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ABSTRACT

We introduce Direct Gradient Augmented Response Surface Methodology (DiGARSM), a new sequential
first-order method for optimizing a stochastic function based on Response Surface Methodology (RSM).
In this approach, gradients of the objective function with respect to the desired parameters are utilized
in addition to response measurements. We establish convergence of the proposed method. We compare
methods that use only response information and those that use only gradient information with the proposed
approach, which uses both. Moreover, we conduct numerical simulations to illustrate the effectiveness of
the proposed method.

1 INTRODUCTION

Response surface methodology (RSM) is a popular local metamodel method in simulation optimization,
which sequentially determines variables that optimize the response of a system. RSM was first described
in Box and Wilson (1951) and was applied to a real physical system. Since that time, the use of RSM
has been extended successfully to many other scientific fields such as biometrics (Mead and Pike 1975),
industrial engineering (Wu 1964) and materials science (Horng et al. 2008). RSM is often applied in
optimizing stochastic simulation models. One of the earliest case studies is given in Keyzer et al. (1981).
Other examples of RSM in simulation include Fu (1994) and Carson and Maria (1997). More recent
developments of RSM in simulation are discussed in Barton and Meckesheimer (2006), Bartz-Beielstein
and Preuss (2007) and Law et al. (2007). Myers et al. (1989) gives a review of developments in RSM in
the period 1966-1988. More recent overviews of RSM can be found in Kleijnen (2015).

Traditionally, RSM views the system to be optimized as a black box and is able to obtain the input-output
pairs (variable-response pairs) from the model. It uses a sequence of local experiments that leads to the
optimum. In each local experiment, a number of input-output pairs are observed in a small region. A
metamodel, which is usually a first or second-order polynomial model, is then used to fit the response
surface. Steepest descent (or ascent) is performed to determine the next region to be explored, where the
search direction is given by the fitted model. The fit and search process is repeated until a satisfactory result
has been obtained; see Kleijnen (2015) for details. To determine input points to measure in each local
experiment, several design methods are presented, e.g., factorial design, PlackettBurman design (Plackett
and Burman 1946) and simplex design. More complex design methods include robust parameter design.
A successful design should be examined based on several criteria, such as prediction variance (Box and
Draper 1975). Experiment design and optimization method for multiple-response problems have also been
studied. For example, Kim and Draper (1994) considers designs for systems with two correlated responses,
and more general multiple-response systems are studied in Krafft and Schaefer (1992).
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Though RSM is only a heuristic (Kleijnen 2015), it works well in applications when relatively accurate
response measurements are available. However, the measurement on the output of the system is often noisy,
which could lead to unstable behavior of RSM. This is one leading motivation for our research: is there any
additional information that we may utilize to cancel the negative impact of noisy response measurements?

In some simulation settings, direct gradient information may also be available, i.e., in addition to the
performance measure of the system, the gradient of the performance measurement with respect to (w.r.t.)
the parameters of interest, is also included in the output responses. A number of techniques to estimate the
gradient of performance measure through samples have been proposed. Examples of such methods include
perturbation analysis (Ho and Cao 1983; Glasserman 1991) and the likelihood ratio method (Rubinstein and
Shapiro 1993). The gradient estimate has been applied extensively to stochastic approximation (Fu 1994).
Therefore, when gradient measurements are also available, one way to potentially improve traditional RSM
is to combine gradient information in fitting the metamodel. One big question here is how to incorporate
the extra gradient measurements. A similar question is addressed in the context of stochastic approximation
(Chau et al. 2014a; Chau et al. 2014b), where both gradient and response measurements are utilized with
proven record of improvement. Therefore, we hope that the gradient measurements will help improve the
performance of RSM.

With additional gradient information, a modified regression model-Direct Gradient Augmented Regres-
sion (DiGAR)-is investigated in Fu and Qu (2014). DiGAR fits a regression model using both response
and gradient information with a least squares approach. This regression model shows great potential in
the presence of significant response measurement noise. Under some mild assumptions, it is also shown
that the estimator of the gradient is unbiased. Therefore, we expect the modified RSM with DiGAR
model will perform better than traditional RSM with regular least-squares regression model. Moreover,
since gradient augmented RSM uses both response and gradient measurements, we also believe that in
cases where gradient information is unreliable but response measurement is accurate, i.e., high variance in
gradient measurement but low in response measurement, the modified RSM should still perform well.

