
Proceedings of the 2018 Winter Simulation Conference
M. Rabe, A.A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds.

A SORT-BASED INTEREST MATCHING ALGORITHM WITH TWO EXCLUSIVE JUDGING

CONDITIONS FOR REGION OVERLAP

Tianlin Li

Wenjie Tang
Yiping Yao
Feng Zhu

College of System Engineering
National University of Defense Technology

Deya Road, 109
Changsha, 410073, CHINA

ABSTRACT

As the IEEE standard for distributed simulation, High-Level Architecture (HLA) defines the data
distribution management (DDM) service to filter unnecessary communication among federates. In DDM,
interest matching algorithm is essential for the message filtering. Among existing interest matching
algorithms, sort-based algorithms have been proven to be the most efficient method in most scenarios.
However, existing sort-based algorithms still have some drawbacks, the overhead of sorting the bounds

can be further reduced and a portion of unnecessary bit or matching operations can be eliminated. In this
paper, we propose a binary search enhanced sort-based interest matching algorithm (BSSIM). Based on
two exclusive judging conditions for region overlap, sorting overhead can be remarkably reduced.
Moreover, unnecessary bit or matching operations can be eliminated by binary searches. Experimental
results show that BSSIM algorithm outperforms existing sort-based algorithms, and considerable
performance improvement can be achieved.

1 INTRODUCTION

In distributed simulation, federates exchange information based on the publish/subscribe method. The
method provides significant flexibility than explicitly sending messages, but it would also generate large
amount of irrelevant data transmissions. The High Level Architecture (HLA) is a general purpose
architecture for simulation reuse and interoperability (Yu et al. 2002). HLA provides data distribution
management (DDM) services to filter unnecessary data transmissions and therefore reduce

communication overhead among federates (IEEE Standard 1516 2000; Morse and Petty 2001). Producers
of data utilized DDM services to assert properties of their data (update region), while consumers of data
may utilize DDM services to specify their data requirements (subscription region) (Morse and Steinman
1997). Then, the Run Time Infrastructure (RTI) distributes data from producers to consumers based on
interest matching between these regions (Van Hook and Calvin 1998). Hence, interest matching plays a
key role in data distribution management (Zhang 2000; Tan et al. 2000b). Without interest matching

mechanism, lots of unnecessary data distributions will be generated which will seriously degrade the
simulation runtime performance. Even though, without high efficient interest matching algorithm, the
performance of simulation will also be seriously affected.

Currently, interest matching algorithms mainly include brute force algorithm (also called region-
based algorithm), grid-based algorithm, hybrid algorithm, continuous algorithm and sort-based algorithm.
They all have their own strong points and weak points. Among them, the sort-based algorithm is the most

promising and efficient. However, the existing sort-based algorithms are still confronted with several

2167978-1-5386-6572-5/18/$31.00 ©2018 IEEE

Li, Tang, Yao, and Zhu

major drawbacks. In such sort-based algorithms, there are two typical algorithms, they are proposed by
Raczy et al and Pan et al (Raczy et al. 2005; Pan et al 2007). In this article, we call them Raczy’s sort-
based algorithm and Pan’s algorithm. For simplicity, the number of update regions and the number of
subscription regions are both assumed to be N. In Raczy’s sort-based algorithm, the length of the bound
list to be sorted is 4*N, so sorting the bound list will occupy majority of overhead. Besides frequent bit
operations will generate a lot of additional overhead during generating overlapping information. Similarly,

in Pan’s sort-based algorithm, the sorting overhead still accounts for a large portion, because there are 4
bound lists whose length is N to sort. What’s worse, in the process of calculating which subscription
regions intersect with an update region, the two sufficient and necessary conditions must be satisfied
concurrently, meaning that additional matching computation and inaccurate matching results filtering
operation should be introduced for exact matching results.

In this paper, we propose a binary search enhanced sort-based interest matching algorithm, aiming at

reducing the sorting overhead and avoiding unnecessary bit operation. Based on a novel sufficient and
necessary condition to judge interval overlapping, the size of the list to be sorted can be remarkably
reduced compared with Raczy’s and Pan’s proposed sort-based algorithm. Moreover, by means of binary
searches, additional bit operation can be eliminated. Comparing to the sort-based algorithm proposed, the
sufficient and necessary conditions only need two steps to obtain the final overlapping information for
each dimension, and the most important is that each step can obtain exact overlapping result, with no

additional operations. Hence there is no need to calculate the intersection to filter the wrong matching
information, reducing considerable computation complexity compared with Pan’s sort-based algorithm.

