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ABSTRACT

When we have sufficient computational resources to treat a simulation optimization problem as a ranking
& selection (R&S) problem, then it can be “solved.” R&S is exhaustive search—all feasible solutions are
simulated—with meaningful statistical error control. High-performance parallel computing promises to
extend the R&S limit to even larger problems, but parallelizing R&S procedures in a way that maintains
statistical validity while achieving substantial speed-up is difficult. In this paper we introduce an entirely
new framework for R&S called Parallel Adaptive Survivor Selection (PASS) that is specifically engineered
to exploit parallel computing environments for solving simulation optimization problems with a very large
number of feasible solutions.

1 INTRODUCTION

In operations research, stochastic simulation is used to answer three basic types of questions about
systems: feasibility (whether a system works), sensitivity (whether a system is robust to uncontrollable and
unpredictable factors), and optimization (which systems lead to good performance). This paper addresses
simulation optimization (SO), which is broadly concerned with eliminating “bad” systems and identifying
“good” ones. SO problems fall under the broader category of stochastic optimization problems, which are
difficult to solve even in the more structured contexts considered by mathematical programming. In SO,
less is known or assumed about the objective function, which usually takes the form of an expected value
that can only be estimated with statistical error by running simulation experiments at different feasible
solutions; we refer to the feasible solutions as systems.

When the number of systems is finite and “small,” simulating each system is a manageable and effective
approach to solving SO problems. This approach recasts SO as a statistical problem of controlling error
across multiple systems’ performance estimates. Methods for controlling this error are called Ranking
and Selection (R&S); see Kim and Nelson (2006) for a survey. One advantage of using R&S is that
it eliminates “bad” systems and identifies “good” systems globally, without requiring knowledge of an
underlying structure in the feasible space. R&S methods are also easy to use and usually provide a
probabilistic optimality or efficiency guarantee. Thus, even for problems with underlying and exploitable
spatial structure, R&S remains a go-to method whenever it is computationally feasible.

The number of systems considered “computationally feasible” in an R&S problem has increased over
time, rising to 10,000 or more with recent advances in R&S methodology and the advent of parallel
computing technology. In particular, obtaining the required simulation replications in parallel can achieve
significant gains in computational efficiency, and can make simulation optimization problems over extremely
large numbers of systems tractable. Despite the conceptual simplicity of obtaining simulation replications
in parallel, designing R&S procedures for large numbers of systems that fully utilize a parallel computing
platform is a nontrivial task; see Hunter and Nelson (2017) for a survey of parallel R&S. In essence,
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comparisons between systems are fundamental to finding the “best” system, and obtaining valid system
comparisons on a parallel computing platform introduces a tension between simulation and logistical
efficiency; we use the term “logistical efficiency” to refer to effective coordination of computing resources.
From a simulation point of view, frequently comparing system performances often reduces the total number
of simulation replications required to determine the best system, which is efficient. From a logistical point
of view, frequently comparing system performances often requires information synchronization across
parallel processors, which is inefficient. Balancing simulation and logistical efficiencies is a crucial aspect
of solving ever-larger R&S problems.

To explore these key parallel R&S issues in more detail, consider a general “master-worker” parallel
computing framework, in which there are p+1 parallel processors. The p “worker” processors complete
“jobs” assigned and coordinated by one “master” processor. As in the framework by Hunter and Nelson
(2017), jobs consists of tasks such as obtaining simulation replications from one or more systems, computing
summary statistics, and performing calculations that compare systems. Calculations that compare systems
require coupled operations, which are defined by Hunter and Nelson (2017) as calculations that require the
output data from two or more systems. Fully coupled operations require the output data from all systems
still in contention, such as determining the estimated-best system among all remaining systems, and may
employ all p processors. Thus, although p jobs can be processed simultaneously, in contrast to a serial
setting, the need for coupled operations in R&S often becomes a bottleneck that prevents a parallel R&S
procedure from running p times as fast as a serial one.

