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ABSTRACT

Although the mean is a widely-used performance measure for stochastic simulations, the quantiles have
become very attractive to measure the variability and the risk of the simulated systems. Optimizing high
quantiles, which is typically of interest for decision makers, can be challenging with limited budget as it
may cost a large number of simulation runs to obtain estimators for high quantiles with acceptable accuracy.
This restricts the application of some traditional Monte Carlo approaches. In this work, we propose a
multi-level metamodel (co-kriging) based algorithm to optimize high quantiles more efficiently. Utilizing
non-decreasing properties of quantile functions, we first search on some cheaper and informative lower
quantiles, and then search the higher quantiles with a focus on the promising regions identified by lower
quantiles. This results in less wastage of budget in non-promising regions. A numerical study is presented
to show the power of this algorithm.

1 INTRODUCTION

Nowadays, quantile has become an increasingly popular measurement in many fields, including finance,
engineering safety, and healthcare, for its capability to provide profiles of the entire output distribution.
In risk management, quantile, also termed as Value-at-Risk (VaR), is one of the primary risk measures
to quantify the system risk. For instance, in the finance industry, the α-quantile of a loss distribution L
represents the lower bound of large losses that the investor can suffer from an activity, where the large
losses are defined to be the (1−α)-tail of L with α very close to 1 (Hong and Liu 2009).

Optimizing quantiles of random functions is a common practice for decision makers to manage the
risk. In this case, searching for x in the decision space X with the smallest α-quantile of L(x) returns the
desired decision. This optimization problem can be challenging for several reasons. First, the loss function
L(x) usually has no closed-form and is difficult or expensive to observe from the real system. In many
of these cases, some computer models are built to simulate the system behaviors, such as the financial
model for risk management. Numerous Monte Carlo methods based on the simulation results have been
developed to optimize the quantile (see Hong et al. 2014 for a review). These simulation models, however,
can be very complicated and time-consuming to conduct due to the complex nature of the real system. This
restricts the number of simulation runs that can be conducted, making it impossible to obtain the results for
every considered design. Second, the quantile optimization problems may be non-convex and thus difficult
to solve. Third, higher quantiles (close to 1, which are typically of interest) are costly to observe, as it
may require a large number of simulation runs to return a quantile estimator at this level with satisfactory
precision.

To tackle the first two challenges, we aim to develop a metamodel-based simulation optimization
algorithm for quantile measures from black box functions with no convexity restrictions. A metamodel
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is a statistical model providing an approximation of the true response surface. Developing metamodels
for quantile has been extensively studied (Koenker 2005; Dabo-Niang and Thiam 2010; Chen 2009), of
which the quantile regression (QR) (Koenker 2005) is the most widely used model. Recently, the stochastic
Gaussian process (GP, also termed as kriging) model (Ankenman et al. 2010; Yin et al. 2011) has been
used for quantile metamodeling and shown competitive performance compared with quantile regression
model (Chen and Kim 2016). In this work, we also adopt this GP based model.

When optimizing black-box functions, metamodels can serve as fast surrogates of the true baseline
functions and guide the search. Based on the GP model, a few optimization approaches has been proposed for
deterministic simulations, of which the Efficient Global Optimization (EGO) (Jones et al. 1998) algorithm
with Expected Improvement (EI) criterion is the most widely used for its capability to balance between
exploration (searching unexplored region) and exploitation (searching the current promising region). For
stochastic simulations, some recent works including Two-Stage Sequential Optimization (TSSO) (Quan et al.
2013) tried to combine EI criterion with Optimal Computing Budget Allocation (OCBA) (Chen et al. 2000)
technique to iteratively select new possible optimal inputs and reduce the noises of the observations. These
algorithms, however, are designed to optimize the mean of the simulation outputs. A similar optimization
algorithm for quantiles is proposed in this work.