The rest of the paper is organized as follows. Section 2 introduces several existing interest matching
algorithms. Section 3 describes our proposed interest matching algorithm in two aspects, static matching
and dynamic matching. Section 4 describes the experiments and analysis of the results. Section 5
concludes the whole paper and overviews the future work.

2 RELATED WORKS

This section mainly introduces existing interest matching algorithms, brute force, grid-based, hybrid and
sort-based algorithm, and analyzes their advantages and disadvantages.

2.1 Brute force algorithm

Brute force, also known as region based, compares update region with subscription region one by one to
obtain the overlap information. This approach can achieve exact matching results, while the computation

complexity is O(N
2
).

2.2 Grid-based algorithm

In Grid-based algorithm, the interest space is divided into grids, so all update regions and subscription
regions are mapped to one or several grids (Tan et al. 2000a; Berrached et al. 1998). This algorithm
considers the regions in the same grid intersect with each other. This algorithm is high efficient, while the
matching result is not exact.

2.3 Hybrid algorithm

Hybrid algorithm is the combination of brute force and grid-based algorithm (Tan et al. 2000c). On the
basis of grid-based algorithm, brute force approach is applied for each grid to obtain the exact matching
results. When the number of grids is G, the cost of the algorithm is O(N

2
/G). However, G value is

difficult to choose in real simulation, because the number of regions, the distribution of update and
subscription regions and the size of interest space are uncertain and complicated.

2168

Li, Tang, Yao, and Zhu

2.4 Sort-based algorithm

Sort-based algorithm proposed by Yu Jun et al uses the idea of sorting bounds of regions to obtain
overlap information (Yu et al. 2002). For each dimension, all the upper and lower bounds of update and
subscription regions are put into list L, so the length of L is 4*N, assuming the number of update and
subscribe region both are N. Next, L is sorted in ascending order. When N is large, the sorting overhead
cannot be ignored. Then traverse L and remove a bound value from the queue each time. When the value

is the lower bound of update region Ui, then put the id of Ui into set UpdateSet. If the value is the lower
bound of subscription region Si, then put the id of Si into SubscribeSet. When the value is the upper
bound of update region Ui, then remove the id from UpdateSet, and Ui intersect with all the subscription
regions in SubscribeSet. It is same for the upper bounds of subscription regions. In this way, overlap
information can be obtained. Bit array operation is introduced to accelerate the insertion and removal of
elements for UpdateSet and SubscribeSet.

Raczy et al also proposed a sort-based matching algorithm, which is similar to the sort-based
algorithm described above (Raczy et al. 2005; Raczy et al 2002). The difference is that there exists an
N*N bit matrix M used to maintain and store the overlap information. Through operating the sorted queue
and changing the values in M, the final overlapping information can be obtained. In Raczy’s sort-based
algorithm, sorting the bounds of regions and large number of bit operations will generate a lot of
additional overhead, which means that there is still some potential to improve the performance of sort-

based interest matching algorithm. When there is no overlapping or the number of overlapping is less,
sorting the bounds occupies large majority of matching time (Yu et al. 2002). Through shortening the
length of bound list can obviously reduce the sorting time. Besides, bit operation is introduced to acquire
the overlapping relationship when operating the sorted bound list in each dimension. Frequent bit
operations will generate large amount of overhead. In worst case, when every subscription region
intersect with every update region, the bit operation will result in additional O(N

2
) computation

complexity.
The above two sort-based algorithms all have O(N

2
) storage requirement, which will be limited when

N is very large. To reduce the storage overhead, Ke Pan et al also proposed an efficient sort-based
algorithm to reduce the storage overhead (Pan et al. 2007). In Pan's sort-based algorithm. They introduced
two parameters, maximum update region range size (maxURRS) and maximum subscription region range
size (maxSRRS), to construct new sufficient and necessary conditions to judge region overlap. The

computation complexity is O(maxRS/DUB * N
2
). maxRS is the maximum range size of all regions, and

