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ABSTRACT

Large solution space is one of the main features of simulation—optimization problems. Reducing the
cardinality of the set of alternatives is a key point for increasing the efficiency of simulation—optimization
methods. In this work, a new cutting approach is proposed for this purpose. The approach exploits
the Benders Decomposition framework that can be effectively applied when the simulation—optimization
problems are represented using Discrete Event Optimization models. Benders Decomposition subproblems
represent the simulation components, hence, cuts can be easily generated observing the values of the
variables while a system alternative is simulated, without solving any subproblem. The cut generation
procedure is proposed to approximately solve the Server Allocation Problem in a tandem queueing system.
Results on randomly generated instances show its effectiveness in decreasing the computational effort by
reducing the solution space.

1 INTRODUCTION

Discrete Event Simulation (DES) has established itself as the main tool for the evaluation of the performance
of complex stochastic systems in a plethora of applications (Fronckowiak et al. 1996; Tako and Robinson
2012; Giinal and Pidd 2010). As a result of this success, optimization and control have increasingly included
the use of DES as part of their procedures.

Considering the area of research that uses simulation as a means to evaluate the function to optimize,
simulation—optimization (Fu et al. 2005) has witnessed an important development in the last decade. Several
families of techniques have been adapted from non-linear optimization field in order to include Monte
Carlo based techniques that account for the noise of simulation replications. Random search approaches
(Andradéttir 2006), surrogate model based algorithms (Jones et al. 1998; Osorio and Bierlaire 2013),
and partitioning driven procedures (Shi et al. 2000; Hong and Nelson 2006) have been deeply explored,
reaching a substantial improvement in terms of algorithmic efficiency.
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All of the aforementioned approaches share a common characteristic: they consider simulation as a
pure black box and very little is used of the simulation model structure. Most of the methods consider the
relationship between input and output and use it to inform the search procedure, indeed. Instead, perturbation
analysis approaches use events from simulation to calculate first order derivatives of performance measures.
Perturbation analysis has been successfully applied in pair with gradient based methods (Ho and Cao 2012),
but it is limited by the structural assumptions that the discrete event system must satisfy. Another family
of approaches considering the information about the simulation events, called Discrete Event Optimization
(DEO), has been recently proposed by the authors (Pedrielli et al. 2015a; Zhang et al. 2016; Pedrielli et al.
2018). The basic idea behind DEO is to fully integrate the simulation and the optimization in a unique
model, using mathematical programming.

The DEO approach shows how DES can be used not only for performance evaluation of the modeled
stochastic system but also to define the feasible region of the optimization problem. However, several
challenges need to be solved in order to make DEO a usable tool, especially when solving large scale
optimization problems. (1) One major challenge is the improvement of the computational efficiency (DEO
models are large and complex due to the fact that events appear as decision variables, and that the variables
are sometimes binary); (2) DEO approaches are single run; as a result, efficient methods to adaptively set
the simulation run length are necessary, and such an extension is not trivial.

While both challenges are particularly important, this paper focuses on the first problem and explores
the use of Benders Decomposition (BD) to effectively cut the solution space thus reducing the size of
the original DEO model. This decomposition approach is not new in simulation—optimization. In fact,
the Buffer Allocation Problem (BAP) of open flow lines was solved in Weiss and Stolletz (2015) using a
BD approach. The original aspect of our paper is that the cuts are generated exploiting the information
included in the simulation sample path instead of solving mathematical programming problems as standard
BD approaches require. The fact that cuts can be easily generated observing the values of the variables
while a system alternative is simulated is an important advantage. Another advantage is that, in the cases
where the simulation components include binary variables, simulation sample path enables to generate
approximate cuts without much loss in the effectiveness. Further, the cut is independent from the method
used to select the alternative to simulate, and this makes possible to combine the proposed cut generation
approach to other simulation—optimization approaches as random searches or partitioning procedures. This
last advantage is shared with the standard BD approach proposed in Weiss and Stolletz (2015).

