simulating a flight departure
subject to lateral measurement errors and the impact on awakening. We consider a standard instrument
departure from AMS: the Spijkerboor departure. Lastly, we determine an approximation of the distribution
of the sound level exposure as a function of the model parameters. In Section 4 we summarize the results
and provide conclusions.

2 MODEL DESCRIPTION

In this section we first introduce an aircraft point-mass model, which takes into account lateral measurement
errors. We next define a methodology to estimate the level of sound exposure that people living in the
vicinity of an airport experience during an aircraft departure from AMS. Based on the sound exposure
level, the percentage of awakenings in a residential area, i.e., the percentage of people that is expected to
awake due to a single flyover, is determined.

2.1 Aircraft model

We define a stochastic point-mass model to represent an aircraft during terminal operations that is subject to
lateral error measurement. Let x;,y;, h; denote the latitude, longitude and altitude of the aircraft at waypoint
i on the nominal aircraft trajectory, respectively. Let & denote the measurement error in the lateral position
at waypoint i.

Let V; ras and W; denote the true aircraft speed and aircraft weight, at waypoint i, respectively; go is
the gravitational acceleration, T;,D;, 1y ;, X;, 1; are the thrust, drag, fuel mass flow, heading angle and bank
angle at waypoint i, respectively.

We further make the following assumptions: i) the Earth is flat and non-rotating; ii) the flight is
coordinated; iii) the flight path angle is considered sufficiently small (y < 15°).

Additionally, it is assumed that there is an equilibrium present for the forces normal to the flight path.
Given these assumptions, the equations of motions are represented by a set of difference equations as
follows:
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with a € (0,1),¢ ~ N(0, G(%,), &k, = 0, A the distance flown between 2 consecutive waypoints.

We further ensure that &; ~ N(0, o2vp),Vj € {0,1,2,...,n}, where ogyp = 926m (PBN 2010). The
value ogyp = 926m is based on the required navigation performance (RNP1) specified in the Performance
Based Navigation report of Amsterdam Schiphol Airport (PBN 2010), where an RNP of 1NM (Nautical
Mile) is required during the arrival and departure phase of a flight. The RNP systems provide on-board
navigation capabilities such that the aircraft deviations from a desired flight track, given nominal envi-
ronmental conditions, are bounded. Thus, an RNP-compliant navigation restricts the distribution of the
navigation system error.

Now, given &; ~ N (0, Ogyp), for a fixed o € (0,1),
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Lastly, for low altitudes and airspeeds, the equivalent airspeed, denoted by Vgas, is used as an approx-
imation for the indicated airspeed, as follows:

VEeas = Vras\/ P/ Po- )

Using equation (9), the difference equations (5) - (6) become:
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where % is the derivative of the ambient air density with respect to the altitude.
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2.2 Sound exposure level model

To determine the sound level exposure SEL (db) at a given location, i.e., the aircraft flyover noise at a location,
we implement the INM methodology (Boeker and Dingens 2006). INM is the standard methodology for
noise impact assessment of the Federal Aviation Administration since 1978.

Firstly, we define a grid of points over residential areas in the vicinity of an airport. We refer to these
grid points as observer locations. For the numerical analysis, we have defined a rectangular of dimension
80 x 80 km around AMS, the Netherlands, with a relatively coarse mesh (0.5 x 0.5 km). Next, following
the model in Section 2.1 and the INM methodology, the flight path is described as a sequence of segments.
Figure 1 shows an example of a segment-based flight path and a set of observer locations. Lastly, the
distance between the flight segment and a given observer point is determined. Figure 2 shows the geometry
of the flight segment relative to an observer point.
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Figure 1: Grid of points (observer locations) in the vicinity of an airport.

Fﬁghw/
segment”
P hT\\,r
T S
SN

.
_——Observer_

Figure 2: Geometry of the flight segment and a specific observer point, where 4 is the flight altitude, r is
the minimum distance between the location of the observer and the flight segment.

