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ABSTRACT

The airline industry faces many causes of disruption. To minimise financial and reputational impact,
the airline must adapt its schedules. Due to the complexity of the environment, simulation is a natural
modelling approach. However, the large solution space, time constraints and system constraints make the
search for revised schedules difficult. This paper presents a method for the aircraft recovery problem that
uses multi-fidelity modelling including a trust region simulation optimisation algorithm to mitigate the
computational costs of using high-fidelity simulations with its benefits for providing good estimates of the
true performance.

1 INTRODUCTION

Disruption to schedules is one of the major issues faced by the airline industry. Airline scheduling itself
has seen much focus at the planning stage, allowing for ever more robust and efficient use of the resources
available to airlines. A great effort in time and money is spent on producing an optimal schedule. However,
due to the complex and stochastic nature of the industry, it is rare that a flight programme is operated
as intended. Disruptive events arise due to various circumstances, from weather conditions to aircraft
technical failures requiring unplanned maintenance. The impacts of such events can propagate through the
system causing further delays and cancellations, particularly when the airline has high aircraft utilisation.
In such an eventuality, the Airline Operations Control Centre (AOCC) must alter its schedule to reduce
the repercussions for its finances, its reputation and passengers. Such alterations could include delaying or
cancelling flights or exchanging aircraft. This paper will focus on the Aircraft Recovery Problem (ARP).

The complexity of the industry can make it difficult to determine what the consequences of any schedule
alterations may be. Kohl et al. (2007) suggest that automation could play a large part in the identification and
evaluation of potential recovery actions. Some of the complexity has been considered using deterministic
models, a number of which have been proposed. However, these models have a limited capability of
accounting for the various stochastic elements of the environment. Turn times, airport queueing times,
maintenance times and flight durations are all stochastic, which may lead to further disruptions that the
AOCC would wish to consider. Probabilistic models that achieve the levels of detail required are unlikely
to be analytically tractable. Thus simulation seems to be a natural way to model the airline’s operations.
However, a high-fidelity simulation model would have a non-negligible computation time. This creates
issues for searching through the large solution space. To make the most of the simulation, it must be used
selectively on solutions believed to be relevant.

The contribution of this paper is a method to balance the need to use a high-fidelity simulation model to
estimate the performance of a recovery option with the computational difficulties associated with simulation
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optimisation in this context. These difficulties include a large and complicated solution space and short
computation time constraints. Our use of a low-fidelity model reduces the complexity of the solution space
and speeds up the search by dealing with the complex constraints of aircraft allocation in a deterministic
manner. It then provides the simulation optimisation with a number of good starting solutions and a structure
with which to continue the search of its larger solution space. This goes beyond simply testing robustness,
and achieves a much more selective use of the simulation than would otherwise be possible.

This paper is organised as follows. In Section 2, we discuss some of the work in airline disruption
management. Section 3 describes a small, realistic example, introduces the problem formulation and gives
a brief overview of the integer programming (IP) and simulation models used. The optimisation of both
models in combination is presented in Sections 4 and 5. Following this, results from the example problem
will be discussed in Section 6 and conclusions will be in Section 7.

2 RELATED WORK

There have been many and varied deterministic models and solution methods proposed in the literature
for the ARP. Rosenberger et al. (2003) used a problem reduction heuristic combined with a set-packing
formulation on the potential aircraft routes. Løve et al. (2005) proposed a Steepest Ascent Local Search
heuristic to solve their network model in which aircraft allocations are represented by arcs. Zhu et al.
(2015) began to incorporate the inherent uncertainty by using scenarios of times at which aircraft requiring
unplanned maintenance become available and solving a stochastic programming problem. The weakness
of such an approach is that if it were to be extended to include scenarios with other uncertain elements, the
size of the problem would explode and become computationally intractable within the time constraints.

More recent work has focussed upon integrating different aspects of the recovery problem together,
such as aircraft and crew as in Zhang et al. (2015). This is an important area of research, particularly
as legal constraints on one resource can make an optimal solution for another infeasible in the integrated
problem. Whilst integration should lead to improved decisions, the current practise of airlines generally
takes a sequential approach with aircraft first. Thus, this paper will focus solely on the aircraft problem.