To address the third challenge, we propose a novel multi-level quantile optimization algorithm, which
is the main contribution of this work. Different with traditional approaches which assume only a single
quantile level, a multi-level model can leverage on informative lower quantiles to identify the optimum
more efficiently. Typically, the lower quantiles are cheaper and easier to estimate and their estimations are
likely to be less noisy compared with that of a high quantile (Bahadur 1966). To explain our intuitions
more formally, let 0 < α1 < α2 < 1 and vα1(L(x)),vα2(L(x)) be the two quantiles of which vα2(L(x)) is to
be minimized. The idea behind our approach is to first optimize the more accurate vα1(L(x)) to identify
promising regions in vα1(L(x)). Based on the non-decreasing properties of quantiles, this helps us identify
places to focus sampling on and fit the higher quantile model vα2(L(x)) in the second stage to identify the
optimum on vα2(L(x)). If we directly start with optimizing vα2(L(x)), its metamodel can be very inaccurate
with limited budget and can mislead the search, resulting in much wasted budget in non-promising regions.
Through our two-stage algorithm, we hope to use only a small budget to quickly identify possible promising
regions and allocate more budget there. It is noteworthy that those promising and non-promising regions
determined by vα1(L(x)) can be informative for vα2(L(x)) for a few reasons. First, the two quantile functions
are likely to be correlated since they come from the same distribution L(x) (Wang and Ng 2017). In this
case, the shape of the two surfaces can be similar and hence, similar promising regions. Second, since
vα2(L(x))> vα1(L(x)), if vα1(L(x0)) is very large for x0 in some region, we can conclude that the vα2(L(x0))
will only be even larger. Particularly, when vα1(L(x0)) is larger than vα2(L(x1)), it is obvious that x0 can
not be optimum for vα2 and there seems no need to allocate further replications to this region. For ease of
exposition, the illustration above only considers one lower quantile function. In the proposed algorithm, a
multi-level metamodel can be built with more than one lower quantile to fully benefit from the method.

More formally, in this paper, we consider the problem where we want to minimize the αm-quantile,
vαm(L(x)), for loss function L(x), where x ∈X ⊂ Rd (X is a compact set):

minx∈X vαm(L(x)).

To solve this, we propose an algorithm, that leverages on m−1 lower quantiles with 0 < α1 < α2 < ... <
αm < 1 to quickly narrow down the promising regions. To develop this, we first propose a stochastic
co-kriging model to jointly model the m quantiles and then generalize the TSSO algorithm for multi-level
quantile optimization. In the modeling of m quantiles, we extend the standard deterministic co-kriging
model (Kennedy and O’Hagan 2000) and apply it to quantile prediction. This differs from the work of
Chen et al. (2017) which models the mean. In addition, to avoid the crossing problem in quantile modeling
(Koenker 1984; Cole 1988; He 1997; Liu and Wu 2009), we further propose a new penalized GP model
applied to stochastic co-kriging model to penalize the model parameters that cause crossing problem.
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The rest of this article is organized as follows. In section 2, we review some basics for stochastic
co-kriging model and extend it to our non-crossing multi-level quantile metamodeling. In section 3, we
propose our optimization algorithm. In section 4, a numerical example is provided to show the power of
the method. In section 5, we summarize the work and present some future work.

2 STOCHASTIC CO-KRIGING MODEL FOR QUANTILES

To jointly model these m quantiles, we propose to use the co-kriging model. It was originally developed
to model deterministic multi-fidelity problems (where a response can be observed with different fidelities)
(Kennedy and O’Hagan 2000; Higdon et al. 2004; Le Gratiet and Cannamela 2015) and has recently been
extended to stochastic simulation metamodeling (Chen et al. 2017) for mean performance measures. In
this section, we generalize the stochastic co-kriging model for predicting means to predicting quantiles in
Section 2.1 and then propose a penalized maximum likelihood estimation (PMLE) approach to prevent the
possible crossing problem between different quantile curves in Section 2.2.

Here, we first briefly introduce the notations used and the simulation background. To develop a
stochastic kriging model, replicates of the experiments are required. That is, at each design input x, a few
simulation runs are required. Throughout this work, we use L to represent the results of these original
simulation runs. For instance, where there are n simulations at x, we observe n results: L1(x), ...,Ln(x).
With these simulation results, a point estimate (denoted by Y ) for the response of interest, which is the
α-quantile in this case, can be obtained: Y (x) = Lxαny(x), where Lxiy(x) is the i-th order statistic for
L1(x), ...,Ln(x). Due to a limited number of simulation runs that can be conducted, this Y (x) is a noisy
observation for the true response. We further use Y and Z to represent the noisy and noise-free versions
of this response and use ε to represent the noise between them (Y = Z + ε). Y taken at all design inputs
can then be used to develop predictive models for Z.

