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ABSTRACT

We consider the multiobjective simulation optimization problem, where we seek to find the non-dominated set
of designs evaluated using noisy simulation evaluations, in the context of numerically expensive simulators.
We propose a metamodel-based scalarization approach built upon the famous ParEGO algorithm. Our
approach mainly differentiates from ParEGO and similar algorithms in that we use stochastic kriging, which
explicitly characterizes both the extrinsic uncertainty of the unknown response surface, and the intrinsic
uncertainty inherent in a stochastic simulation. We additionally integrate the Multiobjective Optimal
Computing Budget Allocation ranking and selection procedure in view of maximizing the probability of
selecting systems with the true best expected performance. We evaluate the performance of the algorithm
using standard benchmark test functions for multiobjective optimizers, perturbed by heterogeneous noise.
The experimental results show that the proposed method outperforms its deterministic counterpart based
on well-known quality indicators and the fraction of the true Pareto set found.

1 INTRODUCTION

Deterministic and stochastic simulation models have commonly been used to analyze and predict the
behavior of complex real-world engineered systems, and to support difficult decision making processes.
Researchers in the field of design and analysis of computer experiments (DACE), have devoted special
attention to the development of simulation optimization techniques that seek to provide answers with limited
computing budget. In general, the use of optimization in simulation comes with a series of obstacles: (a) it
may require long running times, especially for high-dimensional problems, or when multiple replications
are needed to achieve sufficient accuracy (as with stochastic simulation); and (b) there is a lack of analytic
gradients, as the simulation model acts as a black box that numerically evaluates the objective vector for
any given decision vector (see Figure 1).
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Figure 1: Black box optimization problem.

The objective of the methodology described in this paper is to offer an efficient approach for the
optimization of stochastic discrete-event simulation problems with multiple objectives. The approach
employs metamodeling, also known as surrogate modeling, in order to speed up computations in settings
where the simulation is computationally expensive. Evidently, in order for such metamodels to be useful,
they have to be accurate and sufficiently cheap-to-evaluate. In particular, we propose a sequential strategy
to solve stochastic multiobjective problems with box constraints.

For the multiobjective case, the optimization problem can be formulated as: min[ f 1(x), ..., f m(x)] for
m objectives and a vector of decision variables x = [x1, ...,xd ]

T in the decision space D (usually D⊂ Rd),
with f : D→Rm the vector-valued function with coordinates f 1, ..., f m in the objective space Θ⊂ Rm. The
goal is to find a set F of all vectors x∗ = [x∗1, ...,x

∗
d ]

T that yields the optimum values for all objectives and
satisfies all the constraints.

Given that the objectives are usually competing, finding a global optimum for all objectives is unlikely
to happen. This leads to a tradeoff between objectives. The optimization task is then to find a set of points
that yield a solution where one objective cannot be improved without negatively affecting the output quality
of another objective. The points in this solution set are referred to as non-dominated or Pareto-optimal
points, and form the Pareto set. The evaluation of these solutions in the objective space corresponds to the
Pareto front. Assuming minimization of all objectives, for x1 and x2 two vectors in D, x1 ≺ x2 means x1
dominates x2 iff f j(x1)≤ f j(x2)∀ j ∈Θ and ∃ j ∈Θ such that f j(x1)< f j(x2).

A wide variety of approaches have been proposed in the field of multiobjective optimization, where
each of them aims to find a representative set of Pareto optimal solutions, or the most preferred solution
by the decision-maker. Embedding a metamodel into the optimization framework speeds up the process
through the evaluation of fast mathematical approximations of some aspect of the system performance,
instead of resorting to the expensive-to-evaluate primary model. This is especially relevant in stochastic
simulation optimization, where multiple replications per design are required to achieve sufficient accuracy.

The method proposed in this paper is built upon the famous ParEGO framework of Knowles (2006),
a scalarization algorithm for multiobjective optimization, which extends the seminal Efficient Global
Optimization (EGO) work of Jones et al. (1998) to multiobjective settings. Both EGO and ParEGO use
deterministic kriging metamodels during the search phase to sample candidate points. Our work is different
from ParEGO and similar algorithms as:

1. We use stochastic kriging, proposed by Ankenman et al. (2010), which explicitly characterizes both
the extrinsic uncertainty of the unknown response surface, and the intrinsic uncertainty inherent in
a stochastic simulation.