While coupled operations sometimes may be performed asynchronously, maintaining the validity of
common R&S statistical guarantees often forces coupling and synchronization to go together, which implies
the bottleneck. For example, updating key statistics on the master processor “on the fly” as simulation
replications are completed may introduce statistical issues such as bias (see, e.g., Ni et al. 2013). Frequentist
procedures usually provide a guaranteed probability of selecting a system that is the best or is within a
predefined optimality gap from the best. These guarantees are called probability of correct selection
(PCS) or probability of good selection (PGS) guarantees. Bayesian procedures usually either maximize the
posterior PCS, or minimize some expected loss between the selected system and the best possible system.
In all cases, because “best” is a relative measure, coupled comparisons that maintain statistical validity are
important. The easiest way to maintain statistical validity during coupled operations is to force processors
to synchronize. In a multi-processor computer architecture, coupled operations that maintain statistical
validity often force the master to wait for multiple worker processors to complete their jobs, and for worker
processors to wait for the master to receive and start new jobs.

Despite the need for synchronization, performing such coupled comparisons frequently improves
simulation efficiency. In a single-processor computer architecture, “effort” is characterized by the total
number of simulation replications needed by the R&S procedure. Employing many coupled or fully coupled
operations can help good systems eliminate inferior ones quickly and facilitate continual fine-tuning of the
allocation of simulation effort. Many popular R&S methods require pairwise comparisons after each round
of simulation replications and are highly efficient from a simulation perspective. However, in a naı̈vely
parallel implementation, the workers will idle while the master carries out O(k2) pairwise comparisons to
determine the next set of jobs; this becomes a prohibitive feat when the number of systems k is very large.
Thus, the increased simulation efficiency comes at a cost: coupling implies synchronization, synchronization
implies waiting, and waiting diminishes speed-up.

In this paper, we introduce an entirely new perspective on R&S in parallel computing environments.
We argue that “correct selection” is not always an appropriate objective, and it does not scale well as the
number of feasible solutions k becomes very, very large. We consider a different objective, the expected
false elimination rate (EFER), which we define in §3. Then, drawing inspiration from the “comparisons
with a standard” literature, we propose Parallel Adaptive Survivor Selection (PASS) as a paradigm that
adaptively “learns” a standard while controlling the EFER. Controlling the EFER and learning the standard
facilitates an approach that effectively avoids synchronized coupled operations, keeping worker processors
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almost constantly busy, and the master processor largely idle. Thus, PASS is logistically efficient without
wasting simulation replications. The PASS paradigm is unlike any other R&S approach in its objective
and how it exploits parallel computing.

The paper is organized as follows: Section 2 provides the relevant background and building blocks
of PASS. Section 3 introduces the generic PASS framework, and Section 4 specializes it to a particular
algorithm we call bi-PASS. Numerical illustrations can be found in Section 5.

2 FOUNDATION OF PASS: COMPARISONS WITH A STANDARD

The inspiration for PASS lies in the class of R&S procedures known as “comparisons with a standard.”
These procedures compare all system performances with a standard, µ?, which is either a known constant
or the unknown mean of a benchmark system that must also be simulated. These procedures are interesting
to us in the context of PASS because if µ? is a known constant, comparisons with a standard procedures
require no coupling, which makes their parallel implementation require less synchronization. In this
section, we explore background literature on comparisons with a standard procedures, which will form
the foundation of PASS. We consider two broad categories of procedures that perform comparisons with a
standard: (a) those that select a single best “system,” which is either the standard µ? or an alternate system
i ∈ {1,2, . . . ,k}, and (b) those that select a subset of systems, all of which are estimated to be better than
the standard µ?. Henceforth, we assume larger system performances are better, such that if we have k
systems, k (or a system whose mean is equal to system k’s) is the best, and the systems have true mean
values µk ≥ µk−1 ≥ ·· · ≥ µ2 ≥ µ1.

