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ABSTRACT

Multi-fidelity simulation optimization is an emerging area looking at the use of low-fidelity (computationally
cheap but inaccurate) models to optimize high-fidelity (expensive and accurate) models. In this context,
low-fidelity models exhibit a mismatch to high-fidelity models whose values can be point-wise obtained by
querying an expensive simulator. Herein, an efficient multi-fidelity algorithm is proposed for continuous
global optimization. The algorithm is made up of an additive model that consolidates low-fidelity and bias
(mismatch) predictions. Two sampling criteria with different use of the cumulated high and low-fidelity
information are introduced as well as a cheap certificate guiding the decision on whether to sample from the
expensive simulator. The performance of proposed algorithms is evaluated using a state of the art stochastic
search benchmark algorithm. The results show that the proposed methods can beat the benchmark with
improved accuracy, while essentially maintaining the same performance in terms of number of expensive
simulations.

1 INTRODUCTION

We investigate the problem of identifying the global minimum of a deterministic black box function YHF(x)
whose form is unknown, and its value can only be estimated by querying an oracle at a specific location
x. More formally, we want to solve: x∗ ∈ argminx∈X YHF(x) where X ⊆ R is a compact set and x is a
d-dimensional decision variable. As an additional “aid”, we have access to a low-fidelity (mismatched)
version of YHF(x), which we will refer to as the low-fidelity function YLF(x) that has a lower associated
computational time to run or optimize. Our objective is then to use the information obtained from sampling
YLF(x) to guide the search towards the global optimum of the true function YHF(x). Considering this, we
propose an algorithm that learns from this mixed fidelity information. The proposed algorithm is flexible in
that no assumption is made about the entity/shape of the mismatch between the low and high-fidelity models.
Nonetheless, the choice of mismatched model will clearly influence the performance of the procedure as
we will show in the preliminary results section. The proposed algorithm can have various applications. As
a motivation to this paper, we have the falsification of Cyber-Physical Systems when a complex non-linear
(high-fidelity) and a linearized (low-fidelity) model of such systems are available. This problem was studied
in Dokhanchi et al. (2017), and our proposed algorithm extends the approach to handle general model
pairs.
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The reminder of this paper is organized as follows: Section 1.1 reports the relevant literature and the
research contribution is discussed in Section 1.2. The modeling approach and the algorithm are presented
in Section 2. Section 3 presents some preliminary results. Finally, Section 4 presents the conclusions and
directions for future research.

1.1 Literature Review

To optimize a black-box function, direct search as well as meta-model based approaches have been proposed
in the literature (Fu et al. 2015). Direct search methods take decisions related to sampling based on the
current point and updating/adapting a sampling rule to establish the next point. The adaptation scheme and
the structure of the sampling rule have defined a plethora of different approaches. Examples are improving
hit-and-run (Zabinsky et al. 1993; Zabinsky and Smith 1992; Solis and Wets 1981; Brooks 1958), GRASP
(Feo and Resende 1995) a greedy adaptive random search sampling technique, and the stochastic ruler
method (Yan and Mukai 1992; Alrefaei and Andradòttir 2001).

Meta-model based approaches differ from direct search methods in that they consider all sampled points
to make a sampling decision and this is done by constructing a response surface model that emulates the
function to optimize where we have not sampled it. In this rich research area, efforts have been dedicated
to proposing statistical models to improve the accuracy of the prediction, as well as to the study of effective
sampling criteria that are able to handle the exploration/exploitation dilemma (Li et al. 2010).Concerning
the model choice, applications of Neural Networks, Kriging models, Regression models and Radial Basis
Functions have been proven successful in different application settings (Xu et al. 2015). In this area,
Gaussian Processes (GP), which will also be used in this work, have received a lot of attention (Quan et
al. 2013; Ankenman et al. 2010; Yin et al. 2011). Nevertheless, most of these models are designed to
handle a single fidelity response.