Another drawback in applying RSM is the lack of theoretical convergence guarantee. Some prior work
related to the convergence property of RSM include stopping rules (Miró-Quesada and Del Castillo 2004)
and confidence regions (Cahya et al. 2004). Theoretical performance of RSM incorporated with trust region
method is presented by Chang et al. (2007). However, to the best of our knowledge, there is little research
on the convergence analysis of RSM. Thus, we are also interested in establishing that RSM, including the
version augmented with direct gradient information, converges to the optimal point of objective function.

In this paper, we propose an iterative local metamodel method called Direct Gradient Augmented
Response Surface Methodology (DiGARSM). In each iteration, responses and their gradients w.r.t. to
parameter of interest are observed in a local region. These responses are used to fit DiGAR model to
determine the search direction. We examine the potential improvements in efficiency when the additional
gradient information is present compared to traditional RSM and search model that uses only gradient
information. We also investigate the performance of DiGARSM when the variance in gradient measurements
is significant. Numerical experiments are carried out to illustrate the power of gradient information on the
modified RSM model. Results show that DiGARSM is less sensitive to measurement variances compared
to the one that uses only response or only gradient information: it adjusts the search direction with the
additional measurements. Moreover, simulations also show that DiGARSM leads to faster convergence
than traditional RSM. In summary, contributions of this work include:

1. We propose a modified RSM that incorporates both response and gradient measurements.
2. We provide preliminary convergence analysis for both RSM and DiGARSM.
3. We provide numerical experiments that illustrate the efficiency and robustness against measurement

variances of our algorithm.

The rest of the paper is organized as follows: Section 2 describes the underlying problem and proposes
DiGARSM, as well as models that use only response or gradient measurements, for one-dimensional
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problems. Section 3 extends the investigation to multidimensional problems and proposes search directions
under such settings. Section 4 presents some preliminary theoretical results. Numerical examples for two
different objective functions are shown in Section 5 to illustrate the potential power of this new method.
Finally, we conclude and provide some future research directions in Section 6.

2 ONE-DIMENSIONAL PROBLEMS

Consider a stochastic optimization problem

min
x∈R

f (x) = min
x∈R

E[ f̃ (x)],

where f : R→ R, f (x) = E[ f̃ (x)], and f̃ (x) is a noisy sample of response at x. We assume that f (x)
is a convex function but its closed form is not available to us. In addition to access to noisy response
samples, we can also obtain noisy direct gradient ∇ f̃ (x) estimates at the same time. Let ∇ f (x) =E[∇ f̃ (x)].
Further assume homogeneous noise in the estimation, let f̃ (x) = f (x)+εx and ∇ f̃ (x) = ∇ f (x)+δx, where
εx ∼ N(0,σ2

f ), δx ∼ N(0,σ2
g ), Cov(εx,δy) = ρ for x = y and 0 otherwise.

RSM generates a sequence of iterates {xk}. At iteration k, input-output pair samples around xk are
taken and fitted to a linear model. The next iterate is found using the recursion

xk+1 = xk−akgk, (1)

where gk is the derivative, which is obtained from the fitted linear model, and ak > 0 is the step size.
Suppose that at iteration k we sample symmetrically around xk at xk + ck, xk− ck for n times each, where
ck is some positive number that changes at each iteration. Denote the optimal point by

x∗ = argmin
x

f (x).

We hope that recursive runs of Equation (1) will lead to x∗. To make our notation cleaner, we denote xi
k

as the i-th sampled set of points in the k−th iteration, i.e., xi
k = {xi

k,−,x
i
k,+} = {xk− ck,xk + ck} for all i.

With a little abuse of notation, let f̃ (xi
k) = { f̃ (xi

k,−), f̃ (xi
k,+)} and ∇ f̃ (xi

k) = {∇ f̃ (xi
k,−),∇ f̃ (xi

k,+)} be the
set of response and gradient estimates of the set xi

k. To simplify equations, define set S = {+,−}.
Now assume that the algorithm has proceeded to iteration k. In the rest of this section, we will discuss

the metamodel to be fit and the corresponding gradient estimates under different assumptions.
Remark 1 Traditionally, RSM fits samples to a second-order polynomial in the last step. In this paper we
will focus on fitting samples to linear models to obtain the preliminary theoretical results in Section 4.