Among methods that select a single best system, Nelson and Goldsman (2001) and Kim (2005) provide
two-stage and fully sequential procedures, respectively, that guarantee a correct selection with pre-specified
probability in the presence of unknown and unequal system variances. The standard is given special status
such that it will be selected even when it is tied with the best non-standard system, and a non-standard
system will be selected only if it significantly beats the standard and all others. Both procedures employ
an indifference-zone framework, guaranteeing that for indifference-zone parameter δ > 0,

Pr{select the standard | µ? ≥ µk} ≥ 1−α,

Pr{select the system k | µk−µ
? ≥ δ ,µk−µk−1 ≥ δ} ≥ 1−α,

for a user-specified PCS of 1/(k + 1) < 1−α < 1. The procedure by Nelson and Goldsman (2001)
also provides confidence bounds on the difference between the mean of each alternative system and the
standard, or each alternative system and the best alternative system, depending on the selection decision.
Both procedures require assumptions. Specifically, Nelson and Goldsman (2001) require that the difference
between each simulation output and its true mean is independent of the true mean, which is an assumption
that normally distributed simulation output satisfies. Kim (2005) requires that the simulation output of each
system is normally distributed and uses properties of Brownian motion to construct continuation regions
that determine when the standard or an alternative system is eliminated.

Among methods that select a subset of systems, there are a variety of approaches. Of particular
interest is Singham and Szechtman (2016), who employ a hypothesis testing approach to identify the set of
“non-null” systems that are better than the standard. They assume that most of the k systems are “null” and
have true means equal to the standard µ?. The remaining systems are “non-null” and have true means of
µ?+δ , where δ > 0 is an indifference-zone parameter. Instead of guarantees on the probability of correct
selection, this framework involves guarantees on the expected false discovery rate (EFDR), which is the
probability that a system selected as non-null is actually null. The authors provide a threshold policy for
normally distributed systems that assigns each system a p-value based on the hypothesis test, and selects
systems with p-values smaller than some cut-off. This policy is based on empirical Bayes methods for
large-scale inference (Efron 2012) and a well known algorithm from Benjamini and Hochberg (1995).

Other approaches to select a subset of systems include both the large-deviations and Bayesian approaches
of Szechtman and Yücesan (2008) and Xie and Frazier (2013), respectively. Szechtman and Yücesan (2008)
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derive an asymptotically optimal sample allocation for feasibility determination. Selecting a subset of feasible
systems can be seen as an instance of selecting a subset of systems with some performance measure better
than a known standard. Xie and Frazier (2013) assume that the standard is a known constant and provide
a Bayes-optimal fully sequential sampling policy under a limited ability to simulate, which is modeled
through sampling costs or random stopping times. Their procedure uses dynamic programming to find
a sample policy that maximizes the value of the accumulated payoff minus the accumulated sampling
costs when sampling ends. The accumulated payoff is based on how well the subset of better systems
{i : µi ≥ µ?, i = 1,2, . . . ,k} is identified.

Finally, in related literature on factor screening, Wan et al. (2010) adapt the fully sequential comparison-
with-a-standard procedure of Kim (2005) to a simulation factor screening setting in which sequential
bifurcation is used to detect “important” system factors. Factors are defined to be important if the effect that
they have on a given performance measure is greater than some standard. The sequential bifurcation method
is designed to a guarantee an EFDR, which corresponds to the expected number of factors incorrectly
flagged as important.

We emphasize here two observations from the comparisons-with-a-standard literature that are important
for PASS: (a) When simulated systems are compared with a known-value standard and and not with each
other, then the comparison problems completely decouple; and (b) when the goal is to control an error rate,
such as EFDR, then there is little or no statistical efficiency penalty per system as the number of systems
k grows. Stated differently, the error rate is controlled marginally, rather than jointly. PCS, on the other
hand, is a joint statement and the simulation effort per system increases with k, which is a serious issue
when k is very large.

3 THE PASS PARADIGM

Recall that our goal is create a new R&S paradigm that decouples the operations within R&S procedures so
that these procedures can run efficiently on a parallel computing platform and scale to very large numbers
of systems. Although the comparisons-with-a-standard literature provides naturally decoupled procedures,
there may exist no such standard, or the user may have no idea whether there are any systems better than
the standard. That is, the standard may be “soft.” Thus we propose PASS as a way to “learn the standard,”
by adaptively updating a standard to preserve some systems identified by the user as important, such as
the top-b systems. In addition to learning the standard, we also control a different form of error than the
traditional PCS or PGS. We instead control the EFER, which enables us to provide a statistical guarantee
at every simulation replication n through the procedure. In what follows, we first discuss the EFER. Then,
we describe how we learn the standard with PASS.