2.1 Stochastic Co-kriging Model Basics and Extensions for Quantiles Predictions

In the standard stochastic co-kriging model, which is designed for means, models at different levels satisfy
the following relations:

Yl(x) = Zl(x)+ εl(x) = ρl−1Zl−1(x)+δl(x)+ εl(x), if 1 < l ≤ m,

Yl(x) = Zl(x)+ εl(x) = δl(x)+ εl(x), if l = 1,

where Yl and Zl represent the noisy and noise-free responses at level l, respectively. δl(x) (l = 1, ...,m) are m
independent second-order stationary GPs of mean f T

l (x)βl and covariance function: cov(δl(x1),δl(x2)) =
σ2

l corrl(x1,x2), where σ2
l = var(δl(x)). Here fl(x) is a pl×1 vector of known functions and βl is a vector

of model parameters. For the correlation function, we adopt the popular Gaussian function: corrl(x1,x2) =

exp
{

∑
d
j=1 θl, j(x1, j− x2, j)

2
}

for illustration, where xi, j is the jth coordinate of xi and θl = (θl,1, ...,θl,d)

is the sensitivity parameter. εl , l = 1, ...,m, are m random noises which follow a m dimensional normal
distribution with zero mean. These noises are assumed to be independent of δl . It is clear that in this
model, Zl is represented by a scaled Zl−1 term, ρl−1Zl−1 (ρl−1 can be treated as regression parameter), plus
a difference term. This type of autoregressive model is first introduced by Kennedy and O’Hagan (2000)
for deterministic multi-fidelity problems.

Denote Yl(x) as the observation (point estimate) for the lth level at x and the design set for Yl as Dl with
|Dl| representing number of inputs in Dl such that for any input x ∈Dl , the observation Yl(x) is available.
To fit the co-kriging model, we need observations for all levels: Y1, ...,Ym, where Yl is a vector of the
observations for lth level taken at all inputs in Dl . For efficient parameter estimation, a nested property
of the design set: Dm ⊂ Dm−1 ⊂ ... ⊂ D1 is often assumed in co-kriging metamodeling for multi-fidelity
problems (Kennedy and O’Hagan 2000).
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To simplify the notation, we define:

P j
i =

j

∏
k=i

ρk, Pi−1
i = 1.

And use Ak(Di,D j) to represent the correlation of points in Di and D j generated by δk with:

Ak(Di,D j)pq = corrk(xi
p,x

j
q),

where xi
p is the pth design point in Di, x j

q is the qth design point in D j. The predictor and the corresponding
predictive variance of Zl(x) can be derived as:

Ẑl(x) = hl(x)T
β̂ + tl(x)T R−1(Y −Hβ̂ ), (1)

var(Ẑl(x)) = var(Zl(x))− tl(x)T R−1tl(x)+ζl(x)T (HT R−1H)
−1

ζl(x), (2)

where ζl(x)= hl(x)T−tl(x)T R−1H. hl(x)T =(Pl−1
1 f1(x)T ,Pl−1

2 f2(x)T , ...,Pl−1
l−1 fl−1(x)T , fl(x)T ,0T

pl+1+...+pm
).

β̂ =(HT R−1H)
−1HT R−1Y is the generalized least squares estimator for β . var(Zl(x))=σ2

l +∑
l−1
j=1 (P

l−1
j )

2
σ2

j .
tl(x)T = (tl,1(x)T , ..., tl,m(x)T ) with:

tl,s(x) =
q

∑
j=1

σ
2
j Ps−1

j Pl−1
j A j(Ds,x), where q = min{s, l}.

R = Rz +Rε , where Rz, Rε are symmetric matrices with m×m blocks:

R(k,s)
z =

q

∑
j=1

σ
2
j Pk−1

j Ps−1
j A j(Dk,Ds), where q = min{k,s}.

R(k,s)
ε =

(
diag(cov(εk(xs

1),εs(xs
1)), ...,cov(εk(xs

|Ds|),εs(xs
|Ds|)))

0(|Dk|−|Ds|)×|Ds|

)
, if k ≤ s.

Y T = (Y1(D1)
T , ...,Ym(Dm)

T ). H has m×m blocks with:

H(k,s) = Pk−1
s fs(Dk)

T , if k ≥ s, H(k,s) = 0|Dk|×ps , if k < s.