In order to showcase the novel approach, we focus on a specific problem, i.e., the Server Allocation
Problem (SAP). The case is simple yet meaningful enough to allow the understanding of how the procedure
works in details and to highlight which elements are tailored to the specific discrete event dynamics of the
system and which elements can be generalized to different systems.

The remainder of the paper is structured as follows. Section 2 motivates the proposed approach. The
problem and the cutting methodology is discussed in section 3. Section 4 shows the results of numerical
experiments on randomly generated instances of the SAP. Section 5 concludes the paper.

2 BACKGROUND & MOTIVATION

DEO was pioneered in Matta (2008), and fully proposed in Pedrielli et al. (2018). Its applications ranged
from the BAP to inventory control (Pedrielli et al. 2015b). In Tan (2015), a similar approach is used for the
optimization of continuous flow manufacturing systems. Weiss and Stolletz (2015) proposed a BD based
approach to solve the BAP.

All the aforementioned approaches were tailored to the specific application at hand. A first generalization
of DEO was discussed in Pedrielli (2013), Matta et al. (2014), Pedrielli et al. (2015a) that also investigated
the time buffer as a general approximation mechanism to allow for the efficient solution of the problem.
While this approximation goes in the direction of improving the solution efficiency, deriving rigorous
bounds on the performance is not trivial, especially when the complexity of the system dynamics increases.
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In this paper, a decomposition approach is proposed to solve the DEO problems with complex system
dynamics, with the aim to explore general guidelines and novel theory. The approach is based on BD as
proposed in Weiss and Stolletz (2015) and Zhang et al. (2017). In those works, as simulation components
are LP models that can be included in the BD subproblem, cut generation faces no computational difficulty.
Instead, the cut generation procedure herein proposed, exploiting simulation, can be used when the simulation
component contains also integer/binary variables. The use of simulation for cut generation allows to avoid
the use of standard operations research optimization techniques. This ability to eliminate the need for
optimization is important, as it allows to increase the efficiency, while maintaining good accuracies.

3 PROBLEM AND METHODOLOGY

In this section, the problem is defined, and a simulation—based cutting approach is proposed for the solution
of the two-stage SAP problem modeled according to the DEO framework. The methodology is based on
the standard BD with two main differences: (1) cuts are generated using simulation; (2) an approximation
is introduced in the cuts and in the master problem to handle non-linear constraints.

Section 3.1 introduces the problem. Section 3.2 presents the complete DEO model of the two-stage
SAP, together with the relevant notation. Standard BD master and subproblem, and cut generation are
presented in section 3.3.1 and 3.3.2, respectively. The approximate cuts and master problem are discussed
in section 3.3.3.

3.1 The Server Allocation Problem (SAP)

The SAP in a two—stage system consists in choosing the number of parallel identical servers to be allocated
to each stage to guarantee a maximum average target system time (time between the arrival of the customer
to the system and its departure) for all the customers while minimizing the total server cost. An example
of such a system is depicted in Figure 1. Each stage is composed by several identical servers, with m; and
my representing the number of servers in the first and second stage, respectively. The servers of a stage
share the same queue, and waiting jobs will be processed by the first available server. The first queue has
infinite capacity, while the inter—stage queue has a finite known capacity B. Jobs arrive with a general
arrival process. Jobs leave the system immediately upon completion at the second stage.

2 O B O Departure

— My o— — m, : _
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L ;

System time

Arrival
—_—>

Figure 1: Two-stage parallel server queueing system.

3.2 SAP Formulation

The DEO model for the two—stage SAP consists in an optimization component and a simulation component.
In the optimization component, the decision variables define the system configuration, i.e., the number of
servers allocated to each stage while constraints bound the maximum acceptable numbers of servers. The
simulation component has decision variables that model the occurrence times of the events and constraints
defining the system dynamics. Also, constraints exist linking the optimization and the simulation component.