Moving into multi-fidelity optimization research, Xu et al. (2014) proposes MO2TOS (Multi-Fidelity
Optimization with Ordinal Transformation and Optimal Sampling) that relies on the concept of Ordinal
Transformation (OT). OT is a mapping X→ H where X is d-dimensional discrete space and H is is a
one-dimensional rank space constructed by associating to each point of X the rank computed according
to the corresponding output returned by the low-fidelity model. This mapping, as defined by the authors,
can be applied to any finite, countable space X. Once the mapped space is constructed, the solutions
are grouped in sub-sets with respect to H and sampled according to the Optimal Sampling (OS) scheme.
The theoretical analysis performed therein shows the properties that the low-fidelity model should have to
guarantee an improved performance of the proposed algorithm with respect to the version not using any
low-fidelity information. Huang et al. (2015) further extends the previous contribution by using OT not
only to transform the solution space, but also to decide on high-fidelity computational budget allocation.
Xu et al. (2016a, 2016b) extend the application of OT in sampling. Zhang et al. (2016a) proposes an
innovative optimal sampling methodology that maximizes the estimated probability of selecting the best
solution. All these approaches handle one low-fidelity model.

In the direction of introducing more fidelities, Zhang et al. (2016b) proposes a novel scheme to weight
predictions generated by multiple low-fidelity models creating another equivalent low-fidelity model. More
recently, Chen et al. (2017) uses Gaussian Process Regression along with Ordinal Transformation to
optimize noisy observations of a black-box function. While the authors still focus on discrete optimization,
an approach to handle an arbitrary number of low-fidelity models is proposed.

In the area of continuous optimization, Santner (2013) is the main reference for the modeling of
information from several fidelities discussing co-kriging as a possible framework to capture relationships
between them when we can “rank” models in terms of their fidelity. Forrester et al. (2007) develops a
co-kriging based method where an exchange algorithm is proposed that chooses different sample points at
the different fidelity levels. The authors consider a wing optimization problem as a case study to validate
and show the applicability of the proposed method. More recently, Ulaganathan et al. (2015), extend
the co-kriging formulation with multi-fidelity gradient information. The authors numerically show how
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the extra information from the multi-fidelity gradient can help the kriging model achieve better prediction
accuracy. Liu et al. (2016) propose to use a multi-fidelity Gaussian Process with Memetic Differential
Evolution, while Chen et al. (2015) decompose the high-fidelity response into trend and residual components
and use a non-parametric locally weighted regression with smoothing and a kriging model as models for
optimization. Osorio and Selvam (2017) propose a method that combines information from evaluating
models with different fidelities to optimally control traffic networks. At each iteration, the algorithm decides
on the model to evaluate based on an estimate of accuracy loss due to running the low-fidelity model.

In summary, Ordinal Transformation and Co-kriging based methods are the two families of approaches
that tackle multi-fidelity simulation-optimization problems. However, Ordinal Transformation cannot handle
continuous input variables. This is especially important not only when we have continuous problems, but
also when the number of solutions is huge and the computational cost of the low-fidelity model, while
low, is not completely negligible. While Co-kriging-based approaches can solve this issue, most of the
algorithms require to know the rank of the models in terms of fidelity and several authors highlight the
computational burden associated with the estimation of the co-kriging model hyper-parameters (Santner,
2013).

1.2 Contribution

The contribution of this paper is threefold:

1. Our new algorithm, which is markedly different from Ordinal Transformation based approaches,
can handle cases where the low-fidelity response is not known across the entire solution space.
This is the case in continuous as well as combinatorial optimization.

2. We propose an additive model to capture the relationship between the high and low-fidelity models.
3. Sampling is mainly performed in “low-fidelity”: the proposed algorithm generates candidate solutions

considering low-fidelity guesses and switches to high-fidelity only if it is required. This becomes
particularly important when different optimizers are used to search the low and high-fidelity spaces,
respectively.

2 METHODOLOGY

In this section we present our proposed approach. Section 2.1 details the modeling of the relationship
between high and low-fidelity data, while Section 2.2 focuses on the search across the solution space.