The above results assume known hyperparamters ρl,θk,σ
2
k , l = 1, ...,m− 1,k = 1, ...,m, and the co-

variance matrix for noises, Rε . To better illustrate the procedure to build the model, we separate the
parameters of the model into two categories: model inputs and model parameters. The model inputs
include the observations vector Y and the estimators for the associated noise covariances matrix Rε . They
are directly drawn from the initial simulation results and serve as inputs to the model. The remaining
parameters (ρ = (ρ1, ...,ρm−1),θ = (θ1, ...,θm),σ

2 = (σ2
1 , ...,σ

2
m)) are referred to as model parameters and

can be estimated by maximizing the loglikelihood for observation vectors Y . After this, the predictor (1)
and predictive variance (2) can be obtained by plugging in the estimated model inputs and parameters. For
standard stochastic co-kriging model, the model inputs are just the sample means and sample covariance
for the mean estimates (see details in Chen et al. 2017).

To extend this model to our multi-level quantile prediction, we first verify the nested property of the
design sets. For any x ∈ D j (Y j(x) has acceptable precision), the quantile estimators for α1, ...,α j−1 can
be naturally obtained from L1(x), ...,Ln(x) with typically smaller noises. Therefore, x ∈Dl , l = 1, ..., j−1
and the nested property follows. For simplicity, suppose the inputs in design sets have the following order:
the first |Dl| design points in Dl−1 are exactly similar with the points in Dl with similar sequence.
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In addition, the observation vector, Y , and associated noise variance estimates, Rε , should be changed
accordingly. Particularly, for the observation Y (xi

p), as noted at the beginning of Section 2, we use the
sample αi-quantile at xi

p (Chen and Kim 2016; Wang and Ng 2017). To estimate the noise covariances, we
propose to use a similar sectioning method as Wang and Ng (2017), where they estimated the covariance
of the noises for the mean estimator and quantile estimator. Specifically, to estimate the covariance of
εp(x) and εq(x), we first divide the simulation results L1(x), ...,Ln(x) into nb non-overlapping group with nc
replications in each group. Then, the sample αp-quantile, Yp, j(x), and sample αq-quantile, Yq, j(x) within
each group are obtained ( j = 1, ...,nb). The noise variance estimator is then computed as:

ĉov(εp(x),εq(x)) =
1

nb(nb−1)

nb

∑
j=1

(Yp(x)−Yp, j(x))(Yq(x)−Yq, j(x)).

2.2 Preventing the Crossing Problem in Stochastic Quantile Co-kriging Model

Traditional QR models quantile functions at different levels separately, and this can result in possible
crossing between different quantile predictive curves. This, for example, will cause the predictive value of
0.95 quantile at some points to be larger than that of 0.99 quantile. This crossing is a widely acknowledged
problem in quantile modeling, and can lead to invalid distribution of the response and problematic inferences.
For our quantile co-kriging model, preventing crossing to ensure monotonicity not only improves inferences,
but more importantly ensures that the multi-level search in the optimization algorithm is valid and efficient.
Imagine if the crossing happens between two quantile models, the non-promising region identified by lower
quantile model can be misleading, since the higher quantile can be smaller than the lower one and hence can
have promising (and even optimal) values in those non-promising regions. Therefore, it is vital to ensure
non-crossing in the models before the optimization process. Although in the co-kriging model, the multiple
quantiles are modeled jointly, non-crossing is not guaranteed. Note that in the traditional application of
the co-kriging model where deterministic or mean responses have been typically modeled, the crossing of
the models is not a problem.

In this section, we propose a new penalized version of stochastic co-kriging model to prevent the
crossing problem for quantile models. In our multi-level quantile problem, preventing crossing problem is
to ensure that:

Ẑl+1(x)− Ẑl(x)≥ 0, ∀x ∈X , l = 1, ...,m−1.

In other words, the difference of the predictive curves for any two successive quantiles should be non-
negative across the design space. We start this section by proposing a penalized GP model that can ensure
non-negative predictions for single deterministic response (which can be considered as the difference
between two quantiles) and then apply it to our multi-level model.

Consider first a deterministic GP model to model a non-negative function W (to distinguish with the
model in previous section, we here use W to represent this response and W as the observations for it):

W (x) = f (x)T
β +M(x),

where f (x) is a p×1 known function and β is a p×1 vector of model parameters. M(x) is assumed to
be a zero-mean second-order-stationary GP controlled by hyperparameters θ . Given that the true function
is a non-negative function, the observation vector we get, W , is non-negative. Traditional GP model for
a deterministic function is actually an interpolation of the observations W = (W (x1), ...,W (xt))