Notations and parameters
N number of customers in simulation [ iteration index
B capacity of the inter-stage buffer tis service time of the i—th customer at stage s

Lys  lowerbound of server number of stage s e¢ arrival time of the i—th customer

1
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i arrival sequence index (i =1,...,N) .
. . : s stage index (s =1,2)
Jj departure sequence index (j =1,...,N) N .
. T* target system time
r server index (r =1,...,Uy)

¢s  cost of a single server of stage s
Uy upperbound of server number of each stage 4 & &

Optimization variables
ms €7+ number of servers of stage s
Vs € {0,1} server allocation variable; vs,r = 1 if at least r servers are allocated to stage s,
vs,r = 0 otherwise

Simulation variables
e >0 starting time of i—th customer at stage s, which is also the i—th arrived customer

i,s =
ej-l ;>0 departure time of j—th customer at stage s
0ijs € {0,1}  &;js = 1 if the i-th arrival is the j—th departure at stage s; J;;; = 0 otherwise

Original DEO model

min{cym; + comy } (D
S.t.
my <r—1+My,, r=1,....Up, s=1,2 2)
Un
mg > Zys,r s=1,2 3)
r=1
e >ef i=1,..,.N 4)
e‘fﬁs—e;‘i_m > D(rys,, —my) r=1,.,U,, s=12,i=r+1,...N 5)
ely—el >M(Sjs— 1)+, s=12,i,j=1,..,N (©6)
6;72_65{1 >0 j=1,...N 7
el —¢ p,>0  j=B+1,..N ®)
SijS:Aijs(mlva) S:1727i5j:17"°aN (9)
N d N a
feS,—) el
j=1%j2 szl i ST* (10)
N

Lys <mg<Upy, s=1,2
mg € 27, 8js,ysr €{0,1} 55,5, >0 s=121i,j=1,..,Nir=1,...Up

Equation (1) is the objective function, i.e., the minimization of the overall server cost. As servers in a
given stage are identical, they have the same cost, while the cost of the servers in the two stages can be
different. Constraints (2) and (3) link the number of servers in each stage to the binary variables used for the
server number selection. In fact, from the definition of y; ,, it can be easily seen thaty, | = ys0 = ... = ys u, = 1,
Ysmg1 = Ysme+2 = -.. = Ys,uy = 0. Constraints (4) to (10) deal with the simulation trajectory. Constraints
(4) state that the service of a customer can start only after it arrives. Constraints (5) show that the service
of a customer can start only if there is one server available. With parallel servers, the departure sequence
and the arrival sequence may differ from each other. Thus, constraints (6) link the i—th arrived customer
to the j—th leaving the stage s. Constraints (7) allow the service at the second stage to start only after the
customer leaves the first stage. Since the inter—stage buffer has finite capacity, constraints (8) represent
the fact that a customer can leave the first stage only if there is available space in the queue. Constraints
(9) link the value of variables &, to the value of m; and m;: once the m; and m; are known, the system
can be simulated, and if the i—th arriving customer is the j—th leaving stage s, A;ji(m,my) is set to be
1, otherwise A;js(mi,my) is set to be 0. Constraint (10) is the performance constraint, which bounds the
average system time of all the customers to be smaller than or equal to the target value 7.
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The number of binary variables in the model is equal to 2N? + 2Uy;, most of which are from the
simulation component. Furthermore, constraints (5) and (6) are big—M constraints, where D and M are
both large numbers. Moreover, constraints (9) cannot be written in an explicit and linear way, as operator
Aiji(my,my) is the result of the discrete event simulation.

3.3 Model Decomposition and Cuts Generation Procedure

The model in section 3.2 cannot be efficiently solved using state-of-the-art methods, mainly due to the
large number of binary variables and to constraints (9) that are not linear and explicit. Thus, an alternative
solution approach is proposed in section 3.4. The proposed solution procedure is based on the BD approach,
as shown in section 3.3.1. The cuts are generated and simplified based on the simulation trajectory, as
shown in section 3.3.2. Section 3.3.3 shows how the cuts can be further approximated, and the master
problem becomes a solvable mixed integer linear programming, whose complexity has been significantly
reduced.

3.3.1 Decomposition

According to BD, the original problem is decomposed into a master problem and a subproblem. The
subproblem must be a linear program, as the standard Benders cuts are generated from the subproblem
based on the strong duality theory.