2. We integrate the Multiobjective Optimal Computing Budget Allocation (MOCBA, Lee et al. 2010)
procedure for ranking and selection (R&S) of points with the best expected performance.

We vary the structure of the noise (the noise is thus heterogeneous), and the level of the noise
(implementing high and low noise perturbations on the objective outcomes). Most of the work in the
literature so far considers only homogeneous noise (see e.g., Knowles et al. 2009; Horn et al. 2017;
Koch et al. 2015). To the best of our knowledge, this algorithm is the first to combine metamodeling and
MOCBA to solve multiobjective stochastic optimization problems. We test the algorithm using standard
benchmark functions for multiobjective optimizers (Huband et al. 2006), and evaluate its performance by
means of well-known quality indicators found in the literature (Zitzler et al. 2008).
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The remainder of this article is structured as follows: In section 2 we provide the basic theory of kriging
metamodeling, for both deterministic and stochastic settings. Section 3 explains the sequential nature of
kriging-based optimization algorithms, and describes the steps followed by the proposed algorithm. Section
4 discusses the performance evaluation of stochastic multiobjective optimizers, and depicts the numerical
results of the experiments with the proposed algorithm and its deterministic counterpart. We conclude the
article in section 5 and identify promising directions for further research.

2 KRIGING METAMODELING

Deterministic kriging, or Gaussian process regression (GPR, Sacks et al. 1989; Rasmussen and Williams
2006), is an approximation method that can give predictions of unknown values of a random function,
random field, or random process (Van Beers and Kleijnen 2003). Kriging assumes that the closer the input
data, the more positively correlated the prediction errors (Kleijnen 2015). This assumption is modeled
through a second-order stationary covariance process.

Kriging-based optimization algorithms are increasingly popular in simulation optimization, as they
alleviate the computational cost of optimization, especially when the simulation itself is time-consuming.
In particular, they perform efficiently because they not only approximate outputs over the entire search
space (i.e., the response surface), but a quantification of the prediction uncertainty is also provided through
the mean square error (MSE), also known as kriging variance. More formally, let f (x) be an unknown
function, where x = (x1, ...,xd)

T is a vector of design variables of dimension d. In the interest of fitting
a metamodel for the response f (x) at n design points, deterministic kriging assumes that the unknown
response surface can be represented as (Santner et al. 2013):

f (x) = f(x)T
βββ +M(x), (1)

where f(x) is a vector of known trend functions (i.e., a prior trend model that can be defined as a smoothly
varying deterministic function or a constant value), βββ is a vector of unknown parameters of compatible
dimension and M(x) is a realization of a mean zero and covariance-stationary Gaussian random field, that
represents the uncertainty imposed on the problem (Kleijnen 2015).

What relates one observation to another is the covariance function, denoted k, also referred to as
kernel. Multiple covariance functions exist in the field of GP, the choice depends on prior hypothesis
about the unknown functions. The most commonly used kernels in kriging literature are the stationary
squared exponential or Gaussian, and Matérn kernels. The hyperparameters of these kernels are usually
estimated using Maximum Likelihood Estimation (MLE); we refer to Rasmussen and Williams (2006) for
more details on covariance functions. As deterministic kriging is not suitable for stochastic settings, we
are interested in methods capable of accommodating noisy evaluations in the optimization framework. We
thus focus on stochastic kriging (Ankenman et al. 2010).

2.1 Stochastic Kriging

Ankenman et al. (2010) extended deterministic kriging by fully accounting for the sampling variability
inherent in a stochastic simulation (i.e., the intrinsic uncertainty of the simulation outcome). They refer to
M(x) in Eq. (1) as the extrinsic uncertainty of the unknown response surface; that is, the noise imposed
to the problem to aid the construction of the surrogate. They show that correctly accounting for both,
extrinsic and intrinsic uncertainty, has an impact on the experiment design, the response-surface estimation
and inference. They refer to the resulting model as stochastic kriging for simulation metamodeling.

