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ABSTRACT 

The cost efficient management of spare parts for low-volume high-tech equipment is inherently difficult. 

In this on-going study, we seek to improve the OEM’s spare parts inventory management by incorporating 
the condition information from a large number of distributed working units in the field. For that purpose, 
the condition information relayed by sensors is put in context with usage parameters, preventive 
replacement policies, customer plans, and current economic indicators to create an aggregate forecast and 
inventory ordering policy. This requires a synthesis of the state of the art knowledge from multiple research 
streams. In this paper, we outline a simulation environment of the maintenance management of a jet engine 

program over its life cycle, and provide preliminary results highlighting several modules for future research 
to improve the performance of spare part inventory policies and assess the value of health monitoring. 

1 INTRODUCTION 

Stochastic part deterioration makes the prediction of equipment maintenance and associated spare part 
demand very difficult. Yet, accurate forecasting and spare part inventory management is crucial to keeping 
expensive equipment running and maintenance costs manageable. Condition monitoring involves collecting 

real-time sensor information from a functioning device to make predictions regarding the health condition 
and lifetime of each unit, and is thus posed to improve maintenance decisions. By aggregating over the 
condition of an entire fleet, this information not only promises improved maintenance scheduling but also 
better management of the resources needed - in particular spare parts. 
 Our work is part of a multipronged and interdisciplinary study that develops the methodologies 
necessary to utilize sensor readings from a large number of distributed working units in the forecasting and 

inventory control of the spare parts necessary for maintaining those units. The research consists of four key 
milestones (as outlined in the NSF Abstract #1301188):  

 
1. “Advancing sensing methods and the interpretation of signals to diagnose equipment condition". 
2. “Developing procedures for transforming these data into predictions of time-to-overhaul and 

resource-requirements". 
3. “Building part forecasting methods and inventory policies that aggregate this information across 

equipment, under consideration of field usage and economic conditions". 
4. “Creating a simulation tool for the monitoring and maintenance of a large fleet to validate the 

methodology".  
 

This paper focuses on the last milestone, building a simulation environment to validate, compare, and 
further optimize the study's proposed methodologies and inventory policies. The ultimate objective is to 
highlight the economic value of advanced sensing techniques. We focus on a particularly complex and 
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high-stakes application: jet engine fleet management. The associated spare part inventory management for 
maintenance, repair, and overhaul (MRO) services is critical to the availability of the fleet but is inherently 
challenging for the following reasons: (1) A high fraction of parts are very capital intensive since jet engines 

not only push the limits on what is technically possible in terms of operational performance, but also provide 
a safety critical service that requires the best material and design to ensure reliability. (2) Tier one suppliers 
need to account for a large number of distinct spare parts for which safety stock and inventory easily adds 
up to a large operating capital. For example, Mabert et al. (2006) report that Pratt & Whitney stocks more 
than 22,000 distinct parts. (3) The demand rates are very low and often lumpy and intermittent which can 
lead to long and costly inventory holding. (4) Demand for these spare parts may result from actual part 

failure, operators' economic decision-making to procure and stock these parts, or decisions to perform 
maintenance out-of-schedule to accommodate lease agreements, optimize overall fleet operations, or take 
advantage of maintenance contract terms. (5) Tier one suppliers experience long and highly variable 
procurement lead-times for critical parts. In order to counteract the uncertainty on the demand and supply 
side, the implementation of highly expensive safety stocks is the common practice to prevent stock-outs. 
 These challenges can be further illustrated in the light of the most recent 2008/2009 economic 

downturn. The available seat kilometers followed closely world GDP growth. Aircraft usage declined 
significantly and airlines were facing a significant loss of revenue. Accounting for the high cost of 
ownership of an airplane, deferring MROs helped airlines reduce fleet costs. However, it led to significant 
inventory build-up of replacement parts impacting tier one and tier two suppliers significantly. In fact, the 
value of inventory of parts stocked at tier one, tier two, and small part suppliers has been estimated at $40 
billion in 2010 (Clearwater 2011), a number that corresponds to the entire MRO market size in 2010 (Reals 

2010). In an industry that is already inherently difficult, this triggered companies to re-examine their 
operations and spare part inventory management. In this capital intensive environment, small improvements 
have significant financial impact.   

