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ABSTRACT

It is known that incorporating gradient information can significantly enhance the prediction accuracy of
stochastic kriging. However, such an enhancement cannot be scaled trivially to high-dimensional design
space, since one needs to invert a large covariance matrix that captures the spatial correlations between
the responses and the gradient estimates at the design points. Not only is the inversion computationally
inefficient, but also numerically unstable since the covariance matrix is often ill-conditioned. We address
the scalability issue via a novel approach without resorting to matrix approximations. By virtue of the
so-called Markovian covariance functions, the associated covariance matrix can be invertible analytically,
thereby improving both the efficiency and stability dramatically. Numerical experiments demonstrate that
the proposed approach can handle large-scale problems where prior methods fail completely.

1 INTRODUCTION

Stochastic kriging (SK) was proposed in Ankenman et al. (2010) and has recently become a popular
metamodeling technique for constructing response surfaces of complex stochastic simulation models in a
variety of disciplines including queueing simulation (Shen et al. 2018), financial risk management (Chen
and Kim 2016), insurance product pricing (Risk and Ludkovski 2016), etc. The SK metamodel postulates
an extrinsic spatial correlation structure on the response surface and utilizes it to predict the unknown
responses based on the simulated ones at carefully chosen design points. This metamodeling technique has
been used to quantify the impact of input uncertainty on output analysis of simulation models; see Barton
et al. (2014) and Xie et al. (2014). It has also been used to facilitate the exploration-exploitation trade-off
during the process of searching for the optimal solution of simulation optimization problems; see Quan
et al. (2013) and Sun et al. (2014). We refer to Kleijnen (2015) for a recent overview.

For a variety of simulation models, the gradient estimator can be derived analytically using, among
others, infinitesimal perturbation analysis (IPA) or the likelihood ratio (LR) method; see L’Ecuyer (1990).
In such situations, the additional cost required to compute the gradient estimator at a design point is usually
marginal once the simulation model is already executed at the same location. It is therefore generally
perceived as an effective technique to leverage the gradient estimator to enhance SK without inducing
significant computational overhead. Indeed, it is shown in Chen et al. (2013) and Qu and Fu (2014), despite
different ways of using the gradient information, that doing so increases the prediction accuracy of the SK
metamodel considerably.

However, the SK metamodel does not scale up easily. It often suffers from numerical difficulties
associated with inversion of covariance matrices. On one hand, matrix inversion generally takes O(n3)
operations, which is computationally prohibitive for large n, where n is the number of design points. On
the other hand, the covariance matrix involved in the SK metamodel tends to be ill-conditioned (i.e., nearly
singular) for large n, making the computation of the inverse numerically unstable. The scalability issue
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essentially precludes the use of SK for high-dimensional response surfaces, because, due to the curse of
dimensionality, n needs to grow exponentially fast in d to cover a sufficient proportion of a d-dimensional
design space. Such an issue is further magnified when the gradient information is integrated, since the size
of the covariance matrix would be scaled by a factor of 2 to (d +1), depending on the number of partial
derivatives included.

The recent work Ding and Zhang (2018) addresses the scalability issue by constructing a new class of
covariance functions which result in analytically invertible covariance matrices. Specifically, they show
that if the design points form a regular lattice (not necessarily equally spaced), then the inverse of the
corresponding covariance matrix is a sparse matrix and each of the nonzero entries have closed-form
expressions. The analytical invertibility both reduces the computational cost and improves the numerical
stability substantially for using the SK metamodel.

In this paper, we extend their methodology to the setting where gradient estimators are available,
thereby making the gradient-enhanced SK metamodel scalable. We show that with our approach, the idea of
integrating gradient information with SK can now be applied to simulation models with a high-dimensional
design space for which the prior approaches may end up with complete numerical failure.

The remaining of the paper is organized as follows. In Section 2, we introduce the scalability issue in
the SK metamodel. In Section 3, we review the so-called Markovian covariance functions (MCFs) and
their properties. In Section 4, using MCFs we develop a simple, scalable approach to integrating gradient
estimators in the SK metamodel for enhancement. We present numerical experiments in Section 5 and
conclude in Section 6.