The intrinsic noise is (a) additive, because it is added to any noise that is extrinsic to the system; (b)
heterogeneous, because its variance τ2(x) typically depends on x (the opposite of homogeneous noise); and
(c) independent of the extrinsic noise M and identically distributed across replications. The value of f (x) is
estimated by averaging the value of ri replications at a given input vector xi as f̄ (xi) = ∑

ri

k=1 f̃k(xi)/ri (Law
2015). Thus, at an arbitrary point xi, Eq. (2) depicts the observed goal value f̃k(xi) in the kth replication,
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and Eq. (3) the stochastic kriging prediction f̂ (xi):

f̃k(xi) = β +M(xi)+ εk(xi), (2)

f̂ (xi) = β +ΣM(xi, ·)T [ΣM +Σε ]
−1(f̄−β1p), (3)

where εk(xi) represents the intrinsic noise inherent to the stochastic simulation model with mean zero and
variance τ2(xi) at any arbitrary point xi. In (3), f̄= [ f̄ (x1), ..., f̄ (xp)]T is a vector of estimated function values
at p design points, each one with estimated variance V̂ar[ f̄ (xi)]. These estimates are sample means of the sim-
ulation output across r1, ...,rp replications. Moreover, ΣM(xi, ·) = {k[M(xi),M(x1)], ...,k[M(xi),M(xp)]}T

is the spatial variance-covariance matrix of size p× p, Σε = diag[τ2(x1)/r1, ...,τ2(xp)/rp] is a diagonal
variance-covariance matrix implied by the average simulation noise, and 1p is a p×1 vector of ones. Note
that a constant term β is considered to represent the overall surface mean, instead of the trend term f(x)T

βββ ,
because this model has shown to be the most useful in practice (Ankenman et al. 2010). Moreover, the MSE
of the stochastic kriging predictor (i.e., the stochastic kriging variance), denoted by ŝ2(xi), is estimated as
(Chen and Kim 2014):

ŝ2(xi) = Σ̂M(xi,xi)− Σ̂M(xi, ·)T [Σ̂M + Σ̂ε ]
−1

Σ̂M(xi, ·)+ γT γ

1T
p [Σ̂M + Σ̂ε ]−11p

,

withγ = 1−1T
p [Σ̂M + Σ̂ε ]

−1
Σ̂M(xi, ·).

The values of β , ΣM and Σε are unknown and have to be estimated (estimates are denoted β̂ , Σ̂M and Σ̂ε

respectively). We refer to Ankenman et al. (2010) for the detailed derivation of these maximum-likelihood
estimators.

3 KRIGING-BASED STOCHASTIC MULTIOBJECTIVE OPTIMIZATION

In general, kriging-based optimization algorithms contain sequential steps, as depicted in Figure 2. The
metamodel is sequentially updated with new sampled points (i.e., infill points). When using scalarization,
the multiobjective problem is decomposed into a set of scalar single-objective subproblems, and these are
optimized in a collaborative manner (Miettinen and Mäkelä 2002). The solutions to these subproblems
yield a good approximation of the Pareto front, not a single optimal solution. At each iteration, scalarization
methods might seek a single infill point (as done in ParEGO), or multiple points (as done in MOEA/D-EGO,
Zhang et al. 2010). The selection process is done entirely using the metamodel of the combined objectives.
Once a point is selected, it is evaluated using the expensive simulator to yield the (noisy) objective values
for a candidate member of the observed Pareto front. Finally, with the newly added response (and respective
noise), the kriging metamodel is updated and the procedure is repeated until a convergence criterion or
quality indicator goal is met, or the exploration budget is depleted.

During this search phase, an infill criterion facilitates the choice of candidate solutions. The main goal
of the infill criterion is to balance between the local refinement of the Pareto front approximation and the
improvement of the global model quality (Wagner et al. 2010), by evaluating analytical expressions and
facilitating the choice of candidate solutions (i.e., points located in encouraging areas).

The well-known EGO algorithm of Jones et al. (1998) for deterministic and single-objective black-
box optimization problems, popularized the Expected Improvement (EI) criterion. The EI measures the
expected value of improvement relative to the currently found optimum fmin, based on the predicted
response and standard deviation at a certain point x, denoted f̂ (x) and s respectively: E[I(x)] = ( fmin−
f̂ (x))Φ

(
fmin− f̂ (x)

s

)
+ sφ

(
fmin− f̂ (x)

s

)
, where Φ denotes the normal cumulative distribution and φ denotes

the normal probability density function.
EI is, however, inappropriate for stochastic simulation settings since it ignores the noise in the ob-

servations, assuming they were sampled with infinite precision (Quan et al. 2013). Being aware of this
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deficiency, important advances have been made to extend EGO for stochastic simulation. An important
number of these approaches assume homogeneous simulation noise; Picheny et al. (2013) carry out a
comprehensive review of kriging-based methods for the optimization of single-objective functions with this
type of noise.