3.1 EFER of Good Systems

To formally define the EFER in the context of PASS, we require a few definitions. First, our building block
statistic for PASS is a centered partial sum of the outputs from system i

Si(n) =
n

∑
j=1

(Yi j−µ
?) =

n

∑
j=1

Yi j−nµ
?, (1)

where Yi1,Yi2, . . . are identically distributed (µi,σ
2
i ) for i = 1,2, . . . ,k, and as in the context of comparisons

with a standard, µ? is the standard. (We discuss the definition of µ? for PASS in more detail later, but
for now we can think of it as a known standard.) Recall that we assume a bigger mean is better, and
henceforth, we assume µk > µk−1 > · · ·> µ1. This assumption is for simplicity in stating results, and strict
inequality is not actually necessary. In addition, we will exploit an increasing function ci(n)> 0 with the
property that for a given 0 < α < 1 and any i,

Pr{Si(n)≤−ci(n), some n < ∞ | µ? ≤ µi} ≤ α, (2)
Pr{Si(n)≤−ci(n), some n < ∞ | µ? > µi} = 1. (3)

2204



Pei, Nelson, and Hunter

Properties (2)–(3) state that the probability that the partial sum Si(n) ever slips below −ci(n) is bounded
by α if system i’s mean is at least as good as the standard, and is 1 otherwise. This will be true for each
system i individually. When the output data are i.i.d. normally distributed random variables, we can obtain
ci(·) from results in Fan et al. (2016) for either variances known or unknown.

Now consider a procedure that eliminates system i if Si(n) ≤ −ci(n) for some step n < ∞, and let
G= {i : µ? ≤ µi} be the set of “good” systems, which we assume is not empty. Further, let Ên ⊂{1,2, . . . ,k}
be the set of systems that are eliminated at step n, and let Ê(∞) =∪∞

n=1Ên, the set of systems ever eliminated.
Then we define the EFER to be

EFER :=
E[|G∩ Ê(∞)|]

|G|
,

so that |G∩ Ê(∞)| is the number of good systems ever eliminated. Under our assumptions about ci(·), and
with no assumptions about whether the systems are simulated independently of each other, or how large
|G| or k is, we have that EFER≤ α . Further, notice that EFER≤ α implies EFER(n)≤ α for all n≥ 1,
where the definition of EFER(n) is identical to that of EFER except with Ê(∞) replaced by Ê(n) = ∪n

j=1Ê j.
To see this, let Ii(n) be an indicator variable that equals 1 if system i is eliminated by sample size n, and
let Ii be an indicator variable that equals 1 if system i ∈ G is ever eliminated. Then using Equation (2), for
all n≥ 1,

E[|G∩ Ê(n)|] = E[∑i∈G Ii(n)]≤ E[∑i∈G Ii] = ∑i∈G Pr{system i ever eliminated} ≤ |G|α.

In addition, all systems in i ∈ Gc are eliminated with probability 1 as n→ ∞.

3.2 Learning the Standard with PASS

Notice that evaluation of, say, systems i and ` with respect to the standard µ? using Equation (1) is
completely decoupled. In fact, if we had p≥ k worker processors so that we could run all simulations in
parallel, then all partial sum tests could be executing at the same time with no coordination. Of course, this
begs three questions: What is our SO objective? How do we set a value of µ? to achieve that objective? And
how do we stop the evaluation, since systems better than the standard are unlikely ever to be eliminated,
by design? Different versions of PASS provide different answers, as we illustrate below, and in the SO
problems of most interest to us, we expect k� p.

We begin by describing a simple Parallel Survivor Selection (PSS) algorithm that does not adapt
and that terminates when a computation budget is exhausted; that is, the standard µ? is provided as an
input and there is no termination criterion other than exhausting the “computational resources” (which we
intentionally specify vaguely). We then describe how to make PSS adaptive to different objectives. We
avoid specifying any specific parallel computing environment other than there being p parallel processors
to which we can assign “jobs” and a master processor that handles any necessary coordination. The PSS
algorithm is listed as Algorithm 1 below. Note the complete absence of coupled operations.