2 PROBLEM FORMULATION

We briefly review both the SK metamodel and prior methods for enhancing SK with gradient information,
and highlight the scalability issue during the process.

2.1 Stochastic Kriging

Let Z(xxx) denote the response surface of interest, where xxx = (x1, . . . ,xd) is the design variable. Given an
experimental design {(xxxi,mi) : i = 1, . . . ,n}, the simulation model is executed at design point xxxi for mi times
independently and yields the simulation outputs {z j(xxxi) : j = 1, . . . ,mi}. The SK metamodel is concerned
with predicting the responses at an arbitrary location by interpolating the simulation outputs properly.
Specifically, it assumes that Z(xxx) is a realization of a Gaussian process, which effectively introduces spatial
correlations between the responses. That is,

Z(xxx) = β +M(xxx), (1)

where β is a unknown parameter and M is a mean zero Gaussian process with covariance function
k(xxx,yyy) := Cov(M(xxx),M(yyy)). For instance, a common choice is the squared exponential covariance function
of the form k(xxx,yyy) = τ2 exp[−∑

d
r=1 ρr(xr− yr)2], where (τ2,ρ1, . . . ,ρd) are unknown parameters. Then,

the simulation outputs can be expressed as

z j(xxxi) = Z(xxxi)+ ε j(xxxi), j = 1, . . . ,mi, i = 1, . . . ,n, (2)

where the ε j(xxxi)’s are independent simulation errors having a normal distribution with mean zero. Let
z̄(xxxi) := m−1

i ∑
mi
j=1 z j(xxxi). The SK metamodel makes predictions by interpolating z̄zz := (z̄(xxx1), . . . , z̄(xxxn)).

Let ΣΣΣM denote the n×n covariance matrix of (M(xxx1), . . . ,M(xxxn)), and ΣΣΣε denote that of (ε̄(xxx1), . . . , ε̄(xxxn)).
Notice that ΣΣΣε is a diagonal matrix due to the independence assumption. Then, for any xxx0 ∈ Rd , the SK
predictor is

Ẑ(xxx0) = β + kkkᵀ(xxx0, ·)[ΣΣΣM+ΣΣΣε ]
−1(z̄zz−β111n), (3)

where kkk(xxx0, ·) := (k(xxx0,xxx1), . . . ,k(xxx0,xxxn))
ᵀ and 111n is the n×1 vector of ones.
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In practice, β and the parameters for defining the function k(xxx,yyy), say θθθ , are unknown. A typical
treatment is the maximum-likelihood estimation (MLE), which maximizes the following log-likelihood
function over the parameter space,

`(β ,θθθ) :=−n
2

log(2π)− 1
2

log[det(ΣΣΣM+ΣΣΣε)]−
1
2
(z̄zz−β111n)

ᵀ[ΣΣΣM+ΣΣΣε ]
−1(z̄zz−β111n), (4)

where det(·) means the determinant; see Ankenman et al. (2010). The estimates are then plugged into (3).
The bottleneck for computing (3) and (4) is the inversion of [ΣΣΣM+ΣΣΣε ], whose time complexity is O(n3)

and becomes prohibitive for large n. The poor scalability is also attributed to the fact that for large n,
ΣΣΣM usually becomes ill-conditioned (i.e., nearly singular) while searching over the parameter space for
maximizing (4), especially if the squared exponential covariance function is adopted; see Ababou et al.
(1994) and references therein. In the context of stochastic simulation, the diagonal entries of ΣΣΣε are typically
small because of the repeated sampling at each design point. Although the presence of ΣΣΣε reduces the
condition number of the matrix to be inverted, the reduction is thus not significant. The ill-conditionedness
of [ΣΣΣM+ΣΣΣε ] may cause failure of the MLE, resulting in unreliable estimates of the parameters and erroneous
response predictions; see also Chapter 5.4 of Fang et al. (2006). Next, we show that the scalability issue is
even more severe if gradient information is incorporated, which is supposedly to improve the prediction
accuracy of the SK metamodel in the first place.