Master problem
min{cym; + comay }

S.t.
(2),(3),(9), generated cuts

The master problem variables are my, s ,, 6; js and the constraints are the ones that only contain those
variables.

Subproblem
min{e}
S.t.
e >e¢!  iay i=1,..,N (In
=l >0 ug i=itlN (12)
ehr—e >0  ap j=1,..N (13)
fo—eis 2tis v S =1 (14)
el —¢ 5,>0 1w, j=B+1,..,N (15)
N d N _a
_1€ — ) 1€
pe UG o ope g (16)

In equations (11)—(16), the symbols behind the constraint formulation (a; s, u; s, vijs, w;, @) represent the dual
variables associated to the constraints. Instead, /7, and Si js are the value of the master problem variables
from the optimal solution of the master problem.

It can be noticed that the decision variables in the subproblems are the event occurrence times, i.e., €}
and e?nv, and the constraints are the system dynamics constraints and the big-M constraints (i.e., (5) and
(6)) linking optimization and simulation variables. However, once the solution of the master problem is
known, many of such constraints can be eliminated. Moreover, since the objective function of the original
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problem does not contain any subproblem variables, the subproblem is a so—called feasibility problem.
However, as the mathematical programming model of the subproblem is a representation of the simulation
trajectory, the discrete event times from simulation are feasible for constraints (11)—(15). Consequently,
only one feasibility variable, €, has to be introduced to reach feasibility for the performance constraint (16).

3.3.2 Classical Benders Cuts Generation

Knowing the optimal value of the dual variables a; s, i; s, Vijs, W}, 0, the classic Benders feasibility cut is
the following:

Nle

N

D

2 N N 2
Zgz_:‘j]? 51]€ +tlv Z

Mz

(sysm, —ms) — O(T" + )<0.  (17)

1M2

Il
_

The dual of the feasibility subproblem is a network flow problem, and its optimal solution can be derived
from the event relationship graph after the system configuration has been simulated (Chan and Schruben
2008), namely:

N 5d N a
j= lej2 Zi:lej

Y T (18)

(eo]]

From the strong duality theory, the optimal solution of the subproblem and the dual subproblem should be
equal, i.e.,

N N N d N _a
_ et L€ X N
Zvjshs (T + =5 == T T T (19)

”MZ

N 2
Z e?d, 1 Z

Hence, given (18) and (19), the feasibility cut (17) can be rewritten as:

)

N 2 N
Z 1]5 +ZZ”15D msysmc_ms>+é§0- (20)

s=1i=1

HMz

3.3.3Improved Benders Cuts

Even though the original problem can be decomposed following the classic BD procedure, as mentioned
in section 3.3.1, the master problem is not trivial to solve. The two obstacles are: 1) constraints (9) are
not linear; 2) the feasibility cuts have very low efficiency because of M and D from big—M constraints. To
overcome such difficulties, we propose a solvable approximate master problem, where (21) is approximated
from (20).

Approximate master problem
min{c;m; +comy }

s.t.
2),3)

—my)+& <0 ey

l 5 l s sys.ﬁlé

Lis

ll"lz

At each iteration [, the approximate master problem is considered to (a) fix the values of Jjj; to 5,63; (b)

identify a relatively small value for D, called df,s in the following. In both (a) and (b), the information
from simulation trajectory is used. '
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(a) Fixing Ojjs

In the original formulation, the values of §;j; vary with the different system configurations (my,m;), and
are consistent with the simulation trajectory. To keep the consistency with the simulation trajectory, &;;; are
updated and fixed after simulating the system configured by the master problem solution at each iteration,
and these values are used for the approximate master problem at the next iteration. If variables &;j; are

fixed to the values SZ-IJS, constraints (9) can be removed, and Y2 | YN 1ZN |V M (SZZJS —1) is removed

from the cut because ¥, (5’ —1) =0. Since §;j; are fixed at each iteration, they are no more master
problem variables. leferently from the decomposition in section 3.3.1, the optimization variables are in
the approximate master problem, the continuous simulation variables in the subproblem for cut generation,
and the discrete simulation variables are in neither problems.