DUB is the size of the routing space. Thus the performance of this algorithm depends on maxRS/DUB.
When the ratio is small, the algorithm is more efficient. However, when the ratio becomes larger, the
performance may become worse. This condition limit the efficiency and generality of the algorithm,
which is only suitable for large spatial space. Besides, Pan's sort-based algorithm should sort four bound
lists and the sorting overhead will be O(4NlogN) for static matching. Besides, in the process of

calculating which subscription regions intersect with an update region, the two sufficient and necessary
conditions must be satisfied concurrently, meaning that there are three steps to determine the final
overlapping information for each dimension. The first step is to choose the subscription regions satisfying
the first condition, and the second step is to choose subscription regions according to the second condition,
then calculate the intersection to obtain the exact results, meanwhile some additional matching
computation is introduced. Binary search is scheduled when mapping the upper bound or lower bound of

update regions onto the lower bound list and upper bound list of subscription regions, while in our
proposed algorithm, binary search is directly used to obtain overlapping information.

3 BSSIM ALGORITHM

This section will describe BSSIM algorithm in detail, and provide theoretical analysis of computation
complexity. For simplicity, we only focus on how our proposed algorithm works in one dimension.

2169

Li, Tang, Yao, and Zhu

Interval U

Interval S

Interval U

Interval S

Dimension X

Interval U

Interval S

Interval U

Interval S

Dimension X

Figure 1: Total overlapping cases between two regions.

3.1 Two Exclusive Judging Conditions for Region Overlap

The common way to judge the overlap relationship of two regions is to compare their upper and lower
bounds. For example, there are two regions, update region U and subscription region S. The range of
region U is [ULB, UUB), and S is [SLB, SUB). As shown in Figure 1, there are total four cases when U
intersects with S. In fact, they can be further categorized into two cases, one is that the lower bound of U

locates in S, the other is that the lower bound of S locates in U. According to this observation, we provide
two exclusive judging conditions to determine region overlapping relationship. The two conditions are
independent, each one of them can be used for judging the overlapping information. Hence, two regions
will intersect with each other when one and only one of the two exclusive conditions is satisfied.

[,)LB LB UBU S S . (1)

or

[,)LB LB UBS U U . (2)

According to above conditions, to obtain the overlapping information in one dimension, the core
work is to determine the lower bounds of which update regions locate in each subscription region and
lower bounds of which subscription regions locate in each update region. Hence, calculating overlapping
information between regions is translated into calculating the overlapping information between all update
(subscription) lower bound values with each subscription (update) intervals. Sorting the lower bounds can

efficiently reduce the workload of determining which lower bounds of subscription (update) regions
locates in each update (subscription) region. These two conditions are more suitable for sort-based
algorithm. Firstly, only two lower bound lists need to be sorted, update region lower bounds list and
subscription region lower bounds, so the sorting overhead is reduced. Besides, this method need less
comparison operation compared with the algorithm proposed by Ke Pan et al.

In summary, the judging conditions for region overlap built the foundation of the BSSIM algorithm.

Comparing to the sufficient and necessary conditions proposed be Ke Pan et al, our proposed necessary
and sufficient conditions have more advantages. Binary search can be used to obtain overlap information
directly. Besides the sorting overhead is reduced significantly. It also can avoid bit operations in Raczy’s
sort-based algorithm and unnecessary matching operations in Pan’s sort-based algorithm.

3.2 Algorithm Description

Based on the two conditions for calculating overlapping information, the core work of BSSIM algorithm

is to acquire the overlapping information between all lower bounds of update (subscription) regions and
subscription (update) regions for each dimension. That is to say, for each update region we should
determine the lower bounds of which subscription regions locate in this update region, satisfying
condition (2). And for each subscription region we should determine which lower bounds of update
regions locate in this subscription region, satisfying condition (1). For each dimension, when all the lower

2170

Li, Tang, Yao, and Zhu

bounds of update (subscription) regions have been compared with all the subscription (update) regions,
the overlapping information for this dimension can be obtained. Through calculating the intersection of
the overlapping results of all dimensions, we can get the final matching information.

Before calculating the overlapping information, some preparation work is necessary. First, sorting
lower bounds of regions can accelerate the efficiency of acquisition on overlapping information. Hence,
all lower bounds of update regions and subscription regions are sorted independently in ascending order.