In practice, however, the noise is heterogeneous (Kim and Nelson 2006). More recently, a number of
kriging-based single-objective optimization algorithms have been proposed that can handle heterogeneous
noise, based on stochastic kriging models. A comprehensive study to evaluate the effectiveness and the
relative performance of these algorithms is carried out in Jalali et al. (2017). Their results showed that the
performance of the selected algorithms depends on the magnitude and the structure of the noise. They also
emphasize that the implementation of a smart ranking and selection procedure could likely improve the
performance of the studied algorithms. In the algorithm we propose, we solve a single objective problem at
each iteration, thus we can implement a single-objective infill criterion developed for stochastic simulation,
as explained in the following section.

3.1 Proposed Algorithm

We focus on solving the following multiobjective optimization problem: minx∈D[ f 1(x), f 2(x), ..., f m(x)],
for m objectives in the objective space Θ and decision vectors x = [x1, ...,xd ]

T in the decision space D. The
objectives are analytically intractable, so we rely on (expensive) simulation estimates. The solution to this
problem in the decision space yields the Pareto set. Figure 2 shows the sequential steps performed by the
algorithm.

Step 1: Sample initial points 

using  a space filling design 

Step 2: Select a weight 

vector and scalarize the 

objectives into one 

Step 3: Fit a stochastic 

kriging model to

Step 4: Search and select 

the point with highest MEI 

using the kriging 

metamodel.  

Step 7: Use MOCBA in 

view of maximizing the 

probability of selecting the 

best sampled points  

Step 6: Identify the 

observed non-dominated 

and dominated sets

Exploration 

budget left?

Yes

No
Step 5: Simulate the true 

values for all objectives on 

this point. Add this new infill 

point to the candidate set. 

( )Zλ x
( )Zλ x

Figure 2: Sequence of steps in the proposed algorithm.

As is common in kriging-based optimization (Kleijnen 2015), in the first step we use a maximin
latin hypercube sample (LHS), a space filling design to sample the initial points xi, with i = 1, ...,n0. As
suggested in Jones et al. (1998), the number of initial design points is set to 11d−1, where d is the number
of dimensions of x. We compute the expensive simulation values for each objective on these designs,
using a fixed number of replications B per point. We then distribute the computational budget between
the exploratory and accuracy stages. The former refers to the exploration of the design space (i.e., the
total number of infill points to sample, and the replications performed on each of them to obtain an initial
estimate of the response). The latter refers to the budget assigned to the R&S procedure in order to achieve
sufficient accuracy.

Very little research discusses the choice of B; the same is true for the distribution of the budget between
the exploratory and accuracy phases. In Quan et al. (2013) an allocation heuristic is proposed, but in the
experiments of Jalali et al. (2017) it is proven not to be beneficial. We plan to improve on the efficient
allocation of replications in further research; in this article, the choices made are arbitrary. For the initial
design, we consider a fixed value of B = 10; the total replication budget is determined by the number of
infill points we wish to sample, and the choice of B. This total budget is then equally split between the
exploration phase and accuracy phase. For instance, if the total number of infill points to sample is 300
points, as we take B = 10, we have a total of 3000 replications to distribute between both stages. We first
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spend 1500 replications in the exploratory stage, and 1500 replications left to distribute among promising
candidates according to MOCBA, in view of maximizing the probability of selecting the “true” members
of the Pareto front.

In step 2 the objectives are first normalized with respect to their known (or estimated) ranges so that
each objective function lies between [0,1]. Then the objectives are combined into one using a scalarization
function. There are numerous scalarization functions/methods in the literature, the choice depends mainly
on the geometrical properties of the problem (see Miettinen and Mäkelä 2002 for further details on
scalarization). In this work we implement the augmented Tchebycheff scalarization function (4), as done
in the original ParEGO algorithm (Knowles 2006):