T , and the
shape of the predictive curve changes with the hyperparameters θ . Therefore, when estimating the θ , we
must make sure that the resulting curve should not intersect with surface W = 0. In other words, those
values of θ that causes the intersection should be eliminated. This intuition can naturally translate into the
following penalized method. Specially, instead of optimizing the ordinary loglikelihood of W , we propose
to minimize the following penalized likelihood function to get the PMLE estimator for θ :

Q(W ,θ) =−l(W ,θ)+P(W ,θ) =
1
2

ln(|(R′)|)+ 1
2
(W −F β̂ ′)

T
(R′)−1

(W −F β̂ ′)+µκ(W ,θ),
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where l is the ordinary loglikelihood function, P = µκ is the penalty term, µ is a non-negative penalty
coefficient, F = ( f (x1), ..., f (xn))

T , R is the covariance matrix for W , β̂ ′ = (FT R−1F)
−1FT R−1W and

κ(W ,θ) =

{
|minx∈X (Ŵ (x))|, if minx∈X (Ŵ (x))< 0

0, if minx∈X (Ŵ (x))≥ 0
.

With this penalty term, the parameters that cause the predictive curve to go below the W = 0 plane will
be penalized.

This PMLE estimator can be obtained by applying Algorithm 1, which is similar with the sequential
unconstrained minimization technique for constrained optimization problems. Inside this approach involves
a sub-optimization problem over the predictive surface Ŵ (x). We highlight that this sub-optimization is
much easier compared with optimizing the unknown true response surface, since the predictive response
function is extremely cheap with explicit form and available gradient. Note also that in the first iteration of
Algorithm 1, the ordinary likelihood function is optimized. If the estimators from this ordinary likelihood
function results in models that do not cross, then no additional estimate cost is incurred over the existing
method. This is likely to happen if the distance between the function and the zero surface is quite large.
When n > 1, the penalty coefficient µ will be enlarged by µ0 in each iteration.

Algorithm 1 Optimizing PMLE
1: Set initial value: n=1, µ=0
2: Optimize Q and obtain optimal value for θ ∗

3: if κ(Z ,θ ∗) = 0 then
4: Return θ ∗

5: Terminate
6: else
7: µ ← µ +n×µ0, n← n+1
8: Go to 2
9: end if

When applied in our case, where the function W (the difference between two quantile functions)
is stochastic, this method can also return non-negative predictions by preventing crossing between the
predictive curve with the plane W = 0. With a slight modification of the penalty function κ , this method
can be easily applied in our multi-level quantile problem:

κ(ϕ) =

{
|ϕ|, if ϕ < 0
0, if ϕ ≥ 0

,

where ϕ = minx∈X ,l∈{1,...,m−1}(Ẑl+1(x)− Ẑl(x)). It is easy to see that the parameters will be penalized once
crossing happens between any two successive predictive curves among the m quantile models.

With the approaches proposed in Section 2, we can build a co-kriging model for multi-level quantiles
with no crossing. In Section 3, we introduce the optimization algorithm based on this metamodel.

3 QUANTILE SIMULATION OPTIMIZATION WITH CO-KRIGING MODEL

This section presents a sequential algorithm used to optimize αm quantile with a multi-level model built
with α1, ..,αm quantiles. As previously noted, the optimization process is guided by the proposed stochastic
quantile cokriging model. The algorithm is sequential where the overall computing budget is iteratively
allocated to sequentially search the lower quantile models for promising regions and increasingly narrow
down the promising regions to search on higher quantiles. The overall idea is as follows: At the start of the
algorithm, when only small budget is first applied, the observations for higher quantiles can be too noisy to
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build a trustworthy model. In this stage, only a more reliable lower quantile α1 model is built and used to
guide the search. In other words, we optimize the first level as a start to identify possible promising regions.
As the algorithm proceeds, more budget is allocated and the accuracy of quantile estimators improve.
As these estimates improve, the algorithm will stepwise increase the level of the quantile metamodels
developed, and use the current highest level to guide the search. As a result, the algorithm gradually
optimizes a higher and higher quantile with a focus on the promising regions identified by previous levels,
to finally optimize αm quantile.