Then we can obtain 4 bound lists, as shown in Figure 2, they are SL, SU, UL, UU. SL stores all the lower
bounds of subscription regions in ascending order, and SU list stores the corresponding upper bounds.
Similarly, UL and UU are used to store the bounds of all update regions. Besides, two auxiliary lists are
used to store corresponding update region id and subscription id respectively.

1.0
SL0

2.0
SL1

4.0
SL2

5.0
SL3

7.0
SL4

8.0
SL5

10.0
SL6

13.0
SL7

17.0
SL8

19.0
SL9

20.0
SL10

22.0
SL11

25.0
SL12

30.0
SL13

4.8
SU0

2.5
SU1

7.0
SU2

7.5
SU3

10.0
SU4

9.5
SU5

17.0
SU6

15.0
SU7

18.5
SU8

29.0
SU9

50.0
SU10

31.0
SU11

29.0
SU12

40.0
SU13

3.0
UL0

4.5
UL1

7.5
UL2

15.0
UL3

19.5
UL4

27.0
UL5

9.0
UU0

7.5
UU1

11.0
UU2

23.0
UU3

25.0
UU4

29.0
UU5

SL List

SU List

UL List

UU List ...

...

...

...

Figure 2: Four lists, SL, SU, UL, and UU.

Based on the judging conditions, binary search method is introduce to obtain overlap results quickly.
Given that the lower bound list have been sorted, binary search becomes the best choice for determine
which lower bounds of one update (subscribe) locate in one subscribe (update) region. Here we take an

update region U as an example. When calculating which subscription region lower bounds locate in U, we
should know the position when mapping the lower bound and upper bound of the update region onto the
bound list SL. Here two parameters, comparison index upper limit (CIU) and comparison index lower
limit (CIL), are introduced to represent the position. The core work of our proposed algorithm is
translated into calculating CIL and CIU values. As shown in Figure 3, CIL and CIU of region [UL0, UU0)
are 2 and 5, similarly, CIL and CIU of interval [SL0, SU0) are 0 and 1. For a update region U, CIL denotes

the minimum index of the lower bounds that overlap with U, while CIU denotes the maximum index of
the lower bounds that overlap with U. Therefore, region [SL2, SU2), [SL3, SU3), [SL4, SU4) and [SL5, SU5)
overlap with [UL0, UU0), while [UL0, UU0) and [UL1, UU1) overlap with [SL0, SU0). When all CIL and
CIU values for all update and subscription regions are obtained, the overlap information for each
dimension can be obtained.

Hence, the second step is to calculate CIL and CIU values for each update and subscription region for

each dimension. In view of list SL and UL have been sorted, CIL values can be easily obtained by
comparing values in SL with values in UL. When calculating CIU value for a region, if comparing the
region’s upper bound with values in SL or UL one by one, calculating CIU values for N regions will
generate O(N

2
) computational complexity in the worst case. Therefore, we introduce the binary search

method to find CIU values efficiently. Binary search method can help locating CIU value quickly with
O(lgN) overhead. Considering that the CIL value for a region has been determined, so the searching range

for binary search is reduced to [CIL, N]. Here, when CIL value are becoming larger, the search range
[CIL, N] is becoming smaller and the cost of calculating CIU becomes smaller, less than O(logN). Then
the computational complexity of calculating a CIU value is O(logN) in the worst case.

The last step of our proposed algorithm is to generate the overlapping information. For each
dimension, there is a M*N bit matrix used to store the overlapping information. M stands for the number

2171

Li, Tang, Yao, and Zhu

of update regions and N is the number of subscription regions. Each update region corresponds to one row,
and each subscription region corresponds to one column. Each value represents an overlapping relation
between a update and subscription region. All values of the matrix are initialized as 0. When a update
region overlaps with one subscription region, the corresponding bit is set as 1, used to store the
overlapping information. When the CIL and CIU values for each update and subscribe region have been
determined, so the values in the bit matrix can be assigned as 1 according to CIL and CIU values.

Therefore the bit matrix can contain the overlapping information for one dimension. When all dimensions
are finished, Calculating the intersection of all bit matrices can obtain the final overlap information.

1.0
SL0

2.0
SL1

4.0
SL2

5.0
SL3

7.0
SL4

8.0
SL5

10.0
SL6

13.0
SL7

17.0
SL8

19.0
SL9

20.0
SL10

22.0
SL11

25.0
SL12

30.0
SL13

3.0
UL0

9.0
UU0

SL List ...