(b) Identifying small values d; s for the big—M constraints
In the original formulation, D is used to inactivate constraints (5) with m; > r+1, i.e.,

d §

2 Vi, Ymg > r+1.
mg—r
P el e s .
When mg = r, constraints (5) are active, and ej l g s° Thus, H:n s > ’”’13_ =2 and the maximal
inter—departure time can be a large enough Value for D to inactivate the constraints.
In the approximate formulation, we can give different values to D for different customers i at different

stages s, i.e., d; ; instead of a single value of D, and a possible value of d; ; is

1 —dl —dl 1
d - mln{ i—ml+1,s ei—rhﬁ.7s7 A}’

is the inter—departure time in simulation, and % is equal to the average

=dl
i— m’+ls i—ml,s

inter—arrival time in long term, which is equal to the average inter—departure time in a stable system. This
setting assures the efficiency of the cut, but it also introduces an approximation.

where the quantity &¢ — &

Fixing §;j; and identifying the df.s values lead to an approximate master problem and to approximate
cuts. However: (a) it is essential to construct a solvable master problem. Moreover, this technique can be
used in other systems, whose simulation components contain binary variables. This is one of the original
contributions of this work, because optimization problems of such kind of systems have not been addressed
in the literature. Instead, (b) the approximation of the d; is optional. To make an informed choice, it
should be noticed that there is a trade-off: small values of d;, increase the efficiency, but increase the
risk of cutting the optimum from feasible region as well. On the contrary, if d; is set to be large, higher
computational burden will be required but quality of the solution will be improved.

Although both (a) and (b) introduce approximation, the numerical results show that the optimal solution
can be found in most of the cases, and, when a difference between the found solution and the optimum
exists, it is quite small, as discussed in section 4.

3.4 Solution Approach

The complete solution approach for the two—stage SAP is shown in Figure 2. At the beginning, an initial
value for the server number at both stages is given. These initial values are the lower bounds and may
correspond to an infeasible system.

Once the number of servers has been fixed, the system is simulated to get the value of the subproblem
variables and derive the feasibility cut as described in the previous sections. The cut is then added to the
master problem that is solved to find the new best configuration (given the added cuts).

At each iteration, the master problem, solved using mathematical programming, updates the lower
bound of the solution. The new configuration is simulated to find the values of the subproblem variables
and so on until the target performance is achieved.
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‘ Initialization: m; = mg, my; = myq ‘

I Simulate the system (mq, m5) ‘

Target achieved?

Fix the value of §;;5
Solve the feasibility subproblem
Derive the cut (22)

# Solve the approximate master problem, and update the server numbers (my, m;) |

Figure 2: Solution approach.

4 EMPIRICAL ANALYSIS

In this section, the proposed solution approach is applied to randomly generated instances to evaluate its
performance in terms of: solution effectiveness, cut efficiency and cut convergence. The inter—arrival time
follows an exponential distribution, with rate A equal to 1 time unit. The unit cost ¢; and ¢, are assumed
equal to 1 (which means to minimize the total number of servers in the system). The upper bound of the
server number Uy, is equal to 70. The values of the other parameters have been changed depending on the
aim of the specific experiments (i.e., effectiveness, efficiency and convergence).

4.1 Solution Effectiveness

To test the solution effectiveness, the experiment has been conducted using different values for the buffer
space B, the target system time 7, and the ratio between the mean service time and the mean inter—arrival
time at each stage s, o, and the distributions of the service time at both stages (exponential and beta(2,2)
scaled on (0,2a)). The values for each of these parameters are reported in the left part of Table 1. For
each parameter combination, 100 different replications are solved by generating 100 different sample paths,
each with N = 200000 and N = 20000. As stated in section 3.2, the number of binary variables will be
over 2N?, i.e., 4 x 10'% and 4 x 103, respectively. The initial values of m; and m, have been chosen as the
minimum number of servers in a stable system.