Within each iteration, we borrow the two-stage framework from the TSSO algorithm, to provide a
“division of labor” (Quan et al. 2013) approach in the optimization. In the first stage (Searching Stage),
we select a new design based on EI criterion applied to current highest level. This will select a new
design point with the highest possibility of achieving a better result than the current best. The second
stage (Allocation Stage) is responsible for driving the noises down at already selected designs by allocating
additional computing budget to them. This is to improve the model fit and the accuracy of the existing
observations, especially those in the optimal regions, to correctly find the optimum. The distribution of
budget used in these two stages changes with iteration. At the beginning, more budget is used to search
the design space to identify the promising regions. As the process evolves, more budget will be saved
for the allocation stage, since the emphasis becomes refining the observations at already selected designs
when we are in proximity of the promising regions. These two stages will be discussed in detail in Section
3.2 and 3.3 after an overview of the algorithm given in Section 3.1. Our algorithm is based on the TSSO
procedure, and we refer interested readers to Quan et al. (2013) for full details of the algorithm.

3.1 Algorithm Overview

The proposed algorithm is iterative with Searching and Allocation Stage applied in each iteration until the
computing budget runs out. Before describing this procedure, we list some parameters in Table 1. The

Table 1: Algorithm parameters list

Parameter Definition
T Total number of replications (computing budget) at the beginning
D0 Initial design set

αl, l = 1, ...,m Quantiles used for modeling
r0 Minimum number of replications for a new selected design input
k Current iteration

h(k) Current highest level available
Bk Number of available replications in iteration k
Dl Current design set for lth level
Yl Observations for lth level
A Remaining number of replications(Algorithm terminates when A = 0)

first four parameters are user-defined. T is typically determined by the computing budget and for D0, if
no prior knowledge or preference is available, users can apply popular design strategies such as uniform
and Latin Hypercube design. The multi-level quantiles used in this algorithm α1, ...,αm, of which αm is
our objective, should also be specified in advance. As noted above, to optimize a high quantile αm, we
start with the base level α1. This level should not be too high and we suggest α1 ∈ [0.5,0.6] based on
our experience. For the remaining level, we currently consider fixed levels between α1 and αm such as
1/2(α1 +αm). More sophisticated approaches can be applied to select those quantile levels, and this is an
area for our future research. r0 is the number of replications assigned to any new selected design inputs.
This r0 should be chosen to ensure that the observations for the base level have acceptable quality. In
practice, starting with a small number of r0, we can iterative increase its value until the model for α1 build
by D0 with r0 replications at each inputs pass the cross-validation test.
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The remaining parameters are updated in each iteration. h(k) is the current highest level with acceptable
accuracy and it gradually increases with iteration. In each iteration, we choose its value as follows. Denote
C0 as the maximum noise variance of a quantile estimate that can be tolerated (In practice, its value can be
chosen as the maximum noise variance of α1-quantile estimator at D0). We treat this value as a criterion to
examine the quality of the quantile estimator. Specifically, only if Yl(x) drawn from simulation results has
noises smaller than C0, we set x ∈Dl . Denote h(k) as the largest value in {1,2, ...,m} such that Dh(k) 6=∅.
In this case, we choose h(k) as the current highest level and build a multi-level model for α1, ...,αh(k) in
iteration k. Bk changes with iteration and will be introduced in detail in Section 3.3. Dl,Yl and A can be
easily renewed after the two stages. The algorithm is described in detail in Algorithm 2. In Section 3.2
and 3.3, we go into the details about the Searching and Allocation Stage.

Algorithm 2 TSSO for quantile optimization
Input:T , D0, r0, {α1, ...,αm}

1: Initialization:
2: k = 0; B1 = r0; D1 = D0; A = T −|D0|× r0
3: Get the simulation results for D0 with r0 replications for each input
4: Estimate Y1 for D1, let h(0)← 1
5: Fit single stochastic GP model Ẑ1(x) for Y1, resulting the predictive random variable Z̃1(x)
6: Let z∗0 = minD1(Ẑ1(x)), x∗0 = argminD1(Ẑ1(x))
7: while A > 0 do
8: Searching Stage:
9: xk+1 = argminE[(z∗k− Z̃αh(k))|Yh(k), ...Yh(1)]

10: Run r0 replications and set D1← D1∪{xk}
11: Let l∗ = argmaxl∈1,..m,Yl(xk)≤C0 l
12: Let Dl ← Dl ∪{xk} and enlarge the corresponding observation vector Yl , ∀l ≤ l∗

13: Allocation Stage:
14: Update Bk
15: Use OCBA to allocate the Bk− r0 replications to selected inputs and run new simulations corre-

spondingly
16: For each selected design xi, decide l∗ = argmaxl∈1,..m,Yl(xi)≤C0 l. Set Dl = Dl ∪ xi and update the

observation vector Yl , ∀l ≤ l∗

17: Modeling Update
18: Set h(k+1) as the largest value in 1,2, ...,m such that Dh(k+1) 6=∅
19: Fit the co-kriging model for α1, ...,αh(k+1)