2.2 Enhancing Stochastic Kriging with Gradients

To fix the idea, suppose that the j-th run of the simulation model at each design point xxxi produces an
gradient estimate ggg j(xxxi) = (g1

j(xxx1), . . . ,gd
j (xxxn))

ᵀ, in addition to the response estimate z j(xxxi), namely,

gr
j(xxxi) = Gr(xxxi)+δ

r
j (xxxi), r = 1, . . . ,d, (5)

where Gr(xxxi) is the true r-th partial derivative and δ r
j (xxxi) is the simulation error with mean zero. It is worth

mentioning that the simulation errors (ε j(xxxi),δ
1
j (xxxi), . . . ,δ

d
j (xxxi)) at the same design point are correlated

in general, because the gradient estimate ggg j(xxxi) can be viewed as a deterministic transformation of the
response estimate z j(xxxi) with the use of IPA or LR.

The gradient extrapolated stochastic kriging (GESK) developed in Qu and Fu (2014) leverages the
gradient information in an indirect fashion as follow. In the neighborhood of each design point xxxi, it converts
the gradient information to a “pseudo” observation of the response surface by linear extrapolation, i.e.,

z j(x̃xxi) = z j(xxxi)+gggᵀj (xxxi)∆xxxi, (6)

where x̃xxi = xxxi +∆xxxi and ∆xxxi ∈ Rd represents the direction and the step size of the extrapolation. Obviously,
‖∆xxxi‖ ought to be small to make the extrapolation accurate enough. Then, SK can be performed by
interpolating the augmented data (z̄(xxx1), . . . , z̄(xxxn), z̄(x̃xx1), . . . , z̄(x̃xxn)) as if they were the simulation outputs
from the design points (xxx1, . . . ,xxxn, x̃xx1, . . . , x̃xxn). The size of covariance matrix involved then becomes 2n×2n
due to the doubled data volume.

Furthermore, for a multidimensional design space, multiple pseudo responses can be introduced for
each design point xxxi by varying ∆xxxi in order to make the most of the gradient information. For instance,
a natural choice is to introduce one pseudo response along each axis of the d-dimensional design space,
leading to d pseudo responses at each design point and a (d +1)n× (d +1)n covariance matrix to invert.

A different approach to integrating gradient information in SK can be found in Chen et al. (2013),
where it is called stochastic kriging with gradient estimators (SKG). It leverages the gradient information
directly by modeling the gradient estimator as partial derivatives of the response surface Z(xxx). This requires
one to calculate the covariances between the response surface and the d surfaces for the partial derivatives,
so the covariance matrix to invert is of size (d +1)n× (d +1)n as well.
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Consequently, the scalability issue would become significantly more severe than it already is if one
seeks to integrate gradient estimates with SK using either of the above approaches to enhance the prediction
performance.

3 MARKOVIAN COVARIANCE FUNCTIONS

In Ding and Zhang (2018), a new class of covariance functions are constructed to permit the use of SK for
large datasets. They are called Markovian covariance functions (MCFs), because the Gaussian process
with an MCF on a regular lattice becomes a Gaussian Markov random field (Rue and Held 2005). In this
section, we briefly review the basic theory of MCFs and show why they make SK scalable. We first discuss
1-dimensional MCFs and then extend the concept to the multidimensional case.
Definition 1 Suppose that p,q : R 7→ R+ are two positive continuous functions that satisfy p(x)q(y)−
p(y)q(x)< 0 for all x < y. Then, k(x,y) = p(x)q(y)I{x≤y}+p(y)q(x)I{x>y} is called a 1-dimensional MCF.

It can be seen easily that the squared exponential covariance function that is commonly used in SK is
not an MCF. We refer to Ding and Zhang (2018) for a principled approach to constructing MCFs based on
ordinary differential equations. Two representative examples are

k(x,y;τ
2,ρ) = τ

2 [eρxe−ρy I{x≤y}+eρye−ρx I{x>y}
]
= τ

2e−ρ|x−y|, (7)

for x,y ∈ R, and

k(x,y;τ
2,ν) :=


τ2
[
sin(γx)sin(γ(1− y))I{x≤y}+sin(γy)sin(γ(1− x))I{x>y}

]
, if ν < 0,

τ2
[
x(1− y)I{x≤y}+y(1− x)I{x>y}

]
, if ν = 0,

τ2
[
sinh(γx)sinh(γ(1− y))I{x≤y}+sinh(γy)sinh(γ(1− x))I{x>y}

]
, if ν > 0,

for x,y ∈ (0,1), where γ =
√
|ν |.