What can be said about the set of surviving systems Q at termination? It will contain some, if not all,
good systems i ∈ G, with EFER less than or equal to α . As the budget is finite, it may contain undesirable
systems i ∈ Gc, but if the budget increases without bound, such systems will be eliminated from Q with
probability 1. Interestingly, these properties will also hold for a moving standard µ(n), as shown in the
following Theorem 1.
Theorem 1 Let µ(n) be a real-valued function for which µ(n)≤ µ? for all n = 1,2, . . ., and µ(n)→ µ?

as n→ ∞. Under the assumption that G is nonempty, and that µ? is replaced by µ(ni) in PSS, then PSS
guarantees

1. EFER≤ α .
2. Pr{i ∈ Q | i ∈ Gc}→ 0 as budget→ ∞.
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Algorithm 1: Parallel Survivor Selection (PSS)
Input: known standard µ?, replication increment ∆≥ 1, and a computational budget

1 Initialize: set of available worker processors W←{1,2, . . . , p}, ordered list of surviving systems
Q←{1,2, . . . ,k}, ni← 0 and Si(0)← 0 for all i ∈ Q

2 repeat on master
3 while an available worker exists in W do
4 remove the next system i ∈ Q and assign to available worker w ∈W
5 on worker w
6 receive directions and statistics from master, initialize: j← 0
7 repeat
8 j← j+1
9 simulate system i to obtain Yi,ni+ j and update Si(ni + j)

10 until j = ∆ or Si(ni + j)≤−ci(ni + j)
11 communicate statistics and elimination status of system i to master

12 while message queue nonempty do
13 receive statistics and elimination status from worker w regarding system i
14 if system i is not eliminated then return it to the queue Q= Q∪{i}
15 release worker w to available workers W =W∪{w}

16 until the computational budget is consumed
17 return Q

Proof: Conclusion 1 holds because for each i

Pr
{

ni

∑
j=1

(Yi j−µ(ni))≤−ci(ni), some ni < ∞

}
≤ Pr

{
ni

∑
j=1

(Yi j−µ
?)≤−ci(ni), some ni < ∞

}
,

since µ(ni)≤ µ? for all ni. The result then follows from (2).
For Conclusion 2, let µ̃ = max{µi : i ∈ Gc}. Thus, µ̃ < µ?. Then µ(ni)→ µ? implies that there exists

ñ large enough that µ(ni) ∈ (µ̃,µ?] for all ni ≥ ñ. For any value in this interval the result holds by (3). 2

Theorem 1 suggests that—in the absence of knowledge of a desirable µ?—we could be adaptive and
somehow work our way toward a µ? that will achieve a desired objective; we call this PASS. Generically, let
the standard µ? be a function of the true means: µ? = g(µ1,µ2, . . . ,µk). There are many useful mappings,
depending on the context, including the following:

µ
? = µk (4)

µ
? = µk−b+1 (5)

µ
? = min{µ†,µk−b+1}. (6)

Objective (4) is the most like a typical R&S procedure in which only the single best is desired; (5) applies
when all of the top b systems are considered “good;” while (6) states that all systems with means as large
as some known value µ† are of interest, if there are any, and otherwise only the b best are. The challenge
is that since µ1,µ2, . . . ,µk are unknown we need to learn the value of µ? from the simulation outputs in a
way that does not destroy the desirable properties of PSS in Theorem 1. For concreteness we focus on (4)
in the remainder of the paper, and exhibit one such approach in the next section.
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4 BI-PASS ALGORITHM

We adopt the definition in (4) for the desired standard, µ?, which means we want the probability of falsely
eliminating the best system to be less than or equal to α , while ideally all of the other k−1 systems are
eliminated before exhausting the budget. The strategy of the bisection-PASS (bi-PASS) algorithm is to set
the standard at the midpoint, by value, of the surviving systems and work to eliminate those whose mean
is lower than the midpoint; this then raises the midpoint, and eliminations continue like a bisection search.
Therefore, the ideal midpoint µ̄ when Q is the set of surviving systems is

µ̄ideal =
1
|Q| ∑i∈Q

µi.