2.1 Modeling Approach

We assume that the performance metric of interest can be evaluated for a specific configuration by running
a very expensive oracle (high-fidelity simulation) or quickly assessed by means of a low precision/low
cost oracle (low-fidelity simulator). Suppose that, for a given input vector x, we have YLF(x) and YHF(x)
to represent the low and high-fidelity evaluations of the system response at point x. Similar to model (3)
discussed in (Son and Choi 2016) where the authors just evaluate the effect of a scale factor and correction
on multi-fidelity models, we assume the following relationship between the two:

YHF(x;θHF) = α(x;θα)YLF(M(x;θM);θLF)+B(M(x;θM);θB), x ∈ X. (1)

At the basis of this work, we assume that YLF and YHF , i.e., the low and high-fidelity responses as
well as the bias process B representing the distance between them can be modeled as Gaussian processes.
In model (1), θLF and θB refer to the vector of the hyper-parameters needed to construct a predictor for
the Gaussian Processes YLF and B, respectively. The multiplier of the low-fidelity model,α(x;θα) , can
be interpreted as an amplifier of the low-fidelity response and it is generally a function of the location
x and it is parametrized through θα . Also, M(x;θM) represents a general mapping function from the
low-fidelity solution space to the high-fidelity solution space. Such a mapping can help in increasing the
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similarity between low and high-fidelity models. This mapping function is parametrized through θM, which
will require development of learning mechanisms to be efficiently estimated. In this first version of the
algorithm, we will not account for the mapping function, and we also assume α = 1 to obtain the following
simpler model structure:

YHF(x;θHF) = YLF(x;θLF)+B(x;θB), x ∈ X. (2)

In the proposed framework, which will be presented in Section 2.2, the sampling will be performed
in low-fidelity, unless the proposed certificate test is not satisfied by the new sample. Therefore, generally
much more information on low-fidelity process YLF(x;θLF), will be available than the bias process B(x;θB),
which is the expensive component in model (2). It is important to understand that the bias term is vital to
“correct” predicted low-fidelity responses obtained with abundant information. This correction results in
improved prediction accuracy of the high-fidelity response, which, in turn, results in improved efficiency
of the search procedure overall.

Section 2.1.1 briefly introduces Gaussian Process estimation, as the basis of the construction of the
predictor for model (2). Section 2.1.2 shows the details of applying the Gaussian Process theory to the
specifics of model (2).

2.1.1 Gaussian Process Models

A Gaussian Process (GP) is completely characterized by its mean and the covariance function. In this paper,
we will adopt the squared exponential covariance function (Santner et al. 2013; Williams and Rasmussen
2006):

K(xi,xj) = σ f
2 exp{

d

∑
k=1

−|xi
k− x j

k|2

lk2 }. (3)

where σ f
2 and lk, k = 1,2, . . .d are the hyper-parameters of the covariance function (summarized by the

vector of hyper-parameters θ ) which can be estimated from the training data and xi
k refers to the kth element

of the ith input vector, xi. The variance-covariance matrix K is an n×n symmetric positive-definite matrix,
where n is the number of sampled vectors and the i jth element represents the value of the covariance
between the ith and jth input vectors. We refer to the collection of sampled points as the training set XT ⊆X
(such as |XT |= n) and to the corresponding function values as y. Assuming the hyper-parameters θ to be
known, then for any new input vector x0, using the theory of GP models, the posterior distribution of the
output Ŷ (x0) is (Rasmussen and Williams 2006):

Ŷ (x0)|XT ;θ ∼ N(µy(x0),σy
2(x0)). (4)

µy(x0) = cT(x0,XT )K−1y. (5)

σy
2(x0) = K(x0,x0)− cT(x0,XT )K−1c(x0,XT ). (6)

where cT (x0,XT ) is the vector containing the correlations between x0 and the set of sampled points XT
calculated using Eq. (3). In next section, the derivation of model (2) using GPs will be discussed.

2.1.2 Multi-fidelity Model Estimation

To derive the model (2) we will have two separate sets of sampled points, XLF representing the set of
points sampled in low-fidelity and XB, representing the set of points for which both high-fidelity as well as
low-fidelity evaluation are available. It should be noted that this additional notation is meant to differentiate
between the different sets of points adopted to construct different predictions of the same response. It
is apparent that XLF is the “cheapest” set to construct. Therefore, we will generally have |XB| � |XLF |.