2 LITERATURE REVIEW 

Our study requires a synthesis of multiple traditional management science research streams, including 
demand forecasting, inventory management, and maintenance scheduling combined with insights from 

aerospace part degradation modeling and the interpretation of on-board condition monitoring sensor signals. 
There is a remarkable number of studies that take on each complex individual task, or a subset of these 
tasks; for a full literature review, we refer the reader to Prokle (2017). However, previous research that 
takes on the holistic approach of translating condition-based sensor readings into maintenance scheduling 
decisions and spare part inventory ordering decisions is very sparse (see Park and Ryan 2015; Park 2015). 
In this section, we focus on previous fleet management simulation studies. 

 General research in this area has been rooted in industry or defense environments, driven primarily by 
pressing problems and practical incentives to solve them. These case studies provide excellent insights but 
are often limited in revealing the full scope of the technical details involved. In collaboration with 
Bombardier, Gharbi et al. (1997) seek to optimize a yearlong maintenance program for the Canadian fighter 
CF-18. The authors attribute poor schedule performance to the variability caused by changes in work scope 
authorizations, deterministically estimated work-step durations, and unplanned maintenance activities 

which delayed and shifted resources between different projects. Their simulation model uses the initial 
production plan (status quo) as input and delivers an improved final production schedule by incorporating 
elements, such as resource constraints, unpredicted failures, or variability in work durations, and allowing 
for specific user input. Using historical data, the model is found to not only produce superior production 
plans, but also provide high value in performing 'what-if' analysis, helping to negotiate maintenance aspects 
with customers. Gatland et al. (1997) approach a similar capacity and facility loading problem for a fleet of 

engines and provide insights from Delta Airlines. The authors build an Arena simulation model which 
analyzes the impact of varying (1) engine removal times, (2) engine disassembly start times, (3) disassembly 
work schedules, and (4) engine workscope mix. KPIs considered in the study include engine turnaround 
time, engine throughput, engine service level, machine utilization, personal utilization, part turnaround 
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time, part throughput, average throughput, and work-in-progress. The industry funded study of Stranjak et 
al. (2008) uses a multi-agent approach to the problem of overhaul prediction and scheduling to navigate the 
competing objectives of minimizing operational maintenance costs and decreasing waiting times. The 

reliability of the engine is being approximated by the Weibull function, aggregating the part specific 
probability distributions. Using the function's scale and shape parameters, the authors distinguish between 
different life stages of the engine and types of disruptions (i.e., infantile, random, and wear-out) and 
schedule overhauls as close as possible to their predicted optimal overhaul date under capacity restrictions. 
Besides utilization, turnaround times, and aircraft-on-ground occurrences, the authors also capture the 
impact of the number of spare engines available. Painter et al. (2006) use Arena to simulate fleets of engines 

using military mission profiles and estimate the long-term cost effects (i.e., life-cycle costs) of maintenance 
policy decisions influencing key performance indicators like expected time-on-wing, cost-per-engine flight 
hour, and the operational fleet availability. The authors argue that historic data is a bad estimator for future 
costs. Instead, they develop a simulation coupled with data mining techniques to, first, generate a data set 
of maintenance history and cost statistics, and, then, build a life-cycle cost model that uses appropriate static 
and non-static cost estimation parameters (e.g., mission profiles or operating environments). Statistical 

sampling determines scope, timing, and location of failure. Data-mining, regression, classification, and 
clustering techniques are used to identify key life-cycle limit cost drivers. Mattila et al. (2008) also simulate 
flight missions and model the maintenance of fighter aircrafts for the Finish Air Force under normal and 
conflict situation conditions with the objective to improve decision-making in fleet maintenance operations. 
In their Arena model, the authors consider three types of maintenance needs: (I) periodic maintenance, 
where the model criteria are cumulative flight hours and predetermined service intervals, (II) failure repair, 

modeled as time between failures, and (III) battle damage, which is modeled as pass-fail probabilities. The 
configuration of fleet and maintenance operations constitutes the simulation input, and aircraft availability, 
maintenance, and flight performance statistics are generated as output. Maintenance network locations are 
considered and incorporated into their model. The authors highlight the challenge of the scarcity of data, 
its confidentiality, and the important insights of subject matter experts to overcome some of the unknown 
factors of the model. 

 In summary, the research areas this study incorporates are expansive and multifaceted. No previous 
work has been found integrating all, to model the entire process from condition monitoring to spare part 
inventory management and assess the value of sensor information over the life-cycle of an engine program.  