Notice that as long as Q contains system k then µ̄ideal ≤ µk; and if Q= {k} then µ? = µk.
Since the true means are not known, the bi-PASS algorithm employs

µ̂
? =

1
|Q| ∑i∈Q

Ȳi(ni),

which is the average of the sample means of the surviving systems, to mimic µ̄ideal. Updating the standard
µ̂? is a fast, simple job to be done by the master processor based on the output data reported back by the
worker processors. The bi-PASS algorithm is listed in Algorithm 2; it is similar to the PSS algorithm,
except that the standard is updated.

Algorithm 2: Bisection Parallel Adaptive Survivor Selection (bi-PASS) for µ? = µk

Input: replication increment ∆≥ 1, and a computational budget
1 Initialize: set of available worker processors W←{1,2, . . . , p}, ordered list of surviving systems

Q←{1,2, . . . ,k}, ni← 0 and S̄i(0)← 0, Si← 0 for all i ∈ Q, and µ̂?←−∞

2 repeat on master
3 while an available worker exists in W do
4 remove the next system i ∈ Q and assign to available worker w ∈W
5 on worker w
6 receive directions and statistics from master, initialize: j← 0
7 repeat
8 j← j+1
9 simulate system i to obtain Yi,ni+ j

10 update Si← Si +Yi,ni+ j

11 update S̄i(ni + j)← Si− (ni + j)µ̂?

12 until j = ∆ or S̄i(ni + j)≤−c(ni + j)
13 communicate statistics and elimination status of system i to master

14 while message queue nonempty do
15 receive statistics and elimination status from worker w regarding system i
16 if system i is not eliminated then return it to the queue Q= Q∪{i}
17 possibly update µ̂? = ∑i∈Q Ȳi(ni)/|Q|
18 release worker w to available workers W =W∪{w}

19 until the computational budget is consumed
20 return Q
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While a full mathematical analysis of bi-PASS is not yet available, we present results for a stylized
version that suggests why it works (see the empirical results in Section 5 below). The stylized version of
bi-PASS employs the following simplifying assumptions:
Assumption 1. The system output data are normally distributed with common, known variance σ2.

Assumption 1 implies that ci(·) from Fan et al. (2016) no longer depends on i, so it will be denoted
by c(·). The function c(·) does depend on the value of σ2, but does not depend on the means or on k.
Assumption 2. The standard µ̂? = µ̂?(n) is updated continually and in sync, so that the standard for
system k at replication n is

µ̂
?(n) =

1
k

k

∑
i=1

1
n

n

∑
j=1

Yi j (7)

and bi-PASS monitors S̄i(n) = ∑
n
j=1(Yi j− µ̂?(n)) = ∑

n
j=1Yi j−nµ̂?(n) for i = 1,2, . . . ,k.

Assumption 3. Eliminated systems continue to be simulated to update the standard µ̂?(n) in Equation (7).
Theorem 2 Under Assumptions 1–3, bi-PASS guarantees that Pr{S̄k(n)≤−c(n), some n < ∞} ≤ α .
Proof: By straightforward algebra

S̄k(n) =
n

∑
j=1

(Yk j− µ̂
?(n)) =

n

∑
j=1

(
Yk j−

1
k

k

∑
i=1

1
n

n

∑
`=1

Yi`

)

=
n

∑
j=1

(
k−1

k
Yk j−

1
k

k−1

∑
i=1

Yi j

)
=

n

∑
j=1

Wj,

where the Wj are i.i.d. normal with mean µk− µ̄ > 0 and variance k−1
k σ2. But

Pr

{
n

∑
j=1

Wj ≤−c(n)

}
= Pr

{√
k

k−1

n

∑
j=1

Wj ≤−
√

k
k−1

c(n)

}

≤ Pr

{√
k

k−1

n

∑
j=1

Wj ≤−c(n)

}
(8)

≤ α,

where (8) follows because
√

k
k−1 > 1. Notice that

√
k

k−1Wj are i.i.d. normal with mean
√

k
k−1(µk− µ̄)> 0

and variance σ2, so the final inequality follows by the design of c(·). 2

Remark: Analysis of the stylized model suggests that even with a statistically learned standard it is possible
to guarantee the desired EFER, in this case for the best system, system k. Since the boundary function c(·),
or more generally functions ci(·) when variances are unequal, do not depend on the number of systems,
once eliminations do occur we essentially have a R&S problems with a smaller value of k; the result above
is valid for any k ≥ 1.