20: Let z∗k+1 = minDh(k+1)(Ẑh(k+1)), x∗k+1 = argminDh(k+1)(Ẑh(k+1))
21: A← A−Bk, k← k+1
22: end while
23: return x∗ = argminDm(Ym)

3.2 Searching Stage

In the searching stage, we select the next design input based on the following modified EI criterion:

xk+1 = argminE[(z∗k− Z̃αh(k))|Yh(k), ...Yh(1)],

where z∗k is the lowest value of the predictive responses Ẑk at Dh(k). Z̃αh(k) is a Gaussian random variable
whose mean and variance is the predictive mean and variance of the αh(k)-the quantile (see equation 1, 2).
With this criterion, we use the current highest level, h(k) to guide our search. Similarly with standard EI
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criterion, it balances between exploitation and exploitation. After selecting the new design input, we run
r0 simulations to it and add it to the design and update the observation vector accordingly.

3.3 Allocation Stage

At the beginning of this stage, we update the value of Bk. Since the Searching stage has already cost r0
replications, the Allocation Stage can spend the remaining (Bk−r0) replications. As noted before, we want
the budget to Allocation Stage increases as the algorithm evolves to refine the observations at selected
design inputs. This is intuitive since at the beginning, more budget can be used in the first stage to search
the space and when k gets larger, we are more likely to be in proximity of the promising region. In this
case, we can reduce the number of new selected designs and assign more budget to the already sampled
points in the promising region. We therefore let Bk increases with iteration and update its value as follows:

B1 = r0; Bk = bBk−1(1+
max

xi∈Dh(k)
var(ε̂(xi))

max
xi∈Dh(k)

var(ε̂(xi))+var(Ẑh(k)(xk+1))
)c, k > 1,

where var(Ẑh(k)(xk+1)) is the predictive variance of Ẑh(k)(xk+1) given by the model built with Y . The increase
of Bk is controlled by the relationship between the observations noises, measured by maxxi∈Dh(k) var(ε̂(xi)),
and the spatial uncertainty of the GP model, measured by var(Ẑh(k)(xk+1)). At the beginning, the spatial
uncertainty is very large, Bk has a slow growth to save more budget for design selection. When the spatial
uncertainty gets smaller, i.e., the design space has been explored better, Bk will experience fast growth so
that we can be more concentrate on the selected points in the promising regions.

After updating Bk, we can allocate Bk− r0 replications to the selected design inputs. Note that D1
contains all selected design inputs but Dh(k) may not. We next define D∗h(k) = D1 and Y ∗

h(k) as the point
estimates of αh(k)-th quantile at D∗h(k) with noise vector ε∗h(k). Denote xb as the current best in D∗h(k), we adopt
the following OCBA technique to decide number of new replications ni assigned to each input xi ∈ Dh(k):

ni

n j
=

√
var(ε∗h(k)(xi))/λb,i√
var(ε∗h(k)(x j))/λb, j

, (i, j 6= b); nb =
√

var(ε∗h(k)(xb))

√
∑
i6=b

ni

var(ε∗h(k)(xi))
,

where var(ε∗h(k)(xi)) is the sample noise variance of the observation at xi, λb,i is the difference between
Y ∗

h(k)(xi) and Y ∗
h(k)(xb). The OCBA technique actually prefers to allocating additional replications to points

with low response values and large noises, which is to refine the observations at promising regions and
drive the noises down. Next, we can run those additional simulations to the existing inputs and update the
observation vector, Y , and current highest level, h(k), accordingly. Finally, a new co-kriging metamodel
can be built can goes to next iteration.

As the overall algorithm proceeds, the procedure searches focusing in more promising regions of higher
and higher quantiles, and as result, less budget is spent in the non-promising regions sequentially. This can
be seen by the budget used for increasing the precision of observation at lower quantiles which essentially
also improves the estimates for higher quantiles. When optimizing lower quantiles, more budget is spent
in its promising regions and if this region is also promising for αm, it would have already been sampled
and the estimates here have been enhanced. In other words, the algorithm digs into the promising regions
identified by the lower quantiles when estimating αm. We highlight here that this improvement is caused
by the specificity of our problem, which does not apply to a general multi-fidelity problems. Since in those
problems, the experiments for lower fidelity and higher fidelity are different. Running simulations for one
level does not necessarily improve the observations for another level.
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4 NUMERICAL EXPERIMENT

To illustrate the benefit we can get from our multi-level optimization algorithm, we conduct a numerical
experiment to compare it with the algorithm based on only one quantile level model, the target αm-quantile
model. Without too much modification (fix m= h(k) = 1), our algorithm can be easily applied to single-level
problem.