Zλλλ (x) = max
j=1,..,m

(λ j f̄ j(x))+ρ

m

∑
j=1

λ
j f̄ j(x), (4)

where f̄ j(xi) are the simulation estimates of the objectives’ values, 0≤ λ j ≤ 1, ∑
m
j=1 λ j = 1, ∀ j ∈ {1, ..,m},

and ρ is a small positive value (e.g., ρ = 0.05). Each set of λ values is defined as a weight vector
λλλ = λ 1, ...,λ m. By varying the set of λ values, we assign each objective a different weight at each iteration,
such that we obtain points that fall between the objectives’ extremes to construct the Pareto front (Knowles
2006). The observed scalarized single-objective subproblem Zλλλ (x) is thus noisy. Moreover, it is common
to assume that the responses are independent (Wagner et al. 2010). Though it is possible to account for
correlation between the multiple objectives, for instance by using co-kriging models (Kleijnen and Mehdad
2014), recent research shows that dependent models are more complex and don’t significantly outperform
independent models (Fricker et al. 2013).

In step 3, we use stochastic kriging to approximate Zλλλ (x) based on the simulation estimates at all
sampled solutions so far. In the fourth step the algorithm uses the Modified Expected Improvement (MEI)
of Quan et al. (2013) as an infill criterion to search and select new infill points iteratively, given its strong
performance in the simulation optimization experiments of Jalali et al. (2017).

In an arbitrary iteration p+1, the algorithm looks at all unvisited alternatives and selects the solution
that maximizes MEI(x) = E{max[Ẑ(xmin)−Z∗N(x),0]}, where Ẑ(xmin) is the stochastic kriging prediction
at xmin = argminx∈Dp Z̄(x) (i.e. the alternative with the lowest sample mean among the already simulated
points); and Z∗N(x) is a normal random variable: Z∗N(x)∼N[Ẑ(x),sD(x)], where the mean Ẑ(x) is the stochastic
kriging prediction at solution x, and s2

D(x) the estimate of the deterministic kriging prediction error. In
step 5 the algorithm selects the point that maximizes MEI and the solution is updated by performing B/2
(expensive) simulation replications at the new sampled point per objective, yielding f̄ j(xnew),∀ j = 1, ...,m.
Then the algorithm updates the metamodel re-computing the kriging parameters with the new design point
included.

The algorithm then checks the exploration budget. If budget allows, another iteration is performed:
we go back to step 2, randomly choose another weight vector λλλ and repeat steps 3−5. Depending on the
number of iterations, the same objective Zλλλ (x) (i.e., a weight vector is repeated) can be minimized several
times during the run of the algorithm. When the exploration budget is depleted, the algorithm proceeds
to identify the observed non-dominated set to the optimization problem by tracing back all the sampled
points and comparing them. Note that the observed objective values contain noise; the correct selection of
the truly non-dominated points is, thus, not trivial. This problem is referred to as multiobjective ranking
and selection (MORS), yet very little research has been done in this regard. The setting depicted in Figure
3 exemplifies the MORS problem, for 5 designs and 3 objectives; the variances are represented by the
vertical bars (95% confidence intervals).

Relying only on the observed objectives’ values, we may incur two possible errors due to sampling
variability. A Type I error occurs when designs that actually belong to the non-dominated set, are considered
dominated. A Type II error occurs when designs that are actually dominated, fall in the observed Pareto
front. To ensure a high probability of correctly selecting a non-dominated design, we should smartly
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Design

1x 2x 3x 4x 5x

1( )f x

Design

1x 2x 3x 4x 5x

2 ( )f x

Design

1x 2x 3x 4x 5x

3( )f x

Figure 3: Based on the observed responses and variances, it is non-trivial to differentiate between superior
and inferior designs. Are designs 1, 2 and 3 critical? Should we discard design 5? How to optimally
allocate the accuracy budget such that we maximize the probability of selecting the designs with the best
expected performance? Clearly, the more designs we sample and the more objectives we have, the more
complex the problem becomes. Some designs may perform very well on some objectives, and badly in
others (e.g., design 4).

allocate the accuracy budget to those critically competitive designs, based on their observed performance
and variance. Analogously, we should not spend budget on those designs that are clearly dominated.

Ranking and selection procedures have been extensively studied for single-objective settings (Boesel et al.
2003; Chen et al. 2000). Multiple screening, indifference zone and optimal allocation procedures have been
developed to ensure fast convergence to the true optimum by efficiently allocating extra replications among
competitive points. Among the few works on MORS, MOCBA (Lee et al. 2010) is a Bayesian allocation
framework that aims to minimize both type I and II errors. It is built upon its famous single-objective
analogous OCBA (Optimal Computing Budget Allocation) of Chen et al. (2000).