We determine outdoor SEL at a specific observer location by selecting appropriate sound levels using
a noise-thrust-distance (NTD) look-up table corresponding to the distance between the aircraft and the
observer point. The NTD table is defined by the INM methodology and contains the noise exposure levels
for specific reference conditions. The uncorrected NTD noise-level values, which are derived from the
NTD table, are further adjusted by a fractional component, which depends on the geometry of the flight
segment relative to the observer point, as well as other prevailing operational conditions such as speed
adjustment and lateral attenuation adjustment (Visser and Wijnen 2001). Lastly, indoor SEL is determined
by subtracting an amount of 15 dB from the outdoor SEL, where 15 dB represents the average transmission
loss for a house. We consider only indoor SEL that are larger or equal to 50 dB. Sound levels below 50 dB

2324



Smits, Hartjes, and Mitici

are ignored since they do not generate awakenings (Visser and Wijnen 2001). Moreover, for computational
efficiency, we compute SEL only at observer locations that are populated.

2.3 Awakenings model

Given the level of indoor SEL computed according to the methodology in Section 2.2, the American
National Standards Institute (ANSI) defines the percentage of awakenings PA, i.e., the percentage of people
that are likely to be awakened from sleep when they are at home, as follows (ANSI/ASA 2008),

1
T 1+ e (~6.8884-0.04444SE Lingoer) °

PA 12)

Further, knowing the density of the population in the residential areas around an airport, the absolute number
of people that are awakened (NA) is determined. In this paper we consider a geographic information system
(GIS) based on the population density in the vicinity of AMS. This data is used to define population
densities at the grid observer points.

3 MONTE CARLO SIMULATION OF AIRCRAFT DEPARTURE

In this section we outline the results of the Monte Carlo simulation of a standard instrument departure from
AMS (Spijkerboor departure). For the numerical analysis, we consider one aircraft performance model
corresponding to a twin-engine narrow body mid-range aircraft with two engines and an initial weight of
68,000 kg.

3.1 Spijkerboor departure

Spijkerboor flight departure is located in the vicinity of the cities Haarlem (159,300 inhabitants), Hoofddorp
(75,600 inhabitants) and Amsterdam (853,312 inhabitants), see Figure 3. The trajectory starts at a screen
height of 50 ft with the landing gear retracted and departure flaps selected. Full take-off thrust will be used
until at least 1500 ft altitude, while maintaining its initial velocity. Beyond that altitude, the thrust is set
back to maximum climb settings and the aircraft is also allowed to turn. When reaching 3000 ft altitude,
the aircraft accelerates to the airspeed where the flaps and slats are fully retracted. The terminal conditions
for this departure are an airspeed of 250 kts and an altitude of 6000 ft. During the entire departure, the
aircraft is not allowed to decelerate or decent. To ensure RNP-compliance, the aircraft is assumed to be
equipped with RNP navigation system, which contains an FMS with GPS sensors.

We have developed a Monte Carlo simulation of Spijkerboor departure using equations (1) - (11),
Section 2.1. The simulation takes as input the states of the aircraft (latitude, longitude, altitude, velocity,
weight, heading angle) and the stochastic lateral measurement error. We have divided the nominal trajectory
in segments, in accordance with the INM methodology (see Section 2.2). Each segment is delimited by
two consecutive waypoints. The lateral measurement errors are correlated across these waypoints (see
equations (7)- (8)), using exponential smoothing with smoothing factor & = 0.3.

Figure 4 shows the expected level of sound exposure and the number of awakenings generated by a
flyover. The results are shown only for the populated areas. In comparison with a deterministic aircraft
model for a nominal trajectory, where the uncertainty in the aircraft position is not considered, the number of
awakenings are overestimated in the residential areas close to the nominal trajectory and underestimated in
the residential areas farther away from the trajectory (see Figure 5a). Moreover, the number of awakenings
in the residential areas outside of the trajectory turn is underestimated when a deterministic model is
employed (see Figure 5b).