15.0
UL3

23.0
UU3

...

3.0
UL0

4.5
UL1

7.5
UL2

15.0
UL3

19.5
UL4

27.0
UL5

1.0
SL0

4.8
SU0

20.0
SL10

50.0
SU10

30.0
UL6

34.0
UL7

40.0
UL8

41.0
UL9

48.0
UL10

...

52.0
UL11 ...UL List

...

...

55.0
UL12

Binary SearchBinary SearchBinary SearchBinary Search

Binary SearchBinary SearchBinary SearchBinary Search

CILCIL CIUCIU CILCIL CIUCIU

CILCIL CIUCIUCILCIL CIUCIU

Figure 3: Calculating CIU values with binary search.
In summary, the procedure of BSSIM algorithm for static matching can be summarized as three

phases. As shown in Figure 4, the first phase is sorting lower bounds of all update and subscription
regions independently (step 3-5). The second phase is to calculate CIL and CIU values for each update
and subscription region (step 6-11). Last phase is the assignment of bit matrices to generate overlap

information based on CIL and CIU values (step 12-14).

BSSIM(Update, Subscription, M, N){
1. for each dimension d
2. initialization of bit matrix Matrix[d], all element is 0;

3. insert lower bounds of Update regions into UL[d];
4. insert lower bounds of Subscription regions into SL[d];
5. quicksort UL[d], SL[d];
6. initialize UpdateCIL[d][M] by comparing UL[d] and SL[d];
7. initialize SubscribeCIL[d][N] by comparing SL[d] and UL[d];
8. for each update region u

9. binary search in SL[d] to initialize UpdateCIU[d][u];
10. for each subscription region s
11. binary search in UL[d] to initialize SubscribeCIU [d][s];
12. update bit matrix Matrix[d] according to UpdateCIL[d] and UpdateCIU[d];
13. update bit matrix Matrix[d] according to SubscribeCIL[d] and SubscribeCIU[d];
14. calculating the intersection of all bit matrices of each dimension;

}

Figure 4: Procedures of BSSIM for static matching.

2172

Li, Tang, Yao, and Zhu

All above is the algorithm description for static matching, when coming to dynamic matching, that is
to say, when an update or subscription region has changed, how BSSIM algorithm works. In Raczy’s sort-
based algorithm, all matching relationships between update and subscription regions should be re-
calculated again when one update or subscription region changes. While in BSSIM algorithm, there is no
need to re-calculate the interest matching information for every update and subscription regions, we only
need to calculate the overlapping information for the changed regions again.

 For example, when an update region changes, the original overlapping information of this region is
removed, all the values of the corresponding row in the bit matrix are set to 1. Then binary search method
is used to calculate the CIL and CIU value for the changed update region through comparing the lower
and upper bound with SL bound list. Now we can determine that the lower bounds of which subscription
regions locate in the changed update region. However, this is not enough according to the judging
conditions for region overlap described above. Next, we should calculate out in which subscription

regions that the lower bound of changed update region R locates. In the view of Pan’s sort-based
algorithm, we also introduce two parameters, maxURRS and maxSRRS, representing the maximum
update region range size and maximum subscription region range size. However, these two parameters are
used in a different way. They are used to quickly calculate out which subscription regions contains the
lower bound of the changed update region R. As shown in Figure 5, maxURRS and maxSRRS can
confine the left comparison scope, binary search is used to acquire the right comparison scope exactly.

Through this way, the comparison overhead for dynamic matching can be reduced in a large degree. In
Figure 5, the maxSRRS is 30.0, so UL0 should compare with the SU values whose corresponding SL
value is no less than (UL0 - maxSRRS). Otherwise, there is no need to compare UL value with the SU
values. Compared with Pan’s sort-based algorithm, the dynamic matching method of BSSIM is more
suitable for large spatial environment.

8.0
SL5

10.0
SL6

13.0
SL7

17.0
SL8

19.0
SL9

20.0
SL10

22.0
SL11

25.0
SL12

30.0
SL13

14.0
UL0

24.0
UU0

Binary SearchBinary Search

CILCIL CIUCIU

9.5
SU5

17.0
SU6

15.0
SU7

18.5
SU8

29.0
SU9

50.0
SU10

31.0
SU11

29.0
SU12

40.0
SU13

UL0 - maxSRRS

Conparison Scope
14.0
UL0

...