In single-objective sequential simulation optimization algorithms, it is common to employ the R&S
procedure embedded in the optimization loop (i.e., immediately after step 5 in Figure 2, before checking
the budget left). Yet, we suspect that this may waste budget in the early iterations of the algorithm, when
the emphasis should be on fine-tuning the kriging model, rather than identifying the final best points. In
the proposed algorithm, we first sample all the candidate points, compute the observed Pareto front, and
then we run MOCBA to allocate extra replications to competitive designs. Using MOCBA, designs with
low objective values and high variance will be prioritized, whereas designs with large objective values
and low variance will be discarded. We refer to Chen et al. (2000) and Lee et al. (2010) for the detailed
derivation of the MOCBA allocation rules.

4 PERFORMANCE OF THE PROPOSED ALGORITHM

To assess the performance of the algorithm, we run it on two benchmark functions with different geometries
obtained from the literature (Huband et al. 2006): DTLZ2 (concave front) and WFG3 (linear front). We
evaluate 4 different scenarios: DTLZ2a (2 objectives and 5 dimensions); DTLZ2b (4 objectives and 4
dimensions); WFG3a (2 objectives and 3 dimensions); and WFG3b (3 objectives and 4 dimensions). We
refer to the analytical expressions and detailed characteristics of these functions in Huband et al. (2006).
For all the experiments we fix a budget of 300 infill points in addition to the LHS design, and we set
B = 10.

These test functions are continuous. In order to avoid the difficult problem of maximizing MEI in a
continuous domain, we discretize the design space using large but finite sets of solutions. For this purpose
we use low-discrepancy sequences such as Faure and Sobol (i.e., quasi-Monte Carlo sampling methods with
desirable space-filling properties). The number of points depends on the dimensionality d of the problem;
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we take d×1500 points (see Lemieux 2009 for further details on quasi-Monte Carlo sampling). This set
of points is the design space D and our objective is to find the Pareto set among these alternatives using
the proposed algorithm.

All objectives are perturbed with heterogeneous Gaussian noise. Hence, we obtain noisy observations
f̃ j
k (x

i) = f j(xi)+ εk(xi), with εk(xi) ∼N (0,τ(xi)) for j = 1, ...,m objectives at the kth replication. In
practice, the noise can follow any type of structure. In our experiments, we assume that the standard
deviation of the noise (i.e., τ(x)) varies linearly with respect to the objective values, analogous to the
single-objective experiments of Jalali et al. (2017): τ(x) = a f j(x)+b, ∀ j ∈ {1, ..,m}.

The maximum and minimum values of τ(x) are linked to the range of each objective value in the region
of interest (i.e., maxx∈D f j(x)−minx∈D f j(x),∀ j ∈ {1, ..,m}), denoted R j

f (Huang et al. 2006; Picheny

and Ginsbourger 2014). For the initial LHS design, the noise varies between 0.2R j
f and 0.8R j

f , as in Jalali
et al. (2017). For the exploratory phase, we consider a heavy level of noise perturbing the responses: τ(x)
varies between 80% and 200% of R j

f (i.e., minx∈D τ(x) = 0.8R j
f and maxx∈D τ(x) = 2R j

f , ∀ j ∈ {1, ..,m}).
This way we can easily compute the a and b constants for the linear function. We consider the case where
the noise decreases linearly with the objective values; we have minimum noise at the global minimum of
each individual objective (i.e., minx∈D τ(x) at minx∈D f j(x) and maxx∈D τ(x) at maxx∈D f j(x)).

4.1 Experiments

Measuring the quality of a given Pareto front approximation is a non-trivial task, as in practice, the “true”
Pareto front is unknown. Two widely used quality indicators are the hypervolume and inverted generational
distance (IGD). The hypervolume is the portion (volume) of the objective space covered by a particular
Pareto front; whereas the IGD measures the Euclidean distance from a member of the approximated Pareto
front and its closest member of a reference front (e.g., the true Pareto front). Thus, the former is to
be maximized, and the latter minimized. These and other indicators, however, have been developed for
deterministic settings (Zitzler et al. 2008). In addition, they only look into the performance of the algorithm
in the objective space, rather than in the design space.