Simulation has been used to consider disruption handling. Rosenberger et al. (2000) developed software
called SimAir to evaluate disruption handling policies. Deterministic functions were applied to identify
the best action from a set of heuristics in a given disruption (Rosenberger et al. 2002). Lee et al. (2003)
used SimAir to explore the robustness of schedules and recovery policies to disruption. Hutchison and Hill
(2001) used a Simultaneous Perturbation Stochastic Approximation in a simulation optimisation process
to reduce air delays across a network of airports by adding gate holdings where necessary. Abdelghany
et al. (2008) used a deterministic network simulation to predict which flights will be disrupted to reduce
the problem size of an IP which is solved on a rolling horizon during the recovery period.

Arias et al. (2013) used a constraint programming approach combined with a simple simulation to
account for the stochastic elements of turn times and flight durations. The simulation is used to evaluate the
constraint program solution under a variety of scenarios. If the solution is not considered robust across these
replications, it is rejected and the process begins again. Guimarans et al. (2015) expanded this approach in
two ways. The first was combining the constraint program with a Large Neighbourhood Search Heuristic
to propose new solutions. The second was in using the simulation at each proposed solution to evaluate the
acceptance criteria (known as SimLNS). However, the simulation remains rudimentary, and using a higher
fidelity model may harm the performance of the algorithm if the simulation was used at every iteration.

Multi-fidelity modelling makes use of simple approximations to a problem to identify candidate ‘best’
solutions which can then be simulated more thoroughly. This is prevalent in “simheuristics” which often
use deterministic models to search the solution space for promising solutions, SimLNS and the stochastic
combinatorial problem approach of Juan et al. (2015) being examples. However, Xu et al. (2016) point out
that a low-fidelity model may be a poor performance predictor due to unknown bias and criticise this naive
approach of only simulating the best. Their proposed method (MO2TOS) continues to sample from all
solutions, weighted by their low-fidelity rankings, thus potentially exploring the whole space. Unfortunately,
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this work assumes that all options are exhaustively searched and evaluated with the low-fidelity model and
the output has no noise. Neither of these assumptions are valid here.

3 MULTI-FIDELITY MODELS

The following example is based on a flight schedule extracted from an open source data set (Flightradar24
AB 2017) obtained using the python package pyflightdata (Allamraju 2017). It consists of a homogeneous
fleet of 8 aircraft with no spare aircraft operating over a hub-and-spoke network of 15 airports in Western
Europe. The hubs of the airline are Manchester and Birmingham Airports (U.K.), where all aircraft are
meant to spend the night. At the beginning of the day, it is discovered that one aircraft at Birmingham
Airport, A1, will not be fit to fly its first flight. The expected ready time is 3 hours after that, at 8:50. The
AOCC must now reschedule the next day of operations, involving 54 short-haul flights using the available
aircraft. Its options include delaying flights, cancelling flights and exchanging aircraft.

Let A be the set of aircraft involved and F be the set of flights in the programme, with n = |F | being
the number of flights. Each flight f ∈ F will require an aircraft, a ∈ A, and a planned delay time, d f ,
or a cancellation. Let x be the aircraft allocation and d = (d f : f ∈ F) be the vector of planned delays.
The AOCC has the multi-objective aim of rescheduling to minimise its costs, delays and the number of
alterations to the original schedule. Suppose that the cost of delaying is a linear function with a cost α

per minute and that there is a further penalty of β per minute if your actual delay exceeds d f . Passenger
compensation for significant delays of flight f is given by a function of the delay, P f (for example, see
Civil Aviation Authority (2015)). The cancellation cost of flight f is C f .

3.1 Low Fidelity Integer Program

The low-fidelity model used in this paper is an IP adapted from the aircraft recovery model of Zhang et al.
(2015). The primary simplification in the model is the removal of all stochastic elements. The model aims
to allocate aircraft to flights at a minimum cost and allows delays, re-assigning aircraft and cancellations.
The model uses a time-space network in which each node, ν ∈ N, represents an airport at a potential arrival
or departure time. The potential delay times are discretised in steps m from the original departure time. A
smaller step size leads to better solutions due to a less constrained problem, but also increases the problem
size substantially.