3 SIMULATION FRAMEWORK 

This section provides a high-level view on the simulation framework that will allow us to assess the value 

of incorporating fleet sensor information into spare part inventory management. Details on the various 

modules will be given in the next section.   

The main input parameters can be classified into four major categories: (1) economic indicators, (2) 

engine profile, (3) cost parameters, and (4) sensor information. Figure 1 depicts relevant parameters within 

each category and their dependence. The engine profile details unique characteristics of the engine and its 

main parts, their usage history, condition information, and maintenance information. Part usage history 

(flight cycles flown) is necessary to capture the repair and reuse of parts, while keeping track of the parts’ 

life limit. We use flight cycles as the key parameter affecting the engine condition since airplane starts put 

most stress on the engine and are the major driver of degradation. Economic conditions impact both engine 

usage and maintenance decisions (airlines strapped for cash may delay expensive overhaul by assigning the 

engine to a lighter flying schedule or using it as a spare). We assign a status to each engine reflecting its 

current activity in the fleet: in service, currently in overhaul, spare engine, or retired. Generally, sensor data 

must be translated into probabilistic information regarding 1) when the engine will be overhauled, 2) what 

modules will be included in the workscope, and 3) what parts will need replacement. 
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Figure 1: Major inputs to the simulator. 
 

We develop a discrete-event simulation with weekly time steps. Figure 2 (left) provides a high level 

outline of the simulation framework to compare a traditional spare part inventory management approach to 

our proposed condition-based inventory control and fleet management process. Figure 2 (right) provides 

further detail on the engine program life-cycle simulation. Engines are added to the fleet according to a 

given production schedule, and assigned a degradation and initial usage profile. Every week (time step), 

we simulate the fleet operation, that is, cycles flown for each engine during the week. The sensor readings 

after that number of flights are provided by the NASA C-MAPSS simulator, and the particle filtering 

approach in Wang et al. (2015) is used to generate a remaining useful life (RUL, in flight cycles) distribution 

for the engine, and potentially for its modules and parts. Economic conditions are used to predict engine 

usage over time and translate the life cycles into calendar time. For each modeled spare part, the distribution 

of spare part demand over its lead time is computed by aggregating the probability distribution of demand 

during the part lead time over all the engines in the fleet using the condition-based RUL distributions. [A 

traditional inventory policy ignoring condition information can also be used, and its performance compared 

to assess the value of condition information].  

 

  
 

Figure 2: Overviews of the simulation framework. 
 

When the engine’s condition reaches a certain threshold, an overhaul is scheduled according to 

individual airline policies, contract types, and maintenance regulations. 

While the parameters in the engine profile and sensor information are updated weekly, economic 
indicators follow quarterly updates, as they change slowly over time and have a longer-term influence on 

flight cycles flown and airline behavior.  
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The following steps illustrate how a particular engine transitions during the simulation over the 

following stages:  
 
1. The engine is being produced and enters into service. We add the engine to the existing fleet of 

engines and assign random weekly flight cycle usage. The engine stays in service until an overhaul 

is scheduled due to abrupt fault, specified part life limit, or regular wear and tear.  

2. The engine has reached the overhaul criteria. This is a prespecified threshold defined as either a 

fixed number of flight cycles remaining with a specified probability or an individual part life limit. 

This triggers a spare engine into service and sends the engine into overhaul.  

3. The engine has reached the end of overhaul. The maintenance duration is randomly assigned and 

might further be increased in weekly increments when parts or resources are not available. The 

engine is added to the pool of spare engines after maintenance is complete.  

4. The engine switches its status from spare to service and replaces an incoming engine to be 

overhauled.  

5. Steps 1-4 will be repeated until the engine is retired. However, duration and timing might change 

significantly based on evolving engine and system conditions and the stochasticity in each 

simulated period.  

6. The engine reached a specified threshold in age measured as number of lifetime flight cycles and 

is retired.  

4 SIMULATION MODULES 

The simulation is developed in Matlab 2017a environment to interface with the previous work of our 
collaborators (Milestone 1-3 in introduction). The following describes the key modules necessary to capture 

fleet degradation and maintenance operations over time.  