In stochastic settings, we are also concerned about how well the observed Pareto set matches the true
Pareto set. By only measuring the quality of the observed Pareto front we may incur errors type I or II.
Some recent research suggests to combine different existing deterministic indicators for noisy multiobjective
optimization (see e.g., Fieldsend and Everson 2015), as well as using the deterministic responses to infer
on the quality of the stochastic Pareto front approximation. In this work we first compare the original
(deterministic) ParEGO with the proposed algorithm by means of the hypervolume and IGD indicators. For
ease of visualization, Figures 4 and 5 depict the results for the biobjective DTLZ2a and WFG3a functions
only, but the results for the 3- and 4-objective functions are comparable. From left to right, the first plot
shows the observed Pareto front, the middle one the hypervolume and the third one the IGD.

Based on the hypervolume and IGD indicator values, it is clear that the proposed algorithm significantly
outperforms ParEGO in terms of the quality of the Pareto front (i.e., the portion of the objective space
covered by the front). This is also visually clear in terms of shape, richness and uniformity of the front.
The hypervolume is roughly 25% and 40% better for the proposed algorithm; whereas the IGD is 3.4
and 5.5 times better for the WFG3a and DTLZ2a scenarios respectively. However, based only on the
hypervolume and IGD indicator values, we cannot determine which of the members of the observed Pareto
fronts actually belong to the true Pareto front. Some of the observed members might be wrongly considered
non-dominated, while some of the discarded candidates might actually belong to the true non-dominated
set.
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Performance of ParEGO on WFG3a

Performance of the proposed algorithm on WFG3a

1f

2
f

1f

2
f

Figure 4: Performance of ParEGO and the proposed algorithm on WFG3a on a budget of 300 evaluations.

Performance of ParEGO on DTLZ2a

Performance of the proposed algorithm on DTLZ2a

1f

2
f

1f

2
f

Figure 5: Performance of ParEGO and the proposed algorithm on DTLZ2a on a budget of 300 evaluations.
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As we know the true objective values for the entire finite set of points, we can determine the members
of the true Pareto set, and compute the percentage of the true set that has been found by the algorithms, as
shown in Table 1. It is clear that the proposed algorithm is able to find better solutions than its deterministic
counterpart. By employing MOCBA, we minimize both error types, but at the cost of a high replication
budget. On the other hand, given the high levels of noise in the objectives, it is not surprising that ParEGO
struggles in the search of non-dominated designs. Moreover, it wastes plenty of replications on non-critical
designs, as it distributes the entire budget evenly among all 300 infill points.

Table 1: Percentage of the true Pareto set found by ParEGO and the proposed algorithm (average of 20
runs).

Approach DTLZ2a DTLZ2b WFG3a WFG3b
ParEGO 65% 58% 66% 56%
Proposed algorithm 91% 79% 85% 76%

5 CONCLUDING REMARKS

In this work we propose a preliminary stochastic-kriging-based algorithm for multiobjective simulation
optimization. It builds on the ParEGO algorithm of Knowles (2006) and implements the MOCBA procedure
of Lee et al. (2010) to identify the Pareto-optimal points at the end of the search loop, by discarding
obviously inferior sampled points and allocating (extra) replications only to critical designs. Additionally,
in contrast to the common assumption in the literature of homogeneous noise, we consider heterogeneous
noise. Since stochastic kriging can tolerate more noise than deterministic kriging, it allows for less effort
per design point and thus more design points can be used in the analysis. However, for large sets of design
points, stochastic kriging can be slower than deterministic kriging (Staum 2009). Experimental results
show that the proposed algorithm significantly outperforms ParEGO in terms of quality of the observed
Pareto front and the fraction of the true Pareto set found.

There are multiple opportunities for further work. One of the main challenges for multiobjective
simulation optimization algorithms is the ranking and selection problem. Apart from MOCBA, other
recent efforts include Feldman et al. (2015), Branke et al. (2016) and Bonnel and Collonge (2015).
Given that MOCBA requires a large replication budget to converge, running the proposed algorithm with
different ranking and selection procedures would allow for inference on the efficiency of these approaches.
Furthermore, indifference zone procedures have proven to be useful in single-objective ranking and selection.
Integrating the indifference zone procedure proposed by Teng et al. (2010) into our proposed algorithm may
also enhance its performance. Finally, a major problem that deserves more attention is how to distribute
the computational budget between the exploratory and accuracy phases. Further experiments with different
allocation rules will likely be valuable in this regard.
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