Remark: The literature on multi-armed bandits, especially those that provide a probably approximately
correct (PAC) bound, is closely related to R&S. The median elimination procedure in Even-Dar et al.
(2002) bears a superficial resemblance to our bi-PASS algorithm, in that at the end of a sequential stage
all systems (arms) whose means are less than the median of the sample means are eliminated. However,
the guarantee is a good selection and not an error rate guarantee, the stages are fully coupled, and the
simulation (arm) output is Bernoulli.
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5 EMPIRICAL STUDY

In this section we summarize the results of some experiments to compare the performance of bi-PASS to
PSS. Our focus is on the loss of efficiency from having to “learn” the standard µ? = µk relative to knowing
it, which is (of course) not possible in practice but is possible in a controlled study. Stated differently,
PSS represents a bound on the efficiency attainable by a PASS algorithm, and we want to see how close
bi-PASS gets.

5.1 Description of the Experiments

Rather than implement Algorithms 1 and 2 on a parallel computing platform, we create a discrete-event
simulation that represents an environment with p+ 1 processors as a closed-loop system of two tandem
queues: a single-server queue mimicking the master, and a single-buffer-p-server queue mimicking the
workers. There are initially k “customer” entities in the worker queue that represent the k systems. Entity i
carries information corresponding to system i, including its current cumulative sum of observations ∑

ni
j=1Yi j,

number of obtained observations ni, and a local copy of the standard; the standard is µ? = µk for PSS, and
µ̂? for bi-PASS.

At any given time a worker processor is simulating at most one system. After a system is simulated by
a worker, it exits the queueing loop if it has been eliminated, or proceeds to the master queue if not. After
a system is processed by the master, it exits the loop if the updated standard eliminates it, or continues
to the worker queue if not. This pattern continues until a prespecified simulation clock time, representing
the budget, is attained. The processing time for the master is 1 time unit if it updates the standard, and 0
otherwise. The time per simulation replication on a worker is exponentially distributed with mean β > 0
time units; thus, it is defined relative to the master. We do not model message passing, data transfer or
initialization time separately.

An experiment is defined by setting the following factors: The number of systems k, along with the
configuration of the true means {µi : i = 1,2, . . . ,k}; the common known variance σ2; the number of parallel
processors p+1; the replication batch size ∆; the mean time per simulation replication β ; and the total
time budget T . In all cases the output data are normally distributed. For each experiment we run 100
macroreplications of PSS (Algorithm 1) and bi-PASS (Algorithm 2).

Since bi-PASS uses the average of the sample means of the surviving systems as the standard, we
require ∆ observations to be obtained from all systems before the standard is updated for the first time
and any eliminations can occur. After completing this “first-round” requirement the standard is computed
and all systems will have the same local copy when they return to the worker queue to be processed
for the second time. From then on the local standards may differ due to asynchronous updating. PSS,
on the other hand, uses the true mean of the true best system as the known standard. Nevertheless,
we also impose the first-round requirement to represent the need to estimate σ2 in practice. For PSS
the local copy of the standard is always µ? = µk. Since the standard is not updated by the master, the
processing time of the master is always 0 for PSS. For both bi-PASS and PSS we use the boundary function
c(t) =

√
[γ + log(t +1)](t +1)] and choose the constant γ = 10.4 based on a table from Fan et al. (2016)

to be appropriate for a known-variance case.
We compare the performance of bi-PASS and PSS by analyzing their ability to protect the true best

system, system k, and ability to eliminate the inferior systems 1,2, . . . ,k−1. We examine each method’s
empirical false elimination rate (FER) and average surviving subset size at termination time T . For a
particular macroreplication we say that a false elimination occurs if the best system is eliminated, therefore
the empirical FER is the proportion of macroreplications in which false eliminations occur.

