
Proceedings of the 2018 Winter Simulation Conference
M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds.

A COMPREHENSIVE ELECTRICITY MARKET MODEL USING SIMULATION AND
OPTIMIZATION TECHNIQUES

David Steber
Jakob Hübler
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ABSTRACT

Worldwide Electrical Power Systems (EPSs) are faced with tremendous challenges because of the reduction
of greenhouse gas emissions and the increasing number of renewables. EPS analysis can help to show future
developments in an uncertain environment and is an important task for the assessment of greenhouse gas
emissions. In order to perform such a complex analysis of future EPSs, a huge number of input parameters
is needed. Moreover, technical and also economical processes have to be considered. Thereby, one major
task is the modeling of electricity markets. In this paper, we present an approach for the modeling of the
German EPS including electricity markets using hybrid simulation and mathematical optimization. We
contribute an object-oriented electricity market model which can be utilized to study different exchange
mechanisms and behavior patterns of generation unit operators. Simulation results show market results for
different generation unit operators and realistic market prices.

1 INTRODUCTION

All over the world EPSs are faced with greenhouse gas emission reduction policies and the integration
of electricity generated by renewables. According to the Renewable Energy Policy Network for the 21st
Century (2017), the global renewable power capacity reached 2,017 GW at the end of 2016. Renewable
energy sources are sustainable and very useful to reduce the dependency on crude oil but often they are
very volatile and hard to predict.

In Germany, electricity generated by renewables had a share of 29 % in 2016. Until 2025, the German
government aims to have a 40-45 % share of renewables in electricity generation. Hence, the German EPS
is faced with tremendous challenges in the next years. For instance, the residual load, which is defined as
the difference of electricity demand and the feed-in of renewables, will still decrease in the next years. A
declining residual load means less service times for conventional generation units (e.g. lignite, hardcoal,
or gas).

In order to understand the complexity of the EPS and to evaluate its future development under uncertain
conditions, EPS analysis is an important task. In our interdisciplinary research project KOSiNeK (Combined
Optimization, Simulation and Grid Analysis of the German EPS in an European Context) three groups
of Friedrich-Alexander University Erlangen-Nürnberg (FAU) perform an interdisciplinary, comprehensive,
and holistic analysis of the German EPS. Within the subproject Simulation our group combines discrete
event simulation and System Dynamics in one framework in order to model different components like
renewables, electrical loads, thermal generation units, storage systems, and the control of the interaction of
these components (Pruckner and German 2013; Pruckner 2016). Due to the expansion of the spatial and
temporal resolution and the aim of modeling the electricity market in more details by using mathematical
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optimization for solving the unit commitment problem, the complexity of our simulation model is still
increasing until the end of the research project KOSiNeK in 09/2019.

To present the current state of our simulation model, this paper contribute an approach for modeling
the German electricity market. For the development of our object-oriented electricity market model, we
couple hybrid simulation techniques and mathematical optimization in one framework. Thus it is possible
to study different exchange mechanisms and behavior patterns of operators and fleet managers (aggregators)
of generation units. For the simulation model we utilize the multimethod modeling environment AnyLogic
(The AnyLogic Company 2018) and developed different classes of software agents for the modeling of
different market roles and various electricity trading platforms (e.g., day-ahead markets, intraday markets).
For solving the mixed integer linear optimization program (MILP) within the market model we use Gurobi
(Gurobi Optimization 2018).

The paper is structured as follows: Section 2 discusses related work. A general description of our model
is provided in Section 3, which also presents the local simulation of the residual load that is necessary for
the optimal dispatch of fossil fired generation units. In Section 4 we describe the object-oriented electricity
market model based on a MILP. Section 5 shows first simulation results, as we just present an intermediate
state of our model here. Section 6 concludes the paper and gives an outlook on future work.

2 RELATED WORK

There are several publications in the field of the combination of simulation and mathematical optimization in
the energy domain. Brenna et al. (2017) used simulation and optimization for the integration of renewables
and storage systems for remote communities electrification. Simulation is used for the electricity demand
and the grid injection of different renewables. Optimization is applied for finding the optimal size of
PV-generators or battery capacities and the number of wind power plants within the microgrid. The authors
found out that the implementation of on-site microgrids for rural or remote locations plays an important
role to reduce the main drawbacks in the socio-economic developments. Lee et al. (2015) investigated the
energy efficient operation of heating, ventilation and air conditioning (HVAC) as demand response service
with decentralized renewable generation units. Therefore, they simulated different HVAC control strategies
and used the generated data for analysis and modeling. The simulation results stated that different control
strategies have an impact on energy consumption and energy costs. Solving a MILP optimization model
based on the simulation results can identify energy saving opportunities.