...

8.0
SL5

10.0
SL6

13.0
SL7

17.0
SL8

19.0
SL9

20.0
SL10

22.0
SL11

25.0
SL12

30.0
SL13

14.0
UL0

24.0
UU0

Binary Search for CILBinary Search for CIL

CILCIL

9.5
SU5

17.0
SU6

15.0
SU7

18.5
SU8

29.0
SU9

50.0
SU10

31.0
SU11

29.0
SU12

40.0
SU13

...

1

...

(a): Overall process. (b): First phase.

8.0
SL5

10.0
SL6

13.0
SL7

17.0
SL8

19.0
SL9

20.0
SL10

22.0
SL11

25.0
SL12

30.0
SL13

14.0
UL0

24.0
UU0

...

Binary Search for CIUBinary Search for CIU

CILCIL CIUCIU

9.5
SU5

17.0
SU6

15.0
SU7

18.5
SU8

29.0
SU9

50.0
SU10

31.0
SU11

29.0
SU12

40.0
SU13

...

2

8.0
SL5

10.0
SL6

13.0
SL7

17.0
SL8

19.0
SL9

20.0
SL10

22.0
SL11

14.0
UL0

9.5
SU5

17.0
SU6

15.0
SU7

18.5
SU8

29.0
SU9

50.0
SU10

31.0
SU11

UL0 - maxSRRS

Conparison Scope

3

14.0
UL0

...

...

(c): Second phase. (d): Third phase.

Figure 5: Dynamic matching for changing one update region.

2173

Li, Tang, Yao, and Zhu

3.3 Complexity Analysis

To analyze the computation complexity of BSSIM algorithm for static matching, for simplicity, we
suppose there are N update regions and N subscription regions. Sorting N update regions and N
subscription regions with quick sort method requires about O(2NlogN). While in the Raczy’s sort-based
algorithm, sorting the bounds requires about O(4Nlog(4N)), Pan’s sort-based algorithm need O(4NlogN)
computation complexity. Calculating CIL values for N update regions and N subscription regions requires

O(N) computation complexity. Calculating CIU values using binary search requires O(NlogN) in worst
case. The search range of binary search method for calculating a CIU value is [CIL, N]. It is obviously
that CIL values can be changes from 0 to N, so the computation complexity for calculating CIU values
will be O(NlogN-N) in normal conditions. The computation complexity for generating the final
overlapping information in each dimension depends on the exact matching numbers. In total, the
computation complexity of BSSIM algorithm is O(NlgN), but better than the O(NlgN) of Raczy’s and

Pan’s sort-based algorithm.
When coming to dynamic matching, for simplicity, we suppose that only one update region has

changed. First step is to remove the original overlapping information about this region, the computation
complexity depends on the number of subscription regions overlapping with the changed update region.
Second step is to calculate CIL value for this region with binary search method, because the lower bound
list has been sorted, so calculating CIL value will require O(logN) computation complexity. The third step

is to calculate CIU value, through binary search the cost is less than O(logN). Then comparing the upper
bound value of the changed update region with the subscription region upper bounds limited by CIL
value and (UL0 - maxSRRS) value. In total, the computation complexity for dynamic matching will be
O(logN) in normal conditions, and O(N) in worst case.

4 EXPERIMENT RESULTS

In this section, several experiments are constructed to compare our proposed algorithm with Raczy’s and

Pan’s sort-based algorithm. Gary Tan et al introduced the concept of overlap rate to verify algorithm
efficiency, which represents the ratio of total update and subscription regions to the routing space.
Therefore overlap rate is also used as an experimental parameter. At this time, overlap rate is the ratio of
the total length of update and subscription regions to the length of interest space. In the below formula, I
is the region length, L stands for the length of the interest space. The length of all regions is same and
fixed, but the lower bounds of all regions are distributed in the interest space uniformly. When the overlap

rate and number of regions are determined, the length of interest space can be determined.