2.1 Direction by Ordinary Linear Regression (RSM)

First let us assume that we can only access the responses at xi
k, i.e., we have f̃ (xi

k) for i = 1,2, . . . ,n. To
estimate the derivative gk, we fit the 2n data to an ordinary linear regression model

f̂ (x) = βk0 +βkx.

The least squares approach minimizes the sum of squared residuals given by

L = ∑
j∈S

n

∑
i=1

( f̃ (xi
k, j)− f̂ (xi

k, j))
2

= ∑
j∈S

n

∑
i=1

( f̃ (xi
k, j)−βk0−βkxi

k, j)
2.
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The optimal βk that minimizes L is given by

β̂k =
(1/2n)∑ j∈S ∑

n
i=1(x

i
k, j− x̄k)( f̃ (xi

k, j)−
¯̃fk)

(1/2n)∑ j∈S ∑
n
i=1(x

i
k, j− x̄k)2 , (2)

where x̄k and ¯̃fk are the means over all sampled points and sample responses at iteration k, respectively.
The derivative is then given by β̂k, i.e., gk = β̂k.

2.2 Direction with Gradient Estimates

In this part, we consider systems where only direct gradient estimates are used, i.e., for xi
k, we use only

∇ f̃ (xi
k) and not f̃ (xi

k), as in the Gradient Surface Methodology (GSM) of Ho et al. (1992). Then one
suitable gradient estimate can be calculated by fitting gradients

∇ f̂ (x) = βk,∀i = 1,2, . . . ,2n.

The βk that minimizes the sum-of-squared-error becomes the optimal estimate in the least squares sense.
Therefore, βk is given by minimizing

L = ∑
j∈S

n

∑
i=1

(∇ f̃ (xi
k, j)−∇ f̂ (xi

k, j))
2

= ∑
j∈S

n

∑
i=1

(∇ f̃ (xi
k, j)−βk)

2.

The minimizer (and hence gk) is the mean over all samples, i.e.,

gk = β̂k =
1

2n ∑
j∈S

n

∑
i=1

∇ f̃ (xi
k, j) = ∇

¯̃fk. (3)

2.3 Direction by Augmented Regression with Gradient

Now we present DiGARSM, in which we assume both response measurement and direct gradient estimates
are available at the time of sampling, that is, we can acquire both f̃ (xi

k) and ∇ f̃ (xi
k) when we sample point

xi
k. Then we have 2n noisy estimates of the responses and gradients. To obtain a proper gradient estimate

from these samples, DiGARSM first fit these data to least square α−DiGAR model proposed in Fu and
Qu (2014)

f̂ (x) = βk0 +βkx,

∇ f̂ (x) = βk,

by minimizing the weighted sum of loss

L = α ∑
j∈S

n

∑
i=1

( f̃ (xi
k, j)− f̂ (xi

k, j))
2 +(1−α) ∑

j∈S

n

∑
i=1

(∇ f̃ (xi
k, j)−∇ f̂ (xi

k, j))
2

= α ∑
j∈S

n

∑
i=1

( f̃ (xi
k, j)− ck−βkxi

k, j)
2 +(1−α) ∑

j∈S

n

∑
i=1

(∇ f̃ (xi
k, j)−βk)

2,

where α ∈ [0,1] is the weight on response measurements and needs to be specified by users.
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The minimizing βk (and hence gk) is given by

gk = β̂k =
α(1/2n)∑ j∈S ∑

n
i=1(x

i
k, j− x̄k)( f̃ (xi

k, j)−
¯̃fk)+(1−α)∇ ¯̃fk

(1/2n)α ∑ j∈S ∑
n
i=1(x

i
k, j− x̄k)2 +(1−α)

. (4)

The for DiGARSM takes advantage of both response and gradient samples. Therefore, we expect it
will outperform RSM, which only fits response or gradient samples.

Note that if we set α = 1, the gradient information is not utilized, and Equation (4) becomes Equation (2).
If α = 0, only gradient information is used, and thus reduces to Equation (3), which resembles the Kiefer-
Wolfowitz Stochastic Approximation (SA) algorithm, except it uses the sample mean of the gradient
estimates.