MCFs have two critical features that distinguish themselves from others: (i) the associated covariance
matrix can be inverted analytically and (ii) the inverse matrix is sparse, i.e., most of its entries are zero.
Indeed, the following theorem asserts that there are at most (3n−2) nonzero entries in the inverse matrix
of size n×n.
Theorem 1 Let k(x,y) be a 1-dimensional MCF and KKK ∈Rn×n be a matrix whose (i, j)-th entry is k(xi,x j),
where x1 < · · ·< xn ∈ R with n≥ 3. Let pi = p(xi) and qi = q(xi). Then,

(i) KKK−1 is a tridiagonal matrix, i.e., (KKK−1)i, j = 0 if |i− j| ≥ 2;
(ii) the nonzero entries of KKK−1 are given as follows

(KKK−1)i,i =



p2

p1(p2q1− p1q2)
, if i = 1,

pi+1qi−1− pi−1qi+1

(piqi−1− pi−1qi)(pi+1qi− piqi+1)
, if 2≤ i≤ n−1,

qn−1

qn(pnqn−1− pn−1qn)
, if i = n,

and
(KKK−1)i−1,i = (KKK−1)i,i−1 =

−1
piqi−1− pi−1qi

, i = 2, . . . ,n.

Proof. See Theorems 1 – 3 of Ding and Zhang (2018).

It turns out that the two features, that is, the analytical invertibility of the covariance matrix and the
sparsity in the inverse, improve substantially the computational efficiency and the numerical stability of the
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computation of [ΣΣΣM+ΣΣΣε ]
−1 in (3) and (4). To see this, we apply the Woodbury matrix identity (Horn and

Johnson 2012, §0.7.4),
[ΣΣΣM+ΣΣΣε ]

−1 =ΣΣΣ
−1
M −ΣΣΣ

−1
M [ΣΣΣ−1

M +ΣΣΣ
−1
ε ]−1

ΣΣΣ
−1
M . (8)

By virtue of Theorem (1), if the design space is 1-dimensional and the covariance function of the Gaussian
process M(x) in (1) is an MCF, then ΣΣΣ

−1
M has (3n−2) nonzero entries whose expressions are available in

closed form, and thus it takes O(n) operations to compute ΣΣΣ
−1
M . Moreover, since ΣΣΣε is diagonal, [ΣΣΣ−1

M +ΣΣΣ−1
ε ]

is sparse as well, so it can be inverted with O(n2) operations by leveraging sparse linear algebra. The
matrix multiplication in (8) can be computed with O(n2) operations because ΣΣΣ

−1
M is sparse. Therefore, the

overall time complexity for computing [ΣΣΣM+ΣΣΣε ]
−1 using (8) is O(n2).

In addition to the reduction in time complexity, the use of MCFs also improves the numerical stability.
To see this, notice that when computing the right-hand-side of (8), numerical procedures for matrix inversion
such as Gaussian elimination are only needed for computing [ΣΣΣ−1

M +ΣΣΣ−1
ε ]−1, since ΣΣΣ

−1
M is analytically

available. In general, we anticipate the diagonal entries of ΣΣΣε to be small, or at least can be made so by
increasing the number of replications. Then, the diagonal entries of ΣΣΣ−1

ε ought to be sufficiently large in
practice. Hence, [ΣΣΣ−1

M +ΣΣΣ−1
ε ] is expected to be far away from singularity and can be inverted in a numerically

stable manner.
Definition 2 Let kr(·, ·) be a 1-dimensional MCF for each r = 1, . . . ,d. Then, k(xxx,yyy) = ∏

d
r=1 kr(xr,yr), for

xxx,yyy ∈ Rd is called a d-dimensional MCF.
The product form of the d-dimensional MCFs implies that the covariance matrix ΣΣΣM can be written in

the form of the Kronecker product, provided that the design points form a regular lattice.
Proposition 2 Suppose that the design points can be expressed as a Cartesian product, i.e., there exist
positive integers n1, . . . ,nd and xr

1, · · · ,xr
nr ∈ R, r = 1, . . . ,d such that n = ∏

d
r=1 nr and

X := {xxx1, . . . ,xxxn}=
d

×
r=1
{xr

1, . . . ,x
r
nr}. (9)

Let k and kr, r = 1, . . . ,d, be a d-dimensional MCF and its associated 1-dimensional MCFs, respectively.
Let KKK denote the covariance matrix associated with k and X, and KKKk denote that associated with kr and
{xr

1, . . . ,x
r
nr}, r = 1, . . . ,d. Then, KKK =

⊗d
r=1 KKKr and KKK−1 =

⊗d
r=1 (KKK

r)−1.