1

N

ii
I

overlap rate
L




Different overlap rates are utilized to construct more comprehensive experiments, in order to fully
verify the efficiency of the algorithm. There are 3 overlap rates, namely 0.01, 1 and 100, represent low
overlap rate, medium overlap rate and high overlap rate respectively. The number of update and
subscription regions extends from 4000 to 40000 in incremental steps of 4000. In each experiment, the

experiment program uses Raczy’s sort-based, Pan’s sort-based algorithm and BSSIM algorithm to
calculate the overlap information between update and subscription regions using same data set
independently. Then modify the data set and repeat the program for 100 iterations and calculates the
average performance for the 100 iterations.

4.1 Static Matching

As shown in Figure 6, our proposed BSSIM algorithm is not obviously affected by the overlap rate. In

fact, according to analysis in previous section, the time complexity is not affected by the overlap rate. At
different overlap rates, our algorithm always performs much better than Raczy’s and Pan’s proposed sort-
based algorithm when the number of update and subscription regions changes from 4000 to 40000. About

2174

Li, Tang, Yao, and Zhu

(a): Overlap rate is 0.01. (b): Overlap rate is 1.

(c): Overlap rate is 100.

Figure 6: Performance comparison for static matching.

82%-129% performance improvement compared with Raczy’s proposed sort-based algorithm and 57%-
117% performance improvement compared with Pan’s proposed sort-based algorithm can be achieved at
different overlap rates.

There are two main reasons why our proposed algorithm can take such a big superiority for static
matching. One reason is the reduction of sorting overhead. In Raczy’s proposed sort-based algorithm the

length of bound list is 4*N, so the computation complexity of sorting bound list is O(4Nlog(4N)), when N
is large, sorting bound list will occupy a large proportion of overhead. Similarly in Pan’s proposed sort-
based algorithm, there are for bound lists to sort, the sorting cost is O(4NlogN). While in our proposed
BSSIM algorithm, there only two lower bound list to be sorted. The sorting computation complexity is
O(2NlogN). Hence, our proposed BSSIM algorithm have advantages in sorting, especially when the
sorting occupies a large proportion of computational overhead in practice. The other reason is that when

generating overlap information, Raczy’s proposed sort-based algorithm introduces a large number of bit
operations. The length of the bit array is N, and all the N bits are operated at the same time. So large
proportion of bit operations are unnecessary which will introduce a lot of overhead. In Pan’s proposed
algorithm, there are two sufficient and necessary conditions for overlapping. To prove the overlapping
information between two regions, the two conditions must be satisfied at the same time. However, single
condition will generate some wrong overlapping information which will introduce large amount of

overhead. In our proposed BSSIM algorithm, on one hand we avoid the frequent bit array operations. On
the other hand, our proposed sufficient and necessary conditions will not generate wrong overlapping
information. Anyone of the conditions can obtain exact overlapping relationship.

2175

Li, Tang, Yao, and Zhu

4.2 Dynamic Matching

Dynamic matching means that re-calculating the matching information when one or several update or
subscription regions have changed. As shown in Figure 7, to validate the efficiency of our proposed
algorithm for dynamic matching, we compare it with two other algorithms, they are region-based
algorithm (brute force algorithm), Pan’s sort-based algorithm. Raczy’s proposed sort-based algorithm
cannot deal with dynamic matching of a selective region modification without repeating the static

matching of all regions, which is very costly (Pan et al 2007). So in dynamic matching experiments, we
don’t compare BSSIM algorithm with Raczy’s proposed sort-based algorithm.

(a): Overlap rate is 0.01.

(b): Overlap rate is 1.

(c): Overlap rate is 100.

Figure 7: Performance comparison for dynamic matching.

2176

Li, Tang, Yao, and Zhu

 In the experiments for dynamic matching, we only consider the condition that only one update region
will change. At the same time, the 3 overlap rates (0.01, 1 and 100) are used to construct different
overlapping scenarios. First, three algorithms are used for static matching to obtain matching results, then
change one update region, re-calculate the overlapping information. We can recognize that our proposed
algorithm outperforms Pan’s sort-based algorithm at different overlapping rates and different extent
numbers. Especially when the overlap rate is 100, the performance improvement can be 200%, because

Pan’s sort-based algorithm will generate large amount of unnecessary overlapping information in high
overlap rate, and filtering the wrong matching information will cost a lot.