Each potential delay of flight f ∈ F is represented by a flight delay arc fδ , where δ belongs to the set
of potential delay options, {0,m,2m, ...,M}, where M is the maximum allowable delay. The set of flight
delay arcs is L, while the set of flight delay arcs associated with flight f is L f . Between flight delay arcs,
aircraft take ground arcs, γ ∈G, which connect nodes at the same airport. Each γ must be of length at least
tmin, ensuring that an aircraft has sufficient turn time between flights. A larger choice for tmin is a higher
quantile of the turn time distribution, leading to more robust solutions. Let o f

a ∈ {0,1} indicate whether
aircraft a ∈ A was assigned to flight f before the disruption occurred.

Each aircraft a has an input node, i(a) ∈ NI , representing its current location. No flight delay arcs exit
this node and the ground arcs only connect to nodes at which a is available. In our example, the earliest
node that i(A1) can connect to would be (Birmingham, 8:50). Furthermore, all aircraft will end at a return
node, r ∈ NR. Some aircraft may have a specified return node, denoted r(a), for example an aircraft may
be required at an airport for its scheduled maintenance. In this case, a constraint is imposed to make the
new schedule maintenance feasible. An important part of a recovery is to ensure that the schedule beyond
the end of the recovery window is feasible with little or no disruption. In our example, each airport will
require sufficiently many aircraft at the end of the day to fly tomorrow’s schedule. This is known as aircraft
balance, with rA being the number of aircraft required by return node r.

To consider the continuous flow of aircraft through the network, we define the following sets. Let Lν
in

and Gν
in be the sets of flight delay arcs and ground arcs incident on ν ∈ N, and Lν

out and Gν
out be the sets of

flight delay arcs and ground arcs exiting ν ∈ N. An airline may only be allowed to use an airport runway
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during particular time slots. We list these slot constraints by the set S. Let Ks be the maximum number
of aircraft movements allowed by the airline in slot s and Ls be all flight delay arcs impacting slot s. This
mechanism can also be used to deal with curfew times at airports, for example, to prevent an aircraft taking
off during the night. It is assumed that the costs of delaying flight f by δ minutes is c fδ = αδ +P f (δ ).

The decision variables for the IP are all binary variables. Let x fδ
a = 1 when aircraft a is assigned to

flight delay arc fδ , y f = 1 if flight f is cancelled, and zγ
a = 1 if aircraft a uses ground arc γ . The complete

formulation follows.

min ∑
a∈A

∑
fδ∈L

c fδ x fδ
a + ∑

f∈F
C f y f (1)

min ∑
a∈A

∑
fδ∈L

δx fδ
a (2)

min ∑
a∈A

∑
fδ∈L

(1−o f
a)x

fδ
a (3)

subject to

∑
a∈A

∑
fδ∈L f

x fδ
a + y f = 1 ∀ f ∈ F (4)

∑
a∈A

∑
fδ∈Ls

x fδ
a ≤ Ks ∀s ∈ S (5)

∑
fδ∈Lν

in

x fδ
a − ∑

γ∈Gν
out

zγ
a = 0 ∀a ∈ A,∀ν ∈ N\(NI ∪NR) (6)

∑
γ∈Gν

in

zγ
a− ∑

fδ∈Lν
out

x fδ
a = 0 ∀a ∈ A,∀ν ∈ N\(NI ∪NR) (7)

∑
γ∈Gi

out

zγ
a = 1{i=i(a)} ∀a ∈ A,∀i ∈ NI (8)

∑
fδ∈Lr(a)

in

x fδ
a + ∑

γ∈Gr(a)
in

zγ
a = 1 ∀a ∈ {a ∈ A : r(a) ∈ NR} (9)

∑
a∈A

∑
fδ∈Lr

in

x fδ
a + ∑

a∈A
∑

γ∈Gr
in

zγ
a ≥ rA ∀r ∈ NR (10)

x fδ
a ,zγ

a,y
f ∈ {0,1} ∀a ∈ A, f ∈ F, fδ ∈ L,γ ∈ G (11)

Objective (1) is the cost of the recovery action, (2) is the total planned delay and (3) is the number of
changes made to the aircraft allocation. Constraint (4) ensures that each flight is either flown once or
cancelled. Constraint (5) are the slot constraints. Constraints (6) and (7) are flow constraints for normal
nodes, whilst (8) and (9) are analogous for input nodes and return nodes when specified, respectively.
Constraint (10) ensures aircraft balance at the end of the recovery period. Additional constraints and costs
could extend this model to, for example, penalise inconvenient solutions from a crewing perspective.