The results, reported in the right part of Table 1, are the percentage of cases (F,,,) in which the solution
found is equal to the optimal solution (found by enumeration using the same sample path described below),
the maximum gap between the solution and the optimum, the average number of iterations (/) to find
the solution, the average number of iterations (/) to reach the optimum from the lower bound using
enumeration. The high values of F,,; and the maximum gap of 1 show the effectiveness of the proposed
approach. Moreover, it can be notice that the efficiency of the approach is higher than using the enumeration
approach, with 80.4% fewer iterations on average.

As discussed in section 3.3.3, the efficiency and the effectiveness of the solution are affected by the
value of D. For the system with 7% = 61, B =30, (a;,0,) = (10,50), and exponential distributed service
times, the value of D is varied from 0.2 to 10, and the impact on the iteration number and P,,, is shown
in Figure 3. As the value of D increases, the effectiveness is improved, but the efficiency becomes lower.
After 20.75 iterations, on average, the optimal solution can be found in 100% of the cases, with D > 4.
The efficiency is much higher than for the enumeration, which reaches the optimum after 86.64 iterations,
as shown in Table 1.
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Table 1: Parameter values (on the left) and solution effectiveness (N=200000 and 20000) (on the right).

Parameters N=200000 N=20000

T* oy, distribution || P,,;, max gap 1 Lenum P, max gap 1 Lenum

61 30,30 exp, exp 0.91 1 20.49 104.74 || 0.83 1 1835 110.1
61 30,30 exp, beta 0.9 1 1896 92.82 | 0.83 1 17.02  97.27
61 30,30 beta,exp | 0.94 1 18.11 88.99 | 0.88 1 1632 89.33

61 30,30 beta, beta | 0.87 1 14.65 75.13 || 0.88 1 13.44  72.67
61 30,30 exp, exp 0.78 1 16.01 105.6 || 0.81 1 14.66 109.54
65 30,30 exp, exp 0.89 1 12.35 3272 | 0.95 1 1041  32.28
70 30,30 exp, exp 0.97 1 8.87 1698 || 0.96 1 6.82 17.01

61 10,50 exp, exp 0.9 1 16.58 86.64 || 0.81 1 1438 88.17
61 10,50 exp,beta | 0.98 1 15.03 7346 | 091 1 13.08 71.49
61 10,50  beta,exp | 0.92 1 14.62 7724 || 0.86 1 13.19 82.14
61 10,50 beta, beta | 0.87 1 11.78 6491 | 0.95 1 11.14 64.35

61 10,50 exp, exp 0.78 1 12.8  87.13 || 0.86 1 11.65 87.37
65 10,50 exp, exp 0.92 1 10.08 2527 || 0.97 1 8.09 23.63

70 10,50 exp, exp 0.96 1 7.74  11.95 || 0.94 1 5.68 11.30
61 50,10 exp, exp 0.85 1 16.69  88.7 0.94 1 14.61 87.03

61 50,10  exp,beta | 0.88 1 1492 80.17 | 0.93 1 1271 77.07
61 50,10 beta,exp | 0.92 1 14.67 71.06 | 0.87 1 13 71.24
61 50,10 beta, beta 0.9 1 11.97 65.51 0.9 1 11.13  63.61

61 50,10 exp, exp 0.83 1 13.23  88.56 || 0.88 1 11.59 87.26
65 50,10 exp, exp 0.96 1 1035 25.62 | 0.92 1 8.13 2374
70 50,10 exp, exp 0.98 1 803 1275 | 0.95 1 5.61 11.56

vuBuumuumuuBuuwnunnnEnnn n

4.2 Cuts Efficiency and Convergence

The cut efficiency can be evaluated in terms of the number of solutions cut from the feasible region with
each cut, i.e., the number of master problem solutions that violate the generated cut (21). For each specific
case reported in Table 1, this number depends on the simulated system configured with (sn21,7,). Figure
4(a) shows the numbers of solutions cut on average (over the 100 sample paths) for the problem with
B=5T*=61,0 =30, = 30, and service time following exponential distribution at each stage.