4.1 Engine Usage Forecasting Model 

The economic forecasting model seeks to forecast engine usage, measured in flight cycles, given the 
available economic data introduced in Figure 1. This is done in two steps. First, we select the most relevant 
subset of the economic indicators (features) on-hand using Matlab's R2017a Statistics and Machines 
Learning Toolbox and its sequential feature selection function sequentialfs which builds pools of subsets 

and sequentially adds and test features. Random partitioning of training and test sets as well as tenfold 
cross-validations assure statistical validity. Second, once the most reliable subset of features has been 
selected, a regression model with ARIMA time series errors is built using Matlab's Econometrics Toolbox 
(regARIMA class). This allows the estimation of regression coefficients, forecast future flight cycles, and 
confidence intervals. Furthermore, it accounts for typical seasonality in flight cycles flown while also 
testing time lags of the features used for the forecast.  

 In forecasting cycles flown four quarters ahead in a preliminary study, the feature selection algorithm 
identified four predictor features: Worldwide GDP, Number of Installed Engines, Worldwide Rate of 
Inflation, and OECD Composite Leading Indicator (MEI). The ARIMA model applied to these features 
results in a Mean Absolute Percentage Error (MAPE) of 2.79%.  
 The engine usage forecasting model is used to predict the number of flight cycles flown by each engine 
over a particular time period. That is, it is used to translate calendar time into cycles flown by the engine, 

since engine degradation is modeled over cycles flown, but overhaul operations and part supplies are 
scheduled over time.  In the simulation, the flight cycle predictions will be updated only on a quarterly basis 
since economic conditions represent a high level view and change slowly over time. 

4.2 Degradation and Sensing Model 

Jet engine sensor data allows improved estimation of time-to-overhaul, overhaul scopes, and associated 
part requirements. Various methodologies and techniques have been proposed for reliable remaining useful 
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life (RUL) predictions. Most recent work of our collaborators includes using deep convolutional neural 
networks for health monitoring and fault classification (Wang et al. 2017), automated performance tracking 
(Wang and Gao 2017), as well as Bayesian approaches and particle filtering techniques for wear predictions 

and lifetime estimation (Wang and Gao 2016; Wang and Gao 2015; Wang et al. 2015). In this section, we 
provide a high level description to provide an understanding for RUL distribution and its derivation, as 
inputs to the simulator.  

Generally, gas path analysis aims to detect physical faults in a part (e.g., fan, compressor, or turbine) 
which caused changes in performance (i.e., efficiency or flow capacity) producing changes in measurable 
parameters (i.e., pressures, temperatures, or speeds). The analysis can estimate the state (i.e., efficiency) of 

a given part based on the sensed parameters. The posterior distribution for the state is estimated using 
particle filter Bayesian approaches on the weekly updated observable parameters. 

Figure 3 illustrates how sensor data is continuously measured and used to estimate the RUL of the 
engine. The figure illustrates the measurement of sensor data over 100 flight cycles. Although 
measurements naturally are very noisy, a trend can be observed. Using the previous measurement, a future 
path can be predicted using the particle filtering method. 
 

 

Figure 3: Estimation of remaining useful life distribution using particle filtering (Wang and Gao 2016). 
 
The noise and uncertainty in the system provides multiple paths and results in a range of possible 

remaining flight cycles until the engine reaches an exogenously specified failure threshold that would 
prompt overhaul. These values can then be used to compute the probability distribution for the remaining 

useful life of parts or the overall engine: 
𝑅𝑈𝐿𝑒(𝑡): Remaining useful life for engine 𝑒 as estimated at time 𝑡.  
𝑅𝑈𝐿𝑖𝑒(𝑡): Remaining useful life for part 𝑖 on engine 𝑒 as estimated at time 𝑡.  

 Between overhauls, each simulated engine is randomly assigned a specific degradation curve from a 
library of possible degradation curves. Some engines may experience abrupt flight disruptions (e.g., bird 
strikes), which are captured by a sharp step decline in the degradation curve. Sensor readings and the 

subsequent RUL predictions are updated weekly according to the number of flight cycles flown in the 
corresponding week. Each simulation cycle, the health status of the engine is checked and the engine is 
scheduled for overhaul when (i) the probability of a remaining useful life of the engine is below 150 flight 
cycles with a probability of 𝑃 ≥ 0.95 or (ii) the life-limit of a part has been reached.  