3 MULTIDIMENSIONAL PROBLEMS

In this section we propose the DiGARSM algorithm for problems with more than one dimension, i.e., our
objective is to solve

min
x∈Rd

f (x) = min
x∈Rd

E[ f̃ (x)],

where d > 1 is the number of dimensions. Similar to one-dimensional cases, assume f̃ (x) = f (x)+εx and
∇ f̃ (x) = ∇ f (x)+∆x, where ∆x ∼ N(0,δxI). At iteration k, we apply a full factorial design to determine the
points to sample with a total 2dn of samples. The i−th set of sample points xi

k = {xi
k, j| j ∈S d}, the set of

response measurements f̃ (xi
k) and the set of gradient measurements ∇ f̃ (xi

k) are defined analogously. The
recursive formula is the same as Equation (1) in one-dimensional problems, except that the iterate xk and
gradient gk will be of d dimensions. Additionally, the regression models for the three different designs in
Section 2 remain unchanged, although the solution may seem more complicated.

3.1 Direction by Ordinary Linear Regression in Multidimensional Problem

With only responses available, RSM fits

f̂ (x) = βk0 +β
T
k x,

where βk = [βk1, . . . ,βkd ]
T , by minimizing

L = ∑
j∈S d

n

∑
i=1

( f̃ (xi
k, j)− f̂ (xi

k, j))
2

= ∑
j∈S d

n

∑
i=1

( f̃ (xi
k, j)−βk0−β

T
k xi

k, j)
2.

The optimal βk is given by

β̂k = [ ∑
j∈S d

n

∑
i=1

(xi
k, j− x̄k)(xi

k, j− x̄k)
T ]−1[ ∑

j∈S d

n

∑
i=1

(xi
k, j− x̄k)( f̃ (xi

k, j)− ¯̃fk)]. (5)

Consequently, the gradient estimate gk = βk.

3.2 Direction with Gradient Estimates in Multidimensional Problem

When only gradient information is utilized in multidimensional problems, we fit our data to a model similar
to that in the one-dimensional case:

∇ f̂ (x) = βk.
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By minimizing the sum of squared 2-norm of the error

L = ∑
j∈S d

n

∑
i=1
||∇ f̃ (xi

k, j)−∇ f̂ (xi
k, j)||2,

we obtain the optimal βk (and hence gk)

gk = β̂k =
1

2dn ∑
j∈S d

n

∑
i=1

∇ f̃ (xi
k, j) = ∇

¯̃fk, (6)

which is also the mean over all sampled data.

3.3 Direction by Augmented Regression with Gradient in Multidimensional Problem

Similar to the one-dimensional case, DiGARSM assumes that noisy response and gradient information
can be obtained, and the derivative estimate is found by fitting the α-DiGAR model for multidimensional
problems

f̂ (x) = βk0 +β
T
k x,

∇ f̂ (x) = βk = [βk1,βk2, . . . ,βkd ]
T .

The resulting gradient is found by minimizing

L = α0 ∑
j∈S d

n

∑
i=1

( f̃ (xi
k, j)− f̂ (xi

k, j))
2 + ∑

j∈S d

n

∑
i=1

(∇ f̃ (xi
k, j)−∇ f̂ (xi

k, j))
TW (∇ f̃ (xi

k, j)−∇ f̂ (xi
k, j))

= α0 ∑
j∈S d

n

∑
i=1

( f̃ (xi
k, j)−βk0−β

T
k x)2 + ∑

j∈S d

n

∑
i=1

(∇ f̃ (xi
k, j)−βk)

TW (∇ f̃ (xi
k, j)−βk),

where W = diag(α1, . . . ,αd) is the weight matrix with ∑
d
i=0 αi = 1, which also needs to be determined by

practitioners.
The minimizing βk (hence gk) is given by

β̂k = [α0 ∑
j∈S d

n

∑
i=1

(xi
k, j− x̄k)(xi

k, j− x̄k)
T +2dnW ]−1[α0 ∑

j∈S d

n

∑
i=1

(xi
k, j− x̄k)( f̃ (xi

k, j)− ¯̃fk)+2dnW∇
¯̃fk]. (7)

Similar to the one-dimensional case, when α0 = 0, only gradient information is utilized, and when
α0 = 1 only responses of the function are used, the algorithm becomes Kiefer-Wolfowitz (KW) stochastic
approximation.
Remark 2 In order to illustrate the differences between the derivatives in the three approaches, and show
that Equation (4) can be seen as a hybrid of Equations (2) and (3) (Equations (7), (5), (6), respectively for
multidimensional problems), we provide our result in explicit form. In practice, it may be more convenient
to write the solution in matrix form; see Fu and Qu (2014) for more details.