Proof. It is straightforward by the definition and properties of the Kronecker product of matrices; see,
e.g., Chapter 13 of Laub (2005).

Hence, KKK−1 is sparse if the d-dimensional design points form a regular lattice, thanks to the tridiagonal
structure of each (KKKr)−1 by Theorem 1. Then, the Woodbury matrix identity (8) can be applied readily to
reduce computational cost of multi-dimensional SK metamodels.

4 SCALABLE GESK

Recall that by transforming gradient estimates to pseudo observations of the response surface via linear
extrapolation, GESK essentially provides the SK metamodel with an augmented set of design points and
observed responses. Following Proposition 2, the computational tractability of MCFs can be adopted in
GESK naturally, if the augmented set of design points form a regular lattice. In the following, we show
that this can be done easily provided that the original design points form a regular lattice.

Let ααα = (α1, . . . ,αd)ᵀ be a vector with αr = 0,1, r = 1, . . . ,d. Then, ααα has 2d possible values and they
form a d-dimensional unit hypercube. For each design point xxxi, i = 1, . . . ,n, we consider a design point in
its neighborhood as follows,

x̃xxααα
i := xxxi +ηααα, (10)
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for some small η > 0. Following the linear extrapolation (6), we construct the pseudo observations at x̃xxααα
i ,

z j(x̃xxααα
i ) = z j(xxxi)+ηgggᵀj (xxxi)ααα, j = 1, . . . ,mi. (11)

Clearly, x̃xxααα
i = xxxi if ααα = 000 and {x̃xxααα

i : αr = 0,1, r = 1, . . . ,d} form a d-dimensional hypercube with xxxi
being one of the corners. Consequently, if the original set of design points X form a regular lattice (9), then
the augmented set of the design points X̃ := {x̃xxααα

i : αr = 0,1, r = 1, . . . ,d, i = 1, . . . ,n} also form a regular
lattice, i.e.,

X̃=
d

×
r=1
{xr

1, . . . ,x
r
nr ,xr

1 +η , . . . ,xr
nr +η}.

We then use the augmented data {z̄(x̃xxααα
i ) : x̃xxααα

i ∈ X̃} to construct the SK metamodel with an MCF, where

z̄(x̃xxααα
i ) =

1
mi

mi

∑
j=1

z j(x̃xxααα
i ).

It is easy to see that X̃ has 2dn design points. However, we stress here that the computation of ΣΣΣ
−1
M is

not done via a generic numerical inversion subroutine applied directly to ΣΣΣM, a 2dn×2dn matrix, which
would be computationally prohibitive. Instead, Proposition 2 suggests that by leveraging the lattice structure
of X̃ and the Kronecker product, its computation is reduced to the multiplication of d matrices, each of
which has a much smaller size (i.e., 2nr×2nr for r = 1, . . . ,d), and can be inverted analytically with the
use of MCFs (Theorem 1). Therefore, the seemingly excessive volume of X̃ does not incur prohibitive
computational cost.
Remark 1 It may happen in practice that for some r, a computationally efficient estimator does not exist
for the partial derivative Gr(xxx) and we need to exclude it from GESK. Our methodology remains valid –
one can simply set αr = 0 in (10) and (11) for such r. Notice that the volume of the augmented data is
reduced by a factor of 2 for each partial derivative excluded from GESK.

The choice of the step size η is crucial to the performance of GESK. Treating η as an additional
parameter besides the unknown parameters for defining the MCF, we adopt the penalized maximum likelihood
estimation (PMLE) approach proposed in Qu and Fu (2014) to determine their values. Specifically, we
maximize the following penalized log-likelihood function

`λ (β ,θθθ ,η) := `(β ,θθθ)−λη
−2,

where `(β ,θθθ) is the log-likelihood function (4) and λ is a regularization parameter which can be selected
via a standard cross validation (CV) approach; see Qu and Fu (2014) for more details.