Given a desired prediction location x0, to estimate B̂(x0)|XB;θB , which, for simplicity, will be referred
to as B̂(x0) from now on, we first obtain the elements of observed bias vector, b using Eq. (7) below.

b(x) = yHF(x)− yLF(x), x ∈ XB. (7)
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Using observed bias, b vector as the response, a GP is trained to estimate the bias at any given solution
x0. Using Eq. (4) – (6) we obtain:

B̂(x0)∼ N(µB(x0),σB
2(x0)). (8)

µB(x0) = cT (x0,XB)K−1b. (9)

σB
2(x0) = K(x0,x0)− cT (x0,XB)K−1c(x0,XB). (10)

Concerning the low-fidelity component, we estimate ŶLF(x0)|XLF ;θLF , which for simplicity of notation
will be referred to as ŶLF(x0) from now on. Using XLF as input matrix and yLF |XLF

a vector collecting
low-fidelity responses for the locations in the set XLF as the output, another GP model is trained to estimate
low-fidelity response at any given solution x0 as follows:

ŶLF(x0)∼ N(µLF(x0),σLF
2(x0)). (11)

µLF(x0) = cT (x0,XLF)K−1yLF|XLF . (12)

σLF
2(x0) = K(x0,x0)− cT (x0,XLF)K−1c(x0,XLF). (13)

Finally, we can estimate ŶHF(x0) using a liner combination of the two predictions in (8) and (11), obtaining:

ŶHF(x0)∼ N(µHF(x0),σHF
2(x0)). (14)

µHF(x0) = µLF(x0)+µB(x0). (15)

σHF
2(x0) = σLF

2(x0)+σB
2(x0). (16)

We want to remind to the reader that to guarantee adequacy of the additivity of the processes, we
should have XLF ∩XB = /0 , while this is not the case, we have that |XB| � |XLF | as already mentioned, this
dilutes the dependency effect generated by the sampling policy. This basically implies that the sampling
process for the generation of low-fidelity observations and the one for the learning of the low/high-fidelity
dependency do not overlap.

In this work, we use a third model to guide the decision whether to sample in high-fidelity or not.
Specifically, we derive the predicted low-fidelity response using the same relationship as in Eq. (2),
but with the focus of estimating the low-fidelity response, i.e., we look at the relationship in (2) as
YLF(x;θLF) = YHF(x;θHF − B(x;θB), x ∈ X. While B component is the same as in (8)-(10), ŶHF(x;θLF)
is estimated only using the high-fidelity evaluations, yHF |XB

. To distinguish this predictor from the one in
Eq. (14), we refer to it as ŶHF |XB(x;θLF) and we refer to this alternative estimation of the low-fidelity
model as ŶLF |XB and derive it as follows:

ŶLF |XB(x0)∼ N(µLF |XB ,σLF |XB(x0)). (17)

µLF |XB(x0) = µHF |XB(x0)−µB(x0). (18)

σ
2
LF |XB

(x0) = σ
2
HF |XB

(x0)+σ
2
B(x0). (19)

We highlight that different from the prediction in (14)-(16), the derivation of the conditional density is
not an exact result, because we do not account for the inherent dependency between the processes ŶHF and
B̂ generated by the fact that the set of sampled points in high-fidelity XHF and the set of sampled points
in the bias set XB are the same. While numerical results are robust to this approximation, this is an aspect
requiring further investigation.
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2.2 Algorithm

In this section the proposed algorithm will be explained by discussing its components followed by an
outline given in Algorithm 1. Section 2.2.1 addresses the sampling part, while the certificate responsible
for the choice of whether or not we should sample a point in high-fidelity is dicusses in Section 2.2.2.