First of all, as shown in Figure 4(a), many numbers are greater than 1, i.e., the cut can remove more
than one solution from the feasible region. This shows that, by exploiting the simulation trajectory, we can
cut also systems whose performance has not been evaluated. As this behavior is independent from how
the master problem is solved, it shows that not considering simulation simply as a black box can increase
the solution efficiency.

Moreover, it can be noticed that cut efficiency is high when unbalanced systems are simulated, and the
master problem will avoid allocating more servers to the faster stage and, at the same time, fewer servers
to the slower stage. On the contrary, cut efficiency is low when it is getting closer to the feasible region.
This is reasonable, i.e., more computational budget should be allocated to the area near the feasible region.
The efficiency close to the boundary is also low, but if combinatorial cuts (Codato and Fischetti 2006)
based on the knowledge of SAP are introduced, the cut efficiency in these regions could be improved.

Finally, as the number of customers increases, the cuts seem to converge, i.e., the coefficients of
equations (21) stabilize. As shown in constraints (21), in fact, there are three parameters: Zévzl ﬁf‘ldf_l,
):ﬁvzlﬁfldf’z, and &/. The three parameters can be reduced to two by dividing all of them by &, i.e.,
er =YY, ﬁfﬂldl{l/é‘l and ey =YV, ﬁf_zdl{z/él. Figure 4(b) shows, for the problem with m; = m; = 31,
B=5,T*=61, oy = o = 30 and exponential distributed service time, how the parameters, namely e¢; and
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Figure 3: Impact of D on performance.
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(a) Average number of cut solutions per simulation (b) Cut convergence.

execution (from 100 sample paths).
Figure 4: Cut efficiency and convergence.

e», and the number of cut solutions change as N increases for a single sample path. When N is small, the
parameters show a transient pattern, and they converge as N increases. The convergence speed depends on
the simulated system, e.g., the service time and the buffer spaces. The number of cut solutions converge
to the same value at N = 50000. Thus, for an integer programming master problem, the stopping criteria
of simulation can be less strict than the cut convergence criteria. This will be a future research interest.

S CONCLUSIONS

In this paper, a novel simulation-based cutting approach is investigated that increases the efficiency of the
DEO framework with respect to the previous approaches embedding Benders Decomposition.

The novelty of the approach lies in the use of simulation to generate and improve cuts. In fact, similar
to BD traditional approaches, we separate the problem into a master and a subproblem. This is quite
natural using DEO formulation, as it includes an optimization and a simulation component. However,
instead of solving, at each iteration, the so-called subproblem using standard optimization techniques,
whose complexity depends on the type of decision variables (integer or continuous), we simulate the
system configuration (defined by the master problem) and extract from it the values of the subproblem
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variables needed to define the cuts. Moreover, simulation is also used to fix integer / binary variables that
would make the master problem non-linear, thus reducing the complexity of its solution too.

The procedure has been tested on the two-stage Server Allocation Problem (SAP) and it showed to
be performing satisfactorily in terms of solution quality, empirical cut convergence, and cut efficiency.
Specifically, 1) the achieved solution has been proved to be the optimum in most of the cases, and near
optimal in the remaining ones; 2) as the sample path increases, the coefficients of the cut equation converge
to stable values in the executed experiment; 3) cuts are able to considerably reduced the number of solutions
to evaluate.

Nevertheless, solving problems of increased complexity is necessary in order to establish stronger
empirical results meanwhile developing the general theory behind the approach. The multi-stage SAP
will be addressed in future work to investigate the combinatorial cuts, the cut efficiency, convergence and
solution effectiveness of complex problems. In fact, DEO models share the common characteristics to have
well structured event relationship graphs, which resemble network flow problems. As a consequence, we
believe the proposed approach can be extended to more general cases. As the convergence of DEO models
has been proved in Pedrielli et al. (2018), future research will also investigate cut convergence, with the
specific objective to (1) efficiently allocate the computational effort across iterations, (2) embed generated
cuts into general partitioning algorithms.
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