As a starting point, our case study uses sensor information to determine RUL distributions at engine 
level. RUL is defined as the number of cycles until the engine gas temperature (EGT) reading reaches a 

certain threshold, as is common in the modeling of the degradation of engine condition (e.g., Saxena et. al 
2008). Future developments in degradation modeling of the various modules and major parts will be 
incorporated to generate RUL distributions at the module and part levels. This is a key driver to future 
progress in our research context since it has the potential to refine the individual forecast of workscopes 
and associated spare parts needed during an overhaul process. Our simulation framework can be extended 
and used to assess the value of additional condition information through new sensors.  
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4.3 Overhaul Model 

Figure 4 provides insight into the modeling of a maintenance event within the simulation. We focus on 
maintenance events that require engine removal and an available spare engine as replacement. The swapped 

engine and its defective parts are then either being repaired and returned into inventory for reuse, or 
scrapped. Each maintenance step may have limited resources (e.g., spare parts or mechanics) and may infer 
delay. We assign a random duration to each overhaul and introduce further delay when required spares are 
not available at the point of engine reassembly. The engine will only move to reassembly when all required 
parts are assigned to it. We initially consider the following two policies to determine which parts will be 
required during overhaul:  

 

1. Deterministic Policy: Exchanges a predefined set of parts in every overhaul.  
2. Random Policy: Uses a random number generator and part specific probabilities of failing to 

determine which parts are being exchanged.  

 

 
 

Figure 4: Overhaul process (left) and engine state transitions (right). 

4.4 Inventory Ordering Model 

The spare parts inventory ordering model uses the condition of the individual units in the field to provide 
an aggregate view of the distribution of part demand over the uncertainty period (lead time plus reorder 

interval) and generate a base-stock level as follows. For each particular engine 𝑒 and time 𝑡: 
 
 The sensing module provides a distribution of the number of cycles remaining useful life of the 

engine. 
 This distribution is transformed into a distribution of remaining useful life 𝑅𝑈𝐿𝑒(𝑡) in calendar 

time, using the predictions on cycles flown per week for that particular engine. 

 For a part 𝑖 with lead time 𝐿𝑖, the probability of engine 𝑒 requiring part 𝑖 over the part lead time 
plus the reorder interval (1 week) can then be determined as 𝑃𝑒𝑖(𝑡) = 𝑃[𝑅𝑈𝐿𝑒(𝑡) < 𝐿𝑖 + 1]  ∗  𝑝𝑒𝑖, 
where  𝑝𝑒𝑖 is the probability of part 𝑖 being required for the overhaul. 

 The aggregate demand for part 𝑖 over the lead time plus reorder interval, that is over the relevant 
uncertainty period [𝑡, 𝑡 + 𝐿𝑖 + 1] can then be approximated by a normal distribution with mean 
𝜇 = ∑ 𝑃𝑒𝑖(𝑡)𝑒  and standard deviation 𝜎2 = ∑ (𝑃𝑒𝑖(𝑡) ∗ (1 − 𝑃𝑒𝑖(𝑡)))𝑒 . 

 The base-stock for part 𝑖 at time 𝑡 required to achieve a desired service level 𝛼 is given by 

 𝑆𝑖(𝑡) =  ∑ 𝑃𝑒𝑖(𝑡)𝑒 + 𝑧𝛼 ∗ √∑ 𝑃𝑒𝑖(𝑡)𝑒 ∗ (1 − 𝑃𝑒𝑖(𝑡)) , where 𝑧𝛼  is the standard normal safety 

factor. 
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This provides a basic inventory model built upon the aggregation of the condition information of units 

in the field. A major thrust in the future work is to improve upon this model. In particular, the current 

inventory ordering model considers each part in isolation and thus ignores the assemble-to-order nature of 
overhaul operations, where all required spare parts in that specific overhaul need to be there to proceed with 
the reassembly of the product. If the goal is to support overhaul operations and ensure with high probability 
that engine maintenance is not delayed by the unavailability of spare parts, the inventory ordering problem 
should be formulated as a multi-product assemble-to-order (ATO) problem subject to order fill-rate 
constraints with non-stationary demands. The order fill-rate (in our case overhaul fill-rate) only considers 

the fraction of orders for which all needed parts can be provided within the specified time window without 
delay. In the ATO literature, the demand process is generally assumed to be stationary. Our setting, 
however, involves a demand process that is continuously changing based on the condition of the fleet of 
engines as they age and accumulate flying hours. In addition, the number of products that need to be 
considered to represent all potential overhaul part requirements is 2n, where n is the number of parts being 
modeled; any combination of new parts may be needed, especially since some parts can be repaired or taken 

from a used part pool instead of purchasing a new one.  