2.2.1 Sampling

In this preliminary work, we investigate two versions of the algorithm. The first version uses the low-
fidelity evaluation at the best location up to iteration k, i.e., x∗k,LF ∈ argminx∈XLFYLF(x), where the achieved
low-fidelity function value is referred to as yb

k,LF and Xk,LF is the set of locations that have been sampled in
low-fidelity up to iteration k. The second approach uses the high-fidelity evaluation at the best location up
to iteration k, i.e., x∗k,HF ∈ argminx∈XHFYHF(x), where the achieved high-fidelity function value is referred
to as yb

k,HF and Xk,HF is the set of locations that have been sampled in high-fidelity. We highlight that using
low-fidelity information is convenient in sampling since the low-fidelity model may be “easier to optimize”
and to sample. In this work, we adopt the Expected Improvement (EI) as sampling criteria (Locatelli 1997,
Jones et al. 1998). The EI is a common sampling criterion in surrogate-based optimization and its derivation
is discussed in Jones et al. (1998). Considering the first version of the algorithm, the improvement at any
location,x, is derived as I(x) = max(yb

k,LF − Ŷk,LF(x),0), where Ŷk,LF(x) is the prediction obtained from
model (12) at iteration k, when Xk,LF points have been sampled in low-fidelity. The expected improvement
will be:

x∗k = argmaxx∈X|Xk,LF E[I(x)] =
∫ yb

LF

−∞

(yb
LF − ŶLF(x))+ f (ŶLF(x))dy. (20)

where Xk,LF is the set of sampled points in low-fidelity, f ŶLF(x)) is the density function of the predicted
low-fidelity response which in this case is normal with its mean and variance calculated as functions of
candidate solution, x, using Eq. (12) and (13). Note that for the second version of the algorithm, a similar
equation can be derived to calculate EI by simply replacing yb

LF with yb
HF ,ŶLF(x) with ŶHF(x) and Xk,LF

with Xk,B.

2.2.2 Low-fidelity Improvement ”Certificate”

In addition to choosing the location where sampling should be performed (i.e., a candidate solution), in
multi-fidelity frameworks, we need to understand whether simulation in high-fidelity is required. To do
so, we devised a statistical certificate of the relationship between the low and high-fidelity models, which
is presented in this section. For the candidate point at iteration k, x∗k , we want to certify the validity of our
model in Eq. (2) representing the relationship we constructed between low and high-fidelity models. We
achieve this objective with the following statistical test:{

H0 :, ŶLF(x∗k)∼ N(µLF |XB(x
∗
k),σLF |XB(x

∗
k))

H1 :, otherwise
→ Q =

yLF(x∗k)−µLF |XB(x
∗
k)

σLF |XB(x
∗
k)

≥ −Zc. (21)

The idea behind this test is to check whether the relationship we have assumed between low-fidelity and
high-fidelity models is valid at this location. If the null hypothesis in Eq. (21) cannot be rejected, there
is no need for sampling in the high-fidelity space. Otherwise, we sample in high-fidelity to update the
low-fidelity predictor using Eq. (11), and the high-fidelity predictor in Eq. (14).
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Algorithm 1

Initialization

Step 0 k = 0;XB,k = /0,XLF,k = /0,yLF |XB = /0,yLF |XLF = /0,yHF |XB = /0.
Set the initial number of samples n0B, and n0LF , using a Latin Hypercube

Design.
Set the maximum number of simulations in low-fidelity CBLF and the
maximum number of simulations in high-fidelity CBHF ;
Set XB,k← xi

n0,B
i=1 , update XLF,k← xi

n0,LF
i=1 ;

While CBLF ≥ 0 & CBHF ≥ 0

Expensive Update
Step 1 XB← XB,k∪XB;

yHF |XB
←{yHF |XB

∪ yHF |XB(x);x ∈ XB,k}, yLF |XB
← yLF |XB

∪{yLF |XB(x);
x ∈ XB,k};
Evaluate b(x)← (yHF |XB(x)− yLF |XB(x)), x ∈ XB,k;
With yHF |XB

, yLF |XB
,XB construct: B̂ GP(µB,σB

2) using Eq. (8)-(10);

Cheap Update
Step 2 XLF ← XLF,k∪XLF ;

yLF |XLF
← yLF |XLF

∪ {yLF |XLF (x);x ∈ XLF,k};
With yLF |XLF

,XLF construct: ŶLF ∼ GP(µLF ,σLF
2) using Eq. (11)-(13);