Figure 6 identifies the residential areas where the sound exposure level is underestimated or overestimated
when a deterministic approach is used. These results are also supported by the standard deviation of the
level of sound exposure (see Figure 7) which shows a larger spread outside of the turn.
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Figure 3: The Spijkerboor standard instrument departure with the population density.
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Figure 4: Monte Carlo simulation of Spijkerboor departure.

3.2 Approximating the distribution of the sound level exposure

In this section we estimate the distribution of the sound level exposure as a function of the model parameters.
We consider a general grid of 1km x 80 km with a mesh of 0.5 x 0.5 km. We consider a generic flight
segment, in steady state, at varying altitudes (h) over the grid and at varying minimum distance r from
the segment. We consider a lateral position error € ~ N(0,03yp) over the flight segment. Using Monte
Carlo simulation we estimate Osg;, as a function of the flight altitude # and minimum distance between the
segment and an observer point (see Table 1). We corrected the estimation of ogg; with the turn radius at
varying altitudes. We also correct for the observer location being inside or outside the turn (see also Section
4). For computational speed-ups of, for instance, a trajectory optimization of a twin-engine narrow body
mid-range aircraft with the RNP requirements specified in (PBN 2010), the estimated distribution of SEL
can be readily employed. In turn, with this approach we can readily determine the number of awakenings
generated by a a twin-engine narrow body mid-range aircraft flying over a generic area.
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Figure 5: Difference between SEL and the number of awakenings (NA) generated using a deterministic,
nominal trajectory and Monte Carlo simulation for a grid point - Spijkerboor departure from AMS. There
is a total of 8193 awakenings generated by the deterministic, nominal trajectory, whereas there is a total
of 8297 expected awakenings generated in the stochastic approach.
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Figure 6: Difference between SEL determined using a deterministic, nominal trajectory and Monte Carlo
simulation. The yellow grid points indicate areas where SEL is overestimated by the deterministic approach.
The green grid points indicate areas where SEL is underestimated by the deterministic approach.

4 CONCLUSIONS

An assessment of the noise distribution and number of awakenings generated by the departure from AMS of
a twin-engine narrow body mid-range aircraft has been conducted by means of a Monte Carlo simulation,
together with a standard INM methodology for noise impact assessment specified by the Federal Aviation
Administration. A case study for the Spijkerboor departure from AMS has been conducted. The simulations
results have been compared with a deterministic, nominal departure procedure. Residential areas in the
vicinity of AMS have been identified where the deterministic approach has underestimated or overestimated
the number of awakenings. The distribution of the sound exposure level for a twin-engine narrow body
mid-range aircraft departure was also determined, which can be further used to speed-up noise optimization
methods, while taking into account system uncertainties. Future research plans include investigating the
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impact of the stochasticity of several other states of the aircraft such as aircraft weight and altitude on the
sound exposure levels.
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Figure 7: Contour of ogsgy for Spijkerboor departure.

Table 1: osgr (dB) as a function of the flight altitude 4 (ft) and the distance between a flight segment and
a specific observer location r (m).

1000 ft | 1500 ft | 2000 ft | A --- A | 5500 ft | 6000 ft | 6500 ft

Om 8.041 6.913 6.108 3.618 3.124 2771

250 m | 8.039 6.911 6.107 3.616 3.124 2.770

500 m | 8.038 6.909 6.105 3.615 3.121 2.769

750 m | 8.036 6.907 6.104 3.613 3.120 2767
r

r

39250 m | 0.171 0.170 0.174 0.180 0.184 0.189

39500 m | 0.170 | 0.169 0.173 0.180 0.183 0.189

39750 m | 0.168 0.169 0.171 0.179 0.183 0.188

40000 m | 0.167 0.168 0.170 0.178 0.181 0.187
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