4.5 Key Performance Indicators 

To assess the performance of the proposed inventory policy, we use the following key performance 
indicators: 

 
 Inventory Cost: The overall cost incurred for parts held in inventory over the simulation period. 
 Part Fill-Rate: Percent demand for individual spare parts, as needed in maintenance operations, 

satisfied directly from stock. 
 Part Induced Delay: The average delay in engine overhaul that an individual part caused during 

maintenance operations. 
 Maintenance Fill-Rate: Percent of engine overhauls for which all spare parts are directly available 

from stock. 
 Average Engine Maintenance Delay: Average engine delay during maintenance operations. 

 
In addition, to evaluate how spare part inventory policies impact and interact with the overall fleet 

management system, we also calculate: 
 

 Aircraft-on-Ground (AOG): Number of aircraft grounded as their engines require overhaul and no 
spare engine is available. 

 Number of Spare Engines 
 Fill-Rate of Spare Engines: Percent demand for spare engines satisfied directly from stock, to 

replace engines in the field grounded for maintenance operations. 
 Average Maintenance Turnaround Time: Average time from induction to shipment after 

maintenance operations, which is affected by the availability of parts. 
 

Using these metrics of system performance, we can characterize the value of condition monitoring by 
comparing (i) traditional demand-based stock levels and (ii) condition-based stock levels as described in 
Section 4.4. Furthermore, we can iteratively refine and test both inventory policies as we better understand 

their impact on overall fleet management performance. Finally, we would like to extend the simulation 
framework to assess and characterize the value of placing additional sensors and virtual sensing methods. 

5 CASE STUDY AND RESULTS 

In this section, we describe a simple case study carried out to highlight the power and capabilities of the 
current version of the simulation. Increased detail of the complex industry environment and improved 
decision-making models are still in the works. As an example, we simulate four parts and a moderate size 

engine program. The simulation platform can easily scale up. 
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The simulation runs over a period of 20 years (1040 weeks) and simulates weekly engine production 
of two engines for the first ten years, i.e., weeks 1-520. In addition, spare engines are introduced to the fleet 
on a continuous basis to fulfill a prespecified 10% requirement of spare engines in the fleet. Each engine is 

assigned to a fixed degradation profile, and associated noisy sensor readings after each cycle flown; 10% 
of the engines are assigned a fixed degradation profile that includes an abrupt fault (see Figure 5 for an 
example of regular (left) vs. abrupt (right) degradation profile). The number of flight cycles flown are 
randomly assigned to each engine and assumed to be constant in the short-term, and only newly assigned 
after either (i) new economic conditions are incorporated each quarter of a year, or (ii) the engine finishes 
maintenance operations and is installed in a new aircraft. The assigned flight cycles reflect the U.S. flight 

cycle numbers for passenger airplanes in the years 2003 to the end of 2012 available from the United States 
Department of Transportation. Engine retirement age is set to 40,000 flight cycles. 

 

  

Figure 5: Remaining useful life distributions (# of remaining flight cycles) as a function of cycles flown. 

 

We use the following part Lead Time (LT in weeks), Cost (C), and Starting Inventory (SI) 
characteristics: 

 
 

 Part 1:  5  (LT) | 2000 (C) | 10 (SI) 

 Part 2: 13 (LT) | 2000 (C) | 15 (SI) 
 Part 3: 26 (LT) | 1000 (C) | 20 (SI) 
 Part 4: 36 (LT) | 1000 (C) | 30 (SI) 

 
Engines scheduled for overhaul are assigned a random maintenance duration according to a distribution 

with range 6-27 weeks and highest probability between 9-11 weeks. Parts are required to be in physical 

inventory three weeks before the scheduled end of the random maintenance durations. This reflects the time 
that is needed to reassemble the engine after the required replacement parts are available. In this initial case 
study, we consider a policy that requires all parts modeled to be exchanged at each maintenance visit. A 
missing part delays the maintenance by one additional week until all parts are available. Spare engines are 
installed in the fleet once an engine requires an overhaul.  