Sampling
Criteria 1 Criteria 2

Step 3.1 Compute EI(x) using Eq. (20), Compute EI(x) using Eq. (20), set:

set: xk
∗← argmaxx∈XEI(x) =

∫ yb
HF
−∞ (yb

HF − ŶHF(x))
+ f (ŶHF(x))dy

x∗k ← argmaxx∈XEI(x) =
∫ yb

LF
−∞ (yb

LF − ŶLF(x))
+ f (ŶLF(x))dy

Step 3.2 Evaluate yLF(xk
∗);

Updateyb
LF ← minx∈XLF∪XB yLF |XLF∪XB ,XLF,k+1 ← x∗k ,CBLF ← CBLF − 1;

Certificate:
EstimateŶLF |XB(x

∗
k) using Eq. (17)-(19);

Use yLF(x∗k) and ŷLF |XB(x
∗
k) in Condition (21);

If (Condition (21) holds TRUE)
XB,k+1←{}
Go to Step 2

Else
XB,k+1← xk

∗;
CBHF ←CBHF −1;
Go to Step 1

End

End
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3 NUMERICAL EXPERIMENTS

In this section both versions of proposed algorithm will be evaluated using the Efficient Global Optimization
(EGO) method as the benchmark. First, the test function and different low-fidelity models of interest are
introduced in Section 3.1. Then, the numerical experiments and results are discussed in Section 3.2. For the
test function, as the optimal solution is known, the algorithm stops whenever at least one of the following
conditions is met: (1) yb

HF− y∗HF
y∗HF

≤ 0.01; (2) ItrLF ≥ 500; (3) ItrHF ≥ 50. Here ItrLF and ItrHF are the
number of samples taken in low and high-fidelity, respectively.

3.1 Test Functions

The function YHF(x) below will be considered as the high-fidelity model where xi ∈ [0.1,1] (Zabinsky and
Bulger 2010).

YHF(x) =−2.5
d

∏
i=1

sin(πxi)−
d

∏
i=1

sin(5πxi). (22)

Where d is the problem dimension. Table 1 reports four different low-fidelity models that we used along
with their correlation coefficient characterizing their dependency with high-fidelity model.

Table 1: Different low-fidelity models.

Low-Fidelity Model Model Form Correlation
YLF,1(x) −2∏

d
i=1 sin(πxi) 0.87

YLF,2(x) −0.8∏
d
i=1 sin(5πxi) 0.49

YLF,3(x) 2∏
d
i=1 sin(πxi) -0.87

YLF,4(x) 0.8∏
d
i=1 sin(5πxi) -0.49

3.2 Preliminary Results

The proposed algorithm in its two versions along with the benchmark Efficient Global Optimization (EGO,
Jones et al. (1998)) are used to optimize the test function introduced above and their performance is
compared. EGO only samples in high-fidelity space and works independent of the low-fidelity model of
choice to be used in the proposed multi-fidelity algorithm. All algorithms were run for 50 macro-replications
and we considered, as performance metric, the relative distance between the reported optimal solution and
the real optimal solution of the high-fidelity model ||x̂

∗
i−x∗||
||x∗|| , where x∗ is the global optimal solution of the

high-fidelity model and x̂∗i is the optimal solution reported by the algorithm at the ith macro-replication.
We also report the number of high-fidelity simulations ran before convergence/stoppage of the algorithms
over different macro-replications as “High-fidelity Simulations” in both Table 2 and Table 3.

For each macro-replication we ran the proposed algorithms and EGO with the same seed. Upon
observing convergence of our algorithm, we also stopped EGO, i.e., EGO could run as many high-fidelity
simulations as those needed by the multi-fidelity counter-part to converge.

Table 2, shows the results obtained from the first version of the algorithm that calculates EI over
the predicted high-fidelity response. From the results, it can be observed that our multi-fidelity approach
outperforms EGO no matter which low-fidelity model is used. Also, the gap between the performance of
the first version of the algorithm and EGO is larger when second and fourth low-fidelity models are used.
While the reason for this result is highly related to the specific sampling criteria, it reveals that model
correlation may not be the only important metric to characterize a low-fidelity model since apparently the
nonlinear dependency of the high-frequency component and the original function is helping our search
procedure.
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Table 2: Statistics on optimality distance for the first version of proposed algorithm.