5 NUMERICAL EXPERIMENTS

We present two examples to demonstrate the scalability of our approach to enhancing SK with gradient
information. In both examples, we use the following covariance function

k(xxx,yyy) = τ
2 exp

(
−

d

∑
r=1

ρ
r|xr− yr|

)
,

where (τ2,ρ1, . . . ,ρd) are unknown parameters. Then, this is a d-dimensional MCF by Definition 2 and (7).
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5.1 Griewank Function

Consider the Griewank function which has a relatively complex response surface,

Z(xxx) =
1
10

d

∑
r=1

(
xr

20

)2

−
d

∏
r=1

cos
(

xr
√

r

)
+1;

see Figure 1 for an illustration. Then, the r-th partial derivative is

Gr(xxx) =
xr

2000
+

1√
r

sin
(

xr
√

r

)
∏
s6=r

cos
(

xs
√

s

)
, r = 1, . . . ,d.
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Figure 1: Two-dimensional projections of the four-dimensional Griewank function by fixing x3 = x4 = 0
(Left) and fixing x1 = x2 = 0 (Right), respectively.

We take d = 4 and let the design space be [−10,10]4. We choose the design points to form a regular
lattice (9) as follows. We set n1 = · · · = nr and for each r = 1, . . . ,4, we set {xr

1, . . . ,x
r
nr} to be equally

spaced on [−10,10] with xr
1 =−10 and xr

nr = 10. Since we aim to show the scalability of our approach, we
set the number of design points to be large and particularly, consider three cases: n = 54, 84, and 104.

Suppose that at each design point xxxi and for each replication j, the error for simulating the true response
surface in (2) is ε j(xxxi)∼N (0,0.5), and the error for estimating the gradient in (5) is δ r

j (xxxi)∼N (0,1),
r = 1, . . . ,d. For simplicity, we assume that the number of replications mi = 1000, i = 1, . . . ,n, and that
these simulation errors, (ε j(xxxi),δ

1
j (xxxi), . . . ,δ

d
j (xxxi)), are mutually independent.

To measure the prediction accuracy, we compute the following empirical integrated MSE (EIMSE),

EIMSE =
1
N

N

∑
i=1

(Ẑ(xxxi)−Z(xxxi))
2, (12)

where Ẑ(xxxi) is the response predicted by either SK or GESK, and {xxxi : i = 1, . . . ,N} are chosen randomly
from the design space. We perform 100 macro-replications and in each we generate N = 1000 random
points for computing EIMSE. The 100 realizations of EIMSE for a given set of design points and a given
prediction method (SK or GESK) are illustrated via a boxplot in Figure 2.

That GESK has a higher prediction accuracy than SK has been shown in Qu and Fu (2014). But
it was done there through small-scale examples with one-dimensional response surfaces and at most 20
design points. Our experience suggests that if the covariance function is not an MCF, e.g., the widely used
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Figure 2: EIMSE for predicting the four-dimensional Griewank function.

squared exponential covariance function, then the computation of the SK metamodel would run into severe
numerical issues and mostly yield erroneous prediction results for n > 100. By contrast, thanks to MCFs,
our scalable approach can now handle large-scale problems in a numerically stable manner. Indeed, the
increased number of design points improves the prediction accuracy of both SK and GESK substantially.

5.2 Closed-Loop Flexible Assembly System

This example is adopted from Suri and Leung (1987) and Chen et al. (2013). We consider a closed-loop
flexible assembly system (CLFAS) consisting of four workstations that are linked by a conveyor; see Figure
3.

Station 4

St
at

io
n 

1

Station 2

St
at

io
n 

3

Pallet

Figure 3: Schematic diagram of CLFAS.