3.2 High Fidelity Simulation

The input schedule for the simulation is given by an aircraft allocation x and a set of planned delays, d.
The elements of x and d are linked to the IP variables via the following relationships:

x f
a = ∑

fδ∈L f

x fδ
a , (12)

d f = ∑
a∈A

∑
fδ∈L f

δx fδ
a , (13)
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whilst a cancellation of flight f can be inferred when ∑a∈A x f
a = 0.

Let D f ∼ H(x,d) be the random variable stating the true delay of flight f . The objective function is

g(x,d) = E

[
∑
f∈F

(
αD f +β (D f −d f )++P f (D f )

)]
+C(x). (14)

Here, P f (D f ) represents the compensation associated with passenger delays of flight f and C(x) is the
cost of the cancellations in x.

The simulation model is built within AnyLogic 8.2.3 (The AnyLogic Company 2017) and described
in Rhodes-Leader et al. (2018). It simulates a sub-fleet of homogeneous aircraft operating the recovery
action (x,d) over a set of airports. Each aircraft follows its assignment of the schedule, subject to stochastic
flight durations, turn times, queueing times and maintenance. Its general framework is largely based on
the SimAir simulation (Lee et al. 2003). However, it does not consider crew members or passengers.

The flight durations for each flight are modelled using the available data. The turn times are assumed
to follow a truncated normal distribution. The mean and variance can vary between airports, whilst the
minimum could be taken from minimum turn times of the aircraft. These assumptions are made as our
current data source does not track this information. The gate departure time of the aircraft is the maximum
of the ready time (after the turn time) and the planned departure time according to the input schedule (x,d).
When this time occurs, the aircraft joins the take-off queue.

The arrival process to the landing and take-off queues is a deviation-from-schedule model based on the
published arrivals and departures schedule and the deviation distributions are estimated from the observed
data for the airport. The service time represents the spacing required between aircraft and is assumed
deterministic given the weather conditions and time of day. The weather conditions follow a step-function
forecast at each airport, with poor weather conditions leading to increased aircraft spacing. Similarly, the
aircraft separation may increase late at night or early morning due to noise pollution constraints. It is
assumed that each airport has one runway for landings and one runway for departures and that the two
queues operate independently.

Each aircraft is given a time to failure based on its flying time since its last maintenance. We only
consider faults that would lead to an aircraft being grounded and assume that the time to failure is Weibull
distributed. Once an aircraft’s flying time has exceeded this time to failure, it enters the maintenance hangar
at the next airport where it lands. All unplanned maintenance is assumed to come from a Gamma distribution
and must be completed before the next flight. The parameters vary from airport to airport depending on
the facilities available. For example, the expected time for unplanned maintenance at Birmingham Airport
(a hub of the airline) should be shorter than that of Stuttgart Airport. Scheduled maintenance is also part
of the schedule and is assumed to take a fixed amount of time.

4 SOLVING THE INTEGER PROGRAMMING MODEL

The aim of the IP is to generate a set of promising solutions to be used as starting points in the simulation
optimisation process. This will result in a set of fixed aircraft allocations. As the overall problem has
multiple objectives, the ε−constraint method is used to produce the solutions. The objectives of minimising
total delay (2) and minimising the number of aircraft reassignments (3) are added to the IP as constraints:

∑
a∈A

∑
fδ∈L

δxa
fδ
∈ [εd

l ,ε
d
u ]

∑
a∈A

∑
fδ∈L

(1−o f
a)x

a
fδ
∈ [εe

l ,ε
e
u ].