4 THEORETICAL RESULTS

We have the following results regarding traditional RSM and DiGARSM, respectively.
Proposition 1. (Sequential First-Order RSM) Let {xk} be a sequence following recursion (1) and gk = βk
given in Equation (2) (one dimensional) or Equation (5) (multidimensional). If the following conditions
hold:
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1. ∑
∞
k=1 ak = ∞, ∑

∞
k=1 akck < ∞, ∑

∞
k=1 a2

k < ∞, and ∑
∞
k=1 a2

kc2
k < ∞ for positive sequences {ak} and

{ck}.
2. ∃K0, K1 > 0 such that K0||x− x∗|| ≤ ||∇ f (x)|| ≤ K1||x− x∗|| for all x ∈ R.
3. ∇ f (x)T (x− x∗)> 0 for all x 6= x∗ ( f is quasiconvex).
4. ∃B such that σ2

f < B < ∞ and σ2
g < B < ∞.

5. εx and δy are independent for all x 6= y, Cov(εx,δy) = ρ for all x ∈ R and Cov(εx,δy) = 0 for x 6= y.

Then xk converges to x∗ in mean square.
The proof follows closely the proof of Proposition 2, which will be addressed in our future research.

Proposition 2. (Sequential First-Order DiGARSM) Let {xk} be a sequence following recursion (1) and
gk = βk given in Equation (4) (one-dimensional) or Equation (7) (multidimensional). Under the same
assumptions as those in Proposition 1, xk converges to x∗ in mean square.

To summarize, the algorithmic description of DiGARSM is shown in Algorithm 1.

Algorithm 1: Algorithmic description of DiGARSM.
Input: Initial point x0, weights α0, . . . ,αd , positive sequences ak and ck
Output: Optimal point x∗ = argminx f (x)
k ← 0;
while stopping rule not met do

Calculate the set of points to be sampled
xi

k for i = 1,2, . . . ,n;
Obtain samples of response and gradient:
f (xi

k) and ∇ f (xi
k) for i = 1,2, . . . ,n;

Calculate derivative estimate:

gk =


α(1/2n)∑ j∈S ∑

n
i=1(x

i
k, j−x̄k)( f̃ (xi

k, j)−
¯̃fk)+(1−α)∇ ¯̃fk

(1/2n)α ∑ j∈S ∑
n
i=1(x

i
k, j−x̄k)2+(1−α)

(one−dimensional)

[α0 ∑ j∈S d ∑
n
i=1(x

i
k, j− x̄k)(xi

k, j− x̄k)
T +2dnW ]−1·

[α0 ∑ j∈S d ∑
n
i=1(x

i
k, j− x̄k)( f̃ (xi

k, j)−
¯̃fk)+2dnW∇

¯̃fk] (multidimensional)

xk+1← xk−akgk;
k← k+1;

end
return xk;

5 NUMERICAL SIMULATIONS

In this section we compare three different methods for gradient estimates: use both response and gradient
information (DiGARSM), use only responses (RSM) and use only gradient information (KW stochastic
search). These three designs will be referred to as designs 1, 2, and 3, respectively, henceforth. Two test
functions, i.e., quadratic function and Booth function (Jamil and Yang 2013), are used to examine the
efficiency of our designs, with the dimension (d) set to 2. The measurements of responses and gradients of
the function at point x are corrupted with measurement noises εx and δx, respectively with εx ∼ N(0,σ2

f )

and δx ∼ N(0,σ2
g ). The variances of the noises are taken from the set {1,10,50}. The initial point is set

randomly and the same for all three methods. To compare the efficiency of three designs, the error of
the function value of each iterate to the optimum ( f (xk)− f (x∗)) is calculated at each iteration. We run
each simulation independently for 10 times and the average error is plotted. The weights (α) are set to be
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uniform, i.e., αi = 1/3 for i = 0,1,2. The positive sequences {ak} and {ck} are set to ak = 1/(10+k) and
ck = (100+ k)−

1
3 .