Figure 7 (left) shows the total number of overhauls in each period over the simulation length. New 

engines are introduced to the fleet at a rate of two per weekly period, starting period 1 (until period 520). 
The figure shows how overhaul operations only start around period 150. Different RUL distributions and 
flight cycles flown influence the random time of the overhaul. A sudden spike of overhauls can be seen at 
period 580. Older engines requiring their second major overhaul start to overlap with newer engines 
requiring their first overhaul. Observe that we are not modeling the end of the engine program’s life cycle, 
since most engines do not reach their life-span limits within the 20 years simulated. As a result, the number 

of overhauls is still close to its peak in the final weeks of the simulation. The inventory of spare engines 
over the 20 years is displayed in Figure 6 (right). Initially, the number of spare engines grows according to 
the specified 10% spare engine production requirement, as very few engines require overhaul. The figure 
clearly shows that the 10% spare engine production requirement overestimates the actual need for spare 
engines, as well as the fact that much of their production should be postponed to later in the program when 
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overhauls will be prevalent. The sudden spike in overhauls translates into a sudden decline in spare engines, 
since every incoming engine requiring maintenance is replaced by a spare engine. Engines finished with 
maintenance operations are added to the spare engine pool, explaining the growth in spare engines even 

after engine production stops in week 520.  
 

 

Figure 6: Engine overhauls (left) and inventory of spare engines (right) over time (weeks).  

Figure 7 shows that the condition-based inventory order-up-to methodology (see Section 4.4) supports 
the trend in number of overhauls over time. The order-up-to level at a given point in time also reflects the 
lead time of the part. Parts 3 and 4 with the highest lead time have a higher inventory buffer than parts 1 
and 2 with shorter lead time.  

Figure 7: Order-up-to levels (left) and on-hand inventory (right) for each part over time (weeks). 

The physical on-hand inventory shows high fluctuations. Orders arrive after their deterministic lead 
time and inventory is depleted according to the number of engines that require maintenance operation at a 

given point in time. We start with an arbitrary (rather large) initial inventory. The figure shows how 
inventory is depleted when demand for maintenance operations starts in period 150. Inventory only reaches 
zero twice in this simulation run in approximately periods 190 and 650.  

6 CONCLUSIONS 

This is one of the first studies to integrate multiple research streams (sensing, degradation modeling, RUL 
predictions, economic conditions, part demand forecasting, and inventory management) into one simulation 

framework. Various assumptions are essential to narrow down the most important building blocks for the 
study and reduce the complexity. Similarly, many extensions are possible in continuously refining the 
assumptions to better capture reality and understand the impact of various parameters and policy decisions. 
This will require continued close collaboration with our industry partners and much data gathering and 
analysis.  
 We see the broad impact of our work in the following. First, this study will help demonstrate the 

economic value of condition monitoring for improved spare part demand forecasting. Second, our 
condition-based inventory management approach should contribute to the reduction of inventory costs as 
well as increase fleet availability for commercial and military aircrafts. Third, the simulation framework 
can be used to evaluate the strategic implications for future development of sensor technologies by 
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identifying the operational value of adding different sensors to the engine. Fourth, the study supports better 
decision-making for MRO service contracts over the full life of the program. The manufacturer can better 
assess costs and risks over the life of the engine and is, therefore, able to better assess their service offering 

(e.g., guaranteed availability of an engine) and set the pricing of the service contracts accordingly. Fifth, 
further research on condition sensing, data gathering, and analytics evaluating engines' health status 
contributes to keeping airplanes safe and reliable.  
 The simulation framework developed allows for consideration of different policies and models within 
each of its modules. In the current simulation tool, we have chosen a simple engine introduction and 
retirement schedule, a particular method of forecasting cycles flown given current economic conditions, a 

basic method for the inventory control of spare engines, a simple spare part inventory management policy 
given condition information, etc. Further research is needed for the careful selection of other models and 
policies to use within each module. Extensive experiments need to be run to evaluate the performance of 
different inventory policies, and understand the impact of the many parameters at our disposal. There are 
further relevant research directions and extensions we would like to highlight. First, our research should 
have significant impact on MRO service contracts, such as 'power-by-the-hour' agreements, which are 

designed to guarantee asset availability to customers under a predefined fixed cost model and help airlines 
build stable financial plans by lowering the risk of unexpected operational expenses. A higher confidence 
in spare part forecast will have significant effects on promised contract conditions (e.g., service levels) and 
pricing of the service (Justin and Mavris 2015), which would require further evaluation. Second, there are 
multiple streams of demand for a part, such as military spares, commercial spares, military production 
assembly, and commercial production assembly. Each demand stream has different requirements such as 

demand lead time or service level. Modeling the interaction of all streams appropriately is complex but is 
of practical relevance (Kocaga and Sen 2007). Third, there are multiple agents that are involved or influence 
MRO decisions. A future study could further model agents' behavior and evaluate their individual 
competing objectives.  
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