The parameters (εd
l ,ε

d
u ,ε

e
l ,ε

e
u) are varied using an efficient method proposed by Laumanns et al. (2006) to

search for solutions on the efficient frontier. Initially, the IP is solved without (2) and (3) constraining the
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Figure 1: An example of the ε-Constraint approach used. Each plot shows the result of one iteration, each
time generating a new solution, y1, y2 and y3. Shaded areas are considered searched, dotted areas indicate
the next region to be searched. Dashed lines show the region divisions.

problem. Due to the nature of the quantities, this is equivalent to defining εd
l = εe

l = 0 (that is, no delays and
no exchanges) and εd

l = nM (all flights delayed by the maximum amount) and εe
l = n (no flights operated

using their original aircraft). Once the initial solution is found, the values of (2) and (3), (εd
1 ,ε

e
1) are

used to split the objective space into four sectors: (0,εd
1 )× (0,εe

1), (0,ε
d
1 )× (εe

1 ,n), (ε
d
1 ,nM)× (0,εe

1) and
(εd

1 ,nM)×(εe
1 ,n). The first solution is considered the best in the region (εd

1 ,nM)×(εe
1 ,n) and so this region

is considered searched. The algorithm now chooses one of the not searched sectors to define (εd
l ,ε

d
u ,ε

e
l ,ε

e
u).

If this new region provides a solution, (εd
2 ,ε

d
u )× (εe

2 ,ε
e
u) is added to the searched regions. If (εd

l ,ε
d
u ,ε

e
l ,ε

e
u)

leads to an infeasible IP, (εd
l ,ε

d
u )× (εe

l ,ε
e
u) is considered searched. This process is repeated, splitting the

sectors further and blocking off searched regions. Given sufficient time, this process will eventually search
the whole space and find all solutions on the efficient frontier. In our application, however, this process
stops after a time limit. An example of this process can be seen in Figure 1. For each combination of
limits, the IP is solved to optimality using the Gurobi Optimizer 7.0.2 (Gurobi Optimization 2017).

The result is a set of solutions, X , each with an aircraft allocation, a set of cancelled flights, and a
delay value for all flights in the programme.

5 SIMULATION OPTIMISATION AROUND IP SOLUTIONS

Each revised schedule (x,d0) ∈X is used as the starting point for a simulation optimisation process,
searching for improvement around this solution. To reduce the complexity of the solution space, the flight
allocation x is fixed during the optimisation. This leaves a continuous, ordered solution space of planned
delays, d ∈ D ⊂ Rn, with simple bound constraints on each variable. For further reduction, only the n′

flights with non-zero delay variables in d0, {d f : f ∈ F+}, are used in the optimisation. The solution space
is now greatly simplified from the original. This gives the simulation optimisation problem:

min
d

g(x,d) (15)

subect to d f ∈ [l f ,u f ], ∀ f ∈ F+ (16)

d f = 0, ∀ f /∈ F+ (17)

where g is defined in (14), searching for a local optimum conditional on x. For our example, we take l f = 0
and u f = ∞ for all f ∈ F . We estimate the performance of (x,d) by the mean of multiple replications,
denoted ĝ(x,d).

To solve the problem, an adapted version of the STRONG algorithm (Chang et al. 2013) is applied
to find a local improvement starting at (x,d0). STRONG is a simulation optimisation algorithm based
on the ideas of trust region optimisation. At iteration j, a linear or quadratic response surface model,
r j(d j +p), is built on a hyper-sphere of radius ∆ j (the trust region) centred at the current solution, d j, where
p is a deviation from d j. This meta-model can be built using 2k-factorial designs and Central Composite
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Designs (CCD) for the linear and quadratic versions respectively with nd replications of each design point,
as suggested by Chang et al. (2013). The quadratic model is chosen whenever the trust region becomes
sufficiently small, ∆ j < ∆̃. This creates a trust region sub-problem:

min
p

r j(d j +p)

subject to ||p|| ≤ ∆ j.