5.1 Quadratic Function

The quadratic function is given by f (x) = xT x. Clearly, the global minimum is achieved at x∗ = (0,0)T

with f (x∗) = 0. The average error with different combinations of noises variances are shown in Figures 1
to 3. The y-axis is truncated to [0,50] to show details. Note that in Figure 3, the plot of Design 2 is
out of the scope due to large error. When the variance of responses measurement (σ2

f ) and variance of
gradient measurement (σ2

g ) are low (Figures 1a, 1b, 2a and 2b), all three algorithms perform similarly in
error. When σ2

f is significantly larger (Figures 3a and 3b), the algorithm using only response information
has inferior performances, while the other two designs applying gradient information still generate stable
results. This makes sense, because RSM is only utilizing very noisy responses of the function but the other
two use the less corrupt gradient. When σ2

g is relatively larger (Figures 1c and 2c), design 3 is affected
most, especially for the first few iterations, whereas design 2 is unaffected, because it does not use gradient
information at all. Design 1, where both responses and gradients are applied, is affected but to a lesser
extent: its error increases for some iterations, but is still very close to that of design 2. When both responses
measurements and gradient measurements are noisy (Figure 3c), all three designs are influenced compared
with low noise variances. Design 2 becomes very unstable, like those in Figures 3a and 3b. As for design
1 and 3, although the gradient measurements are quite noisy, the two architectures still converge to the
optimum.

When the gradient variance is large and the response measurement variance is reasonably small (e.g.,
Figures 1c and 2c), design 1 has a faster and more stable performance within the first 30 iterations, and
after that the two designs perform similarly. We believe that the usage of more informative responses in
DiGARSM leads to this result in the first few iterations. When the algorithm has reached a point where
the error is small (i.e., after 30 iterations in our example), the variances of the measurements become
comparable to the function values (because of the homogeneous noise assumption), which makes design
1 and design 3 perform similarly.

From Figures 1c, 2c and 3a to 3c, it is clear that the use of both gradients and responses of the objective
function indeed improves the performance of RSM.
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Figure 1: Quadratic function: σ2
f = 1.

5.2 Booth Function

The Booth function is given by f (x) = (x1 +2x2−7)2 +(2x1 +x2−5)2. The global minimum is achieved
at x∗ = (1,3) with f (x∗) = 0. The average error with different combinations of noise variances are shown
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Figure 2: Quadratic function: σ2
f = 10.
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Figure 3: Quadratic function: σ2
f = 50.

in Figures 4 to 6. In Figure 6, design 1 is out of range because of the large error. The results of three
designs on Booth function are similar to that of quadratic function: the traditional RSM (Design 2) works
well when the response variance is low and becomes unreliable when such variance is large. When only
gradient information is utilized (Design 3), the algorithm works relatively well when σg is low. When
significant noises present in both measurements, the DiGARSM (Design 1) is very robust against such
noises, and its performance is comparable to Design 3, which can be seen from Figure 6c.
Remark 3 When gradient and response measurements have the same noise variances, e.g., Figures 2b, 3c,
5b and 6c, design 3 has more stable, reliable performance, suggesting that gradients are more informative
than responses under the same noise variance. Therefore, in such cases, practitioners may weight more on
gradients in DiGARSM to gain better results.

6 CONCLUSION AND FUTURE RESEARCH

In this paper, we proposed DiGARSM, a new metamodel-based optimization method that combines traditional
RSM and gradient measurements. In some optimization settings, estimates of the gradient of the objective
function w.r.t. the parameters of interest may also be available in addition to responses of the function.
Our approach provides a method to combine the response and gradient measurements through α−DiGAR
model. It was shown by numerical examples that our approach is robust to measurement noise of both
information compared to designs that use only single information. We assumed that the objective function
has homogeneous variance. Therefore, one possible extension of this work is investigating the performance
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Figure 4: Booth function: σ2
f = 1.
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Figure 5: Booth function: σ2
f = 10.

of DiGARSM on heterogeneous variance. In particular, we expect DiGARSM to have better performance
when the variance is proportional to the function value. Another natural extension is to design an algorithm
that intelligently chooses the weights in DiGARSM. We expect the algorithm will have better performance
if it can adaptively emphasize more on less noisy estimates.

We note again that the usual sequential RSM procedure involves two phases, with the second phase
most commonly a single iteration of a higher-order (usually quadratic) fit, from which the optimum is
estimated. Such a procedure is necessarily a finite-time procedure involving a stopping time, and thus
asymptotic convergence analysis such as employed here would not be appropriate. Future work would
consider this setting, and one proposed approach is to use finite-time complexity bounds like the ones
introduced in Nemirovski et al. (2009), and summarized in Ghadimi and Lan (2015).
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