Low-fidelity Model Dimension
Proposed Algorithm EGO High-fidelity

Simulations||x̂∗i−x∗||
||x∗||

||x̂∗i−x∗||
||x∗||

Average Std Err Average Std Err Average Std Err

YLF,1(x)
3 0.07 0.01 0.17 0.02 2.28 0.17
4 0.04 0.01 0.16 0.02 2.76 0.23

YLF,2(x)
3 0.00 0.00 0.17 0.01 2.38 0.11
4 0.00 0.00 0.16 0.02 2.30 0.10

YLF,3(x)
3 0.09 0.01 0.15 0.01 3.18 0.28
4 0.05 0.01 0.14 0.01 2.86 0.29

YLF,4(x)
3 0.00 0.00 0.17 0.01 2.38 0.11
4 0.00 0.00 0.16 0.02 2.42 0.16

Table 3: Statistics on optimality distance for the second version of proposed algorithm.

Low-fidelity Model Dimension
Proposed Algorithm EGO High-fidelity

Simulations||x̂∗i−x∗||
||x∗||

||x̂∗i−x∗||
||x∗||

Average Std Err Average Std Err Average Std Err

YLF,1(x)
3 0.00 0.00 0.18 0.01 2.02 0.11
4 0.00 0.00 0.17 0.02 2.08 0.07

YLF,2(x)
3 0.13 0.02 0.10 0.02 15.02 0.97
4 0.16 0.01 0.03 0.01 31.86 1.21

YLF,3(x)
3 0.00 0.00 0.18 0.01 2.02 0.11
4 0.00 0.00 0.15 0.02 2.60 0.19

YLF,4(x)
3 0.12 0.02 0.09 0.02 14.78 1.02
4 0.17 0.01 0.04 0.01 31.82 1.43

Table 3 shows the results from the second version of the algorithm, which calculates EI over the
predicted low-fidelity. Analyzing the results, it can be observed that, while the algorithm still outperforms
EGO when the low-fidelity model is highly correlated with the high-fidelity model, it fails when correlation
is weak. While optimizing in low-fidelity can have advantages when the low-fidelity model has optimization-
amenable characteristics, relying too much on the low-fidelity will slow down the search especially when
the low-fidelity model is “bad”. It is important to note that, this brings to light the need to have good low-
fidelity models when we are optimizing over them.

Considering both Table 2 and Table 3, with good low-fidelity models, the second version of the algorithm
outperforms the first version and needs a slightly smaller number of high-fidelity simulations on average.
However, with less correlated low-fidelity models, it is the first version of the algorithm that does a better
job of guiding the search towards optimal solution to the high-fidelity model. This suggests that a switching
mechanism between the two criteria based on local correlation between the models within the algorithm
may be effective in more complex cases.
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4 CONCLUSIONS & FUTURE RESEARCH

Using low-fidelity information to guide the search towards the optimum of an expensive high-fidelity
model in a multi-fidelity optimization framework is an issue that recently has attracted much interest in the
Simulation-Optimization research community. In this paper, two versions of an algorithm are proposed to
address this issue. Since the proposed framework does not evaluate the low-fidelity model for all possible
solutions, it can handle continuous input variables and fairly expensive low-fidelity models. Also, we
introduce the concept of Low-Fidelity Improvement Certificate, which allows us to coordinate sampling in
low and high-fidelity. Testing with a commonly used test function and different low-fidelity model forms,
we observed that with good low-fidelity models the version of the algorithm that samples only relying on
low-fidelity information outperforms the other version that samples relying on high-fidelity information.
However, this last version is more robust to the quality of the low-fidelity and it always outperforms the
benchmark algorithm (EGO). Results show that the low and high-fidelity information can be efficiently
used to decrease the number of expensive high-fidelity evaluations needed to obtain the optimal solution,
making the problem much less computationally expensive.

For future research, we will work to add space mapping component to the algorithm as a generalization
of the Ordinal Transformation proposed for discrete spaces to make it more efficient. Also, we want to
test more models and certificates as well as several low-fidelity optimizers. Finally, we will investigate the
convergence properties of the proposed methods.
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