The Cauchy Point, pc, (the point that minimises r j along the direction −∇r j(d j) within the feasible trust
region) of the meta-model is either accepted or rejected based on a sufficient reduction hypothesis test and
a ratio comparison:

ĝ(x,d j)− ĝ(x,d j +pc)

r j(d j)− r j(d j +pc)
≥ η > 0 (18)

comparing the predicted reduction in g with the simulated reduction in g . The size of the trust region, ∆ j,
is altered depending on the outcome of the tests. Chang et al. (2013) showed that under some technical
assumptions this algorithm asymptotically converges to a local optimal with probability 1 for unconstrained
simulation optimisation.

The simple bound constraints, (16), of the ARP, such as delay being non-negative, mean that a different
strategy is required near the boundary to retain feasibility without significantly slowing the optimisation
down. Instead of the hyper-sphere constraint on the trust region sub-problem, an ellipsoidal constraint is
used, and the objective function modified by an adjustment to the Hessian:

min
p

r j(d j +p)+
1
2

pTC jp (19)

subject to ||D jp|| ≤ ∆ j (20)

d j +p ∈D . (21)

This trust region method for simple bound constrained-problems was proposed by Coleman and Li (1996).
To motivate this method, consider the first-order optimality conditions for simple bounded optimisation:

∇g(d) f = 0 if d f ∈ (l f ,u f ),
∇g(d) f ≥ 0 if d f = l f ,
∇g(d) f ≤ 0 if d f = u f .

(22)

If we define a diagonal scaling matrix, D(d), by (D(d)) f f = (|v f (d)|)−1/2, where

v f (d) =


d f −u f if ∇g(d) f < 0 and u f < ∞

d f − l f if ∇g(d) f ≥ 0 and l f >−∞

−1 if ∇g(d) f < 0 and u f = ∞

1 if ∇g(d) f ≥ 0 and l f =−∞

then (22) is equivalent to
D(d)−2

∇g(d) = 0. (23)

We estimate D j = D(d j) by using the approximation ∇g(d j) ≈ ∇r j−1(d j). If one takes a Newton step
based on (23) the Hessian term has an adjustment given by C j = D jJ jdiag(∇r j−1(d j))D j where J j is the
Jacobian matrix of the vector v(d j) and diag(y) is a diagonal matrix with elements of the vector y. The
adjustment aims to prevent movement directly towards the boundary. Any proposed steps that lead to
infeasible solutions are truncated to retain strict feasibility. The acceptance condition (18) is modified to

ĝ(x,d j)− ĝ(x,d j +pc)− 1
2 pT

c C jpc

r j(d j)− r j(d j +pc)− 1
2 pT

c C jpc
≥ η . (24)

2185



Rhodes-Leader, Onggo, Worthington, and Nelson

Table 1: Solutions produced by the IP in different cases.

Problem Solution Cost (C1000) Delay (minutes) Exchanges Cancellations
(30,10) 1 19.5 390 12 0
(30,10) 2 25.0 0 14 2
(30,10) 3 25.0 0 12 2
(30,10) 4 21.0 420 10 0
(30,10) 5 41.5 390 10 2
(25,10) 1 17.5 350 16 0
(25,10) 2 25.0 0 16 2
(25,10) 3 17.5 350 14 0
(25,10) 4 25.0 0 14 2
(25,10) 5 17.5 350 12 0
(25,10) 6 25.0 0 12 2
(25,10) 7 19.5 390 8 0
(25,10) 8 39.5 350 10 2

Coleman and Li (1996) showed that this converges to a local optimal for deterministic optimisation under
certain conditions.

It is important to note that this method may still require the simulation of infeasible points to create
the meta-model, which may be a problem if such a point cannot be simulated. One possible approach is to
use the boundary value as the input to the simulation – maintaining the orthogonal experimental design but
violating assumptions that g is smooth; another is to adapt the experimental design to ignore the infeasible
region. This is unlikely to retain the orthogonality of 2k-factorial designs and CCD. Our approach uses the
former method as this aids the consistency of the gradient estimates via the experimental design.

Due to the discretisation of time in the IP, some delays may have been added that were not necessary.
Thus the solution resulting from the optimisation (x,d∗) is compared with (x,0), that is the choice to not
make any delays under the aircraft allocation x. We use a one-sided Welch’s t-test to compare:

H0 : g(x,0)≥ g(x,d∗), Halt : g(x,0)< g(x,d∗).