We consider the following factor settings: k = 10,000 systems with means µi =
√

i for i = 1,2, . . . ,k,
employing p+ 1 = 101 processors with per replication mean compute time β = 50, and nominal EFER
α = 0.005. We let the time budget T be 1 million, 10 million, and 100 million time units, representing
small, medium, and large-budget cases. We let the batch size ∆ be 10 or 100 replications to examine the
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effect of many short runs vs. fewer long runs of each system on each return to the workers. We consider
output variance σ2 = 1 and σ2 = 10. We also tested two different initial orderings of the systems in the
worker queue: from best to worst (BtoW) and from worst to best (WtoB). In a real problem we expect the
order to be scrambled; however, by employing these extreme cases we can examine the effect of initial
ordering.

5.2 Experiment Results

Out of 2400 macroreplications (24 experiments × 100 macroreplications each), we observed only 1 false
elimination for PSS; and we observed no false eliminations for PASS out of 2400 macroreplications. This
result suggests that an EFER≤ 0.005 was achieved.

Table 1 displays the results for surviving subset size. When the output variance σ2 is larger, the
surviving subset sizes are also larger. This trend demonstrates that the boundary function is more cautious
about eliminating systems when there is more variability. In all configurations, the surviving subset size
for PASS was larger than PSS, in most cases roughly twice as large. This difference in subset size is the
cost of learning the standard as opposed to having perfect knowledge, as using the average of the sample
means of the surviving systems as the standard eliminates systems less aggressively compared to using the
true value of the best. A doubling of the subset size seems quite reasonable.

When the budget T is small and the batch size ∆ is large, both bi-PASS and PSS had large surviving
subsets compared to the same budget with the smaller batch size. This effect happens because the number

Table 1: Empirical performance of bi-PASS vs. PSS

bi-PASS PSS
Variance Initial Order ∆ T Subset Size Subset Size
σ2 = 1 WtoB 10 106 13.6 6.7

107 4.8 2.5
108 1.9 1.0

100 106 131.6 113.2
107 5.0 2.5
108 2.0 1.0

σ2 = 1 BtoW 10 106 13.9 6.9
107 4.6 2.5
108 2.0 1.0

100 106 5709.8 170.3
107 5.0 2.6
108 2.0 1.0

σ2 = 10 WtoB 10 106 40.8 19.3
107 13.3 6.7
108 4.7 2.4

100 106 363.2 162.2
107 13.5 6.6
108 4.7 2.5

σ2 = 10 BtoW 10 106 42.45 19.2
107 13.3 6.6
108 4.7 2.5

100 106 5770.1 268.9
107 14.0 6.8
108 4.7 2.5
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of observations will not be very evenly distributed at termination time T when T is small and the batch size
∆ is large. In this case, we expect that many inferior, but surviving systems that could have been eliminated
by just a few additional observations are still in the worker queue while waiting for large simulation batches
for other systems to complete.

The large-batch-size effect becomes even more prominent when the worker queue is preloaded with
systems from best to worst. Since superior systems have a lower probability of being eliminated, they are
more likely to survive for most or all of their ∆ replications compared to inferior systems. In this case,
bi-PASS has a dramatically larger surviving subset than PSS, because the faster that inferior systems are
eliminated, the faster that the bi-PASS standard increases. There is a compounding effect that having a
large number of inferior systems surviving prevents the standard from increasing, which causes inferior
systems to be eliminated slowly. When the budget is sufficiently large to accommodate a large batch size,
there is no longer the problem of inferior systems not getting the chance to be eliminated. These results
indicate the potential for choosing the batch size ∆ adaptively.

To further illustrate how learning the standard affects elimination of inferior systems, Figure 1 plots
the surviving subset size as a function of computation time for the case of σ2 = 1, ∆ = 10 and WtoB for
the first 2,500,000 time units of computer budget, averaged across 10 macroreplications. bi-PASS, with an
estimated standard, tracks PSS, which exploits knowing the true value of the best, quite effectively after
an initial lag.
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