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed a binary search enhanced sort-based interest matching algorithm (BSSIM) with
two exclusive judging conditions for region overlap. Based on the conditions, binary search can
efficiently obtain the overlapping information without unnecessary bit operations and additional

comparison operations. Besides, the sorting overhead is remarkably reduced through reduce the number
or length of bounds list to be sorted. Experimental results show that BSSIM algorithm outperforms the
sort-based algorithm at different overlap rates and extent numbers.

Next, our proposed algorithm will be applied to multidimensional scenarios, and more experiments
should be done to optimize BSSIM algorithm for dynamic matching in more complex situations.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China under Grant (No.
61702527).

REFERENCES

Berrached, A., M. Beheshti, and O. Sirisaengtaksin. 1998. “Evaluation of Grid-based Data Distribution in
the HLA”. In Proceedings of the 1998 Conference on Simulation Methods and Applications,
November 1

th
-3

th
, Orlando FL, 209-215.

IEEE Standard 1516 (HLA Rules), 1516.1 (Interface Specification) and 1516.2 (Object Model Template).
 Sep. 2000.

Morse, K. L. and J. S. Steinman. 1997. “Data Distribution Management in the HLA Multidimensional
Regions and Physically Correct Filtering”. In Proceedings of the 1997 Spring Interoperability
Workshop, March, paper no. 97S-SIW-052.

Morse, K. L. and M. D. Petty. 2001. “Data Distribution Management Migration from DoD 1.3 to IEEE

1516”. In Proceedings of the 5th IEEE International Workshop on Distributed Simulation and Real
Time Applications, August, 58-65.

Pan, K., S. J. Turner, W. Cai, and Z. Li. 2007. “An Efficient Sort-Based DDM Matching Algorithm for
HLA Applications with a Large Spatial Environment”. 21st International Workshop on Principles of
Advanced and Distributed Simulation. San Diego, USA.

Raczy, C., J. Yu, G. Tan, T. S. Chuan. 2002. “Adaptive Data Distribution Management for HLA RTI”. In

Proceedings of 2nd European Simulation Interoperability Workshop, Harrow, UK.
Raczy, C., G. Tan, and J. Yu. 2005. "A Sort-Based DDM Matching Algorithm for HLA". ACM

Transactions on Modeling and Computer Simulation, 15(1):14-38.
Tan, G., A. Raczy, Y. Zhang, and F. Moradi. 2000a. “Grid-based Data Management in Distributed

Simulation”. In Proceedings of 33rd Annual Simulation Symposium, Washington, U.S.A., April.
Tan, G., L. Xu, F. Moradi, and Y. Zhang. 2000b. “An Agent-based DDM Filtering Mechanism”, In

Proceedings of MASCOTS, August, San Francisco CA, USA.
Tan, G., Y. Zhang, and R. Ayani. 2000c. “A Hybrid Approach to Data Distribution Management”. In

Proceedings of the 4th IEEE International Workshop on Distributed Simulation and Real-Time
Applications, August, pp. 55-61.

2177

Li, Tang, Yao, and Zhu

Van Hook, D. J. and J. O. Calvin. 1998. “Data distribution management in RTI 1.3”. In Proceedings of
 the Simulation Interoperability Workshop, March, paper no. 98S-SIW-206.

Yu, J., C. Raczy, and G. Tan. 2002. “Evaluation of Sort-based Matching Algorithm for the DDM”. In
Proceedings of the 16th Workshop on Parallel and Distributed Simulation, May, Washington, USA.

Zhang, Y. 2000. A Simulation Platform for Investigating Data Filtering in Data Distribution
 Management, M.Sc thesis, School of Computing, National University of Singapore, Singapore.

AUTHOR BIOGRAPHIES

TIANLIN LI is a graduate student at National University of Defense Technology with e-mail address:
ltl@mail.ustc.edu.cn.

WENJIE TANG is Senior Lecturer in the Modeling and Simulation department at National University of
Defense Technology. His research focus is system simulation, parallel and distributed simulation. His e-

mail address: tangwenjie@nudt.edu.cn.

YIPING YAO is full professor for system simulation at National University of Defense Technology. His
research focus is system simulation, parallel and distributed simulation. His e-mail address is
ypyao@nudt.edu.cn.

FENG ZHU is Senior Lecturer in the Modeling and Simulation department at National University of
Defense Technology. His research focus is system simulation, parallel and distributed simulation. His e-
mail address: zhufeng@nudt.edu.cn.

2178