If (x,0) is found to be an improvement, it is set as the final position.
Once this optimisation has been completed, we are left with a set of improved solutions, each one

originating from a solution from the IP. The AOCC decision makers can then consider each of these options
in combination with crew and passenger recovery to produce a recovery plan that can be submitted to the
relevant authorities.

6 NUMERICAL RESULTS AND DISCUSSION

To demonstrate the algorithm and consider its performance we use the example described in Section 3 and
compare the results with the ‘No Action’ option. ‘No Action’ does not make any changes to the aircraft
allocation, the airline simply waits for A1 to be repaired and become available to fly. Whilst this is a very
unlikely option to take, it provides a benchmark for comparison. The minimum turn time allowed in the
original schedule is 30 minutes. Therefore, we solve the IP with tmin = 30 minutes and a more optimistic
tmin = 25 minutes that attempts to exploit the slack built into the system. For each case a time discretisation
of m = 10 minutes and a maximum delay of M = 3 hours were used. In this section, a problem with
minimum turn time tmin and discretisation m will be denoted (tmin,m). The IP performance measures are
shown in Table 1. Solutions 5 for (30,10) and 8 for (25,10) appear to be poor solutions on multiple counts.
They arise from the order in which the algorithm of Section 4 searches the feasible region. Further research
could give more direction to this search procedure and adapt it to prioritise certain regions.
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Figure 2: The ECDF of the IP solutions of the (25,10) problem, the simulation optimisation improved
solutions and the ‘No Action’ option with p = 0.05 and β = C20. Based on over 500 replications.

For further investigation, the penalty value for exceeding a planned delay, β , was varied between C0,
C20 and C50 (compared to α = C50) and the probability that the turn time exceeds the 30 minute limit
given in the schedule, p, was also varied. The values of p used here were 0.05 and 0.1, and these represent
a measure of the level of robustness to minor delays for which the original schedule was planned.

In each case, 2000 simulation replications were allowed for the optimisation procedure, with nd = 5
replications at each design point, and 20 replications used for the acceptance tests (24). The initial trust
region size was ∆0 = 5 minutes and the threshold of switching to the quadratic model was ∆̃ = 4 minutes.

Note that the solutions 2 and 3 for (30,10) and 2, 4, and 6 for (25,10) do not contain any planned
delays as the proposed action is cancellations. These solutions do not undergo the simulation optimisation
and were just simulated 100 times.

The empirical cumulative distribution functions (ECDF) of the initial and resulting solutions for some
of the (25,10) set over 500 replications of the simulation are shown in Figure 2. Solutions 1, 3 and 5
all have the same basic actions regarding the schedule; the same flights are delayed by the same amount
in each case but with different aircraft allocations. This leads to very similar performance and so only
solution 1 is shown. Similarly for solutions 2, 4 and 6, that all cancel the same two flights, leading to
almost identical ECDFs, so only solution 2 is shown. An ideal set of results would see each ECDF moving
to the left (reducing the mean) and having a steeper gradient (reducing the standard deviation). The results
suggest that the simulation optimisation process does indeed improve the mean performance. However,
increases in standard deviation are also seen. Almost all solutions show an improvement in mean and
standard deviation over the ‘No Action’ response. It is possible, however, to get a good outcome from
the ‘No Action’ solution although the probability of doing so is small. Table 2 shows that in this case, an
improvement in the 0.9 quantile is seen suggesting that the solutions are robust. Different solutions offer
different values. Solution 1 has the lowest mean and 0.9 quantile as well as a reasonably low standard
deviation. However, solution 7 has a lower standard deviation and requires fewer changes to the schedule
despite its slightly higher mean. Different airlines may have differing priorities on this trade-off.

As a variation on the problem, a zero penalty situation, that is β = C0, was considered. The main
observations seen in this case are that each improved ECDF was shifted slightly towards 0 and their standard
deviation is decreased. This is also mirrored in the ‘No Action’, whose standard deviation reduces from
C15,400 to C12,600 and mean reduces from C33,200 to C24,600. This is not a surprising result as the
lack of a penalty allows the airline to be overly optimistic in terms of the delay it will incur. For example,
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Table 2: The estimated means, ĝ(x,d), standard deviations, σ̂ and 0.9 quantile, q̂0.9, for the cost (C1000)
performance for the (25,10) solutions with β = C20 and p = 0.05.