In this example, the design space is X = [0,1]. At each x ∈X , the loss function L(x) is assumed to
follow a normal distribution with the mean m(x) and variance v(x):

m(x) = 5(0.2(x−0.02)+1)cos(13(x−0.02)), v(x) = 10(2+ sin(10πx−0.5)).

In this example, we select r0 = 20, T = 1000. The initial design a uniform design with D0 = {0,0.2,0.4,0.6,0.8,1},
and here we only consider two quantile levels 0.6 and 0.95 where 0.95 quantile is our objective (shown in
Figure 1). .

Figure 1: True 0.6 and 0.95 quantile functions

To mitigate the stochastic nature of the problem, all experiments are conducted with 100 macro-
replications. To compare the two algorithms, we further define the true selection as: |x∗− x0| < 0.035,
where x∗ is the optimum found and x0 represents its true value (0.765). The experiment results for 100
macro-replicaion is summarized in Table 2. The results show that the multi-level algorithm is much better

Table 2: Comparison of the two methods

multi-level model single model
Frequency of true selection 91 70
Average Number of selected design points 16.96 14.02

than the single one in terms of true selection. The second criterion we use is the average number of inputs
in the design set after the optimization process, and seen from the results, our multi-level tries more design
inputs. This is because our algorithm first searches a 0.6 quantile, which has less noisy estimates with
limited budget, to determine promising region. In this stage, the increase of Bk will not be that large
compared with single model, which directly fits the 0.95 quantile with more noisy observations. Therefore,
the multi-level algorithm saves more for searching. In other words, at the beginning, our algorithm is
faced with a more accurate surface (0.6 quantile) compared with the one with single model, who deals
with a very inaccurate 0.95 surface with limited initial budget. This inaccurate surface can mislead the
search and waste budget to unpromising regions. To show this, we here provide the design inputs that
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have been selected by the two approaches in one macro-replication run (see in Table 3). In this run, in the
first four iterations, our multi-level algorithm first searches 0.6-quantile level (h(k) = 1) and then goes to
0.95-quantile level with a focus on the promising regions around 0.75. The single-model based algorithm,
however, seems to still focus on providing a space-filling design (likely due to the poor model estimation
throughout) and does not end up near the optimum.

Table 3: Comparison of the design inputs selected two methods in one run

multi-level model 0.674 0.295 0.111 0.895 0.987 0.709 0.731 0.732 0.74
single model 0.7 0.5 0.3 0.166 0.108 0.873 0.151

In this example, although the two curves are not highly correlated, the promising regions of 0.6 quantile
is still informative for 0.95 quantile, which makes the proposed method much better. In the case with
limited budget and large noises, searching informative lower quantile as a start appears to be a more robust
approach.

5 CONCLUSION

In this paper, we propose a co-kriging based multi-level quantile simulation optimization algorithm. The
main idea is to leverage on the lower quantiles, which are typically easier and cheaper to obtain, to help
optimize some higher quantile function. To develop the metamodel, we first generalize the stochastic
co-kriging model and apply it to quantile prediction. Next, to prevent possible crossing problem among
multiple quantile curves, we propose a PMLE approach. This helps to fulfill the non-decreasing property of
quantiles and ensure our multi-level search in the optimization algorithm is valid. Based on this metamodel,
we propose our optimization algorithm, which considers selecting new inputs and improving the accuracy
of already taken observations simultaneously. It starts with searching lower quantiles and gradually goes
to optimizing higher quantiles. Through a numerical example, we clearly see the benefit of our multi-level
algorithm. When optimizing much noisier quantile functions with limited budget, starting with some
informative and less noisy lower quantile can provide much better results.

This work provides a different view of optimizing quantile function, yet there are still a few questions
worth investigating. First, as we currently only consider fixed levels in our search, more sophisticated
approaches to more intelligently select the number of levels and the levels themselves should be further
explored to fully benefit from the proposed algorithm. Second, although the numerical example showed
good results and empirical convergence, more detailed convergence of the algorithm should be studied.
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