There are four pallets carrying parts on the conveyor. A part enters the CLFAS through station 1, goes
through station 2, 3, and 4 on a pallet, and leaves the system through station 1. The primary source of
randomness stems from machine jams: a part may cause a station to jam and when it happens at station r,
it takes a random amount of time Rr to clear the machine there. Let T r denote the operation time of a part
at station r, r = 1, . . . ,4. Then,

T r = xr + I{jam at station r}Rr,
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where xr is the deterministic machine cycle time and I{·} is the indicator function. We assume that each
station jams with probability 0.5% and let R1, . . . ,R4 be independent random variables uniformly distributed
on [0.05,0.55]. We also assume that the times between stations are negligible.

Suppose that each station allows only one part to queue in front of it. Hence, a station may be blocked and
cannot release a finished part if the downstream station is full. The response surface of interest is the expected
throughput Z(xxx) of the first P = 1000 parts finished by the system, where xxx = (x1, . . . ,x4) ∈ [0.02,0.1]4;
see Figure 4 for an illustration based on extensive simulation.
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Figure 4: The expected throughput of the CLFAS as a function of x1 and x2 by fixing x3 = x4 = 0.02.

The algorithm for estimating both Z(xxx) and its partial derivatives Gr(xxx), r = 1, . . . ,4, is given in
Appendix. The setup of the numerical experiment is similar to that in §5.1. The design points are chosen to
form an equally spaced regular lattice with n = 34 or 54. At each design point xxxi, we run 100 replications.
The variance of ε j(xxxi), the variance of δ r

j (xxxi), r = 1, . . . ,4, and their covariances are estimated from the
samples; see Qu and Fu (2014) for details. We perform 100 macro-replications and in each we compute the
EIMSE (12) based on N = 1000 random points in the design space. Because the true response is unknown,
we use instead the estimated value from 1000 replications, for which the estimation error is negligible. The
results are shown in Figure 5.

In Chen et al. (2013), the CLFAS example is used to demonstrate the benefit of incorporating gradient
information with the SK metamodel, albeit in a different way than GESK. But similar to Qu and Fu (2014),
their use of gradient information is also at a small scale, with only 25 design points. We instead show
that the large-scale use of the SK metamodel integrated with gradient estimators is made feasible by our
approach and it can improve prediction accuracy significantly.

6 CONCLUSIONS

Two distinct methods for enhancing SK with gradients have been developed in simulation literature, namely,
SKG and GESK. Both suffer from the poor scalability when applied to large datasets. Taking advantage of
MCFs, we have proposed in this paper a simple approach that significantly improves the scalability of
GESK so that it can be used for simulation models with a high-dimensional design space.

However, the linear extrapolation in GESK introduces an approximation error that is hard to characterize
in the prediction. The choice of the step size is critical to the performance of GESK and needs to be chosen
carefully by virtue of cross validation, which can be computationally expensive. Moreover, to accommodate
the lattice structure in the design points required by MCFs, the number of pseudo observations at each
original design point is (2d−1). In the light of the d partial derivatives, this conceivably introduces a great
deal of redundancy in the use of the gradient information.
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Figure 5: EIMSE for predicting the expected throughput of the CLFAS.

SKG, on the other hand, uses the gradient estimators directly and does not incur the computational
overhead as GESK does. It is therefore of great interest to apply MCFs to improve the scalability of SKG
as well. Nevertheless, SKG requires one to characterize the correlation structure of the gradient surface.
It is still an open question whether MCFs would make the joint covariance matrix between the response
surface and the gradient surface analytically invertible and imply certain sparsity in the inverse matrix. We
leave it to future research.
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A ALGORITHM FOR CLFAS

For ease of reference, we restate below the algorithm in Chen et al. (2013) for estimating both Z(xxx) and its
IPA gradient estimator Gr(xxx), r = 1, . . . ,4.

Step 1. Initialize variables As,r← 0 for s,r = 1, . . . ,4.
Step 2. At the end of an operation at station s with operation time T s, set As,s← As,s +1.
Step 3. If a pallet leaving station s going to station t terminates an idle period of station t, then set

At,r← As,r, r = 1, . . . ,4.

Step 4. If a pallet leaving station s going to station t terminates a blocked period of station s, then set

As,r← At,r, r = 1, . . . ,4.

Step 5. Let L denote the total length of simulation in time units after P parts are completed by the
CLFAS. Estimate the throughput and its gradient by

z(xxx) =
P
L

and gr(xxx) =−z(xxx)
L

A4,r, r = 1, . . . ,4.
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