Problem Solution Initial Solution Improved Solution
ĝ(x,d0) σ̂ q̂0.9 ĝ(x,d∗) σ̂ q̂0.9

- No Action 33.2 15.4 55.6
(25,10) 1 18.4 1.60 20.1 10.15 4.80 16.8
(25,10) 2 25.3 0.74 25.6
(25,10) 3 18.5 1.68 20.6 10.24 4.83 17.4
(25,10) 4 25.3 0.51 25.8
(25,10) 5 18.5 2.05 20.2 10.44 5.05 17.4
(25,10) 6 25.3 0.62 25.8
(25,10) 7 20.3 1.43 21.7 11.21 4.59 17.5
(25,10) 8 40.4 1.76 42.0 32.47 4.91 39.6

the final position of solution 5 changes from (3,43,50,12) minutes to (0,8,13,7) minutes, suggesting the
algorithm is happier to reduce delays further. This goes alongside a reduction in mean of C2290 and
standard deviation of C860. The opposite results occur when increasing the penalty to β = C50. This
moves the final position of each solution to the right, increasing the mean as the optimisation is more
reticent to decrease delays. This is accompanied by an increase in standard deviation. It is interesting to
note that the solutions from the IP remain quite robust to the changes in penalty, with only minor changes
seen in the ECDF. This suggests that there is significant slack built into these solutions.

We also increased to p = 0.1, suggesting a less robust original schedule, thereby increasing the standard
deviation. The results suggest a small drop in the performance of the resulting solutions, with solution 5
having mean C10,800, standard deviation C7,300 and 0.9 quantile C19,800, which is a drop compared to
that in Table 2. The ECDFs do not appear to show a large degradation in performance, although this may
be due to the relatively robust nature of this schedule. Indeed, the differences between the ‘No Action’
options are minor, suggesting a greater difference in p would be required to alter performance dramatically.

As mentioned previously, we also solved the problem with tmin = 30 minutes. The results are similar
to those in the (25,10) case, with a reduction in the expected cost alongside an increase in the standard
deviation. However, as the solutions given by the IP are worse, the final positions are similarly worse.

7 CONCLUSIONS AND FURTHER WORK

This paper presents a proof-of-concept multi-fidelity modelling approach to the ARP combining both integer
programming and simulation optimisation. The algorithm allows for high-fidelity simulations to be used
to evaluate solutions in a highly complex environment whilst balancing this with the time constraints and
computational issues associated with simulation optimisation. The results in this paper suggest that this
method could be used to provide good solutions to the ARP.

The solution time of the IP depends strongly on the number of flights, aircraft and the time step.
Size reduction techniques, such as that by Rosenberger et al. (2003), could help to control this for large
problems. The computational cost of the simulation optimization stage depends on the number of delays
being altered as this affects the number of distinct simulation runs required, and the simulations dominate
the computational cost. However, these simulations could be run in parallel.

There are a number of additions one could add to the problem that are not considered here. Some
recovery options, such as higher cruise speeds that can help an airline catch up more effectively, whilst
costing more in fuel. If these variables are continuous, they could be incorporated into the current framework.

We do not currently have theory about the behaviour of the simulation optimisation method described
in Section 5. Future work may be towards looking at what guarantees there are for the performance of this
method in the general setting.
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Part of the nature of the ARP is that it is a reoccurring problem for airlines. The use of Symbiotic
Simulation as discussed by Aydt et al. (2009), in which the model is allowed to adapt to new information
from the system it is modelling, could have great value in the area of airlines operation. Future work will
include considering how the repeated nature of the problem could be exploited to improve both the models
and the optimisation process in a symbiotic manner. Symbiotic simulation could also be used to give new
information on the same problem. For example, if there were changes to the maintenance status of aircraft,
this could potentially be used to improve the decisions based on the latest information.
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