In both publications the interaction of simulation and optimization is utilized on low voltage levels of
the EPS. Nevertheless, they give an interesting idea of combining different methodologies in one framework
in order to solve complex decision problems within the energy domain.

Now we concentrate on the simulation and optimization of electricity markets which takes place on upper
system levels. For instance, Sarica et al. (2012) developed an hourly day-ahead electricity market model
based on an integrated simulation/optimization approach. The simulation model describes the interaction
between different market participants (e.g., system operators, power transmitter, power generators) by a
multi-agent simulation approach. The integrated optimization model controls the electricity flows and
dispatches the generation units. Results showed insights into structural aspects of a decentralized electricity
market for small regions with up to ten generators.

The benefits of introducing financial transmission rights in electricity markets in order to allocate
congested capacity are examined by Zambrano et al. (2014). Therefore, the authors combined agent-based
simulation with optimization including the physical features of the interconnected system and the economic
features. As a result they showed that financial transmission rights can help to manage transmission
congestion, although it increases the complexity of the market rules.

Ringler et al. (2017) investigated the effect of different design aspects of electricity markets to the
welfare and generation adequacy in Europe. Therefore, PowerACE was utilized, which is an agent-based
bottom-up model for wholesale electricity markets. In PowerACE relevant market participants are modeled
as software entities and the market clearing is implemented as linear maximization program.
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Sarica et al. (2012) and Zambrano et al. (2014) give interesting insights into combining agent-based
simulation and mathematical optimization for modeling electricity markets. As they consider only a limited
number of generators, their findings are only viable for decentralized electricity markets of smaller regions.
Additionally, they do not take new market players such as aggregators of renewables sufficiently into
account.

The idea of the work presented within this paper is to contribute a detailed integrated object-oriented
electricity market model by combining hybrid simulation techniques and mathematical optimization. There-
fore, we take the electricity trading platforms of the EPEX spot-market (day-ahead and intra-day market)
into account. We use different software agents in AnyLogic for different market roles and manage a closer
linkage between simulation and optimization. For the solution of the thermal unit commitment problem we
take technical and economical constraints of thermal generation units into account. The general formulation
of the unit commitment optimization problem is based on Arroyo and Conejo (2000), Carrion and Arroyo
(2006), Morales-Espaa et al. (2013), Rajan and Takriti (2005). Moreover, our contributed electricity market
model will be integrated in a comprehensive hybrid simulation model of the German EPS (Steber et al.
2017). Earlier versions of our EPS model are described in (Pruckner and German 2013) and (Pruckner
2016). They were strongly focused on the EPS of the German federal state of Bavaria and did not consider
neighboring countries of Germany excluding Austria. Additionally, we substantially increase the regional
granularity meaning the grid injection of German PV-generators and wind energy plants is now modeled
on the counties level (401 German counties). Another improvement is the modeling of the power plant
operation. So far we have used a simple merit order approach which is now replaced by the electricity
market model contributed in this paper.

3 GENERAL MODEL DESCRIPTION

Figure 1 shows the interaction of simulation (dark gray boxes) and optimization (light gray boxes) in the
implemented model of the German EPS plus its general day-ahead and intra-day iteration sequence. The
structure of the model is described in the second half of this Section.

The day-ahead market sequence (see Sect. 4) takes place once every day at noon in order to determine
the dispatch of generation units for the upcoming day. Therefore, each aggregator creates an individual
supply curve which are put together to an aggregated supply curve at the electricity exchange. There, the
market-clearing takes place. It merges supply and demand for each hour. Thus, the optimized dispatch of
generation units to the residual load is determined. The market clearing price results from the intersection
of the aggregated supply and demand curve.

Each hour in the simulation model the current load and renewable generation are simulated on the
county level first. The residual load emerges on the aggregated level. It has to be covered by conventional
generation units and differs to the load predicted for generating the day-ahead supply curves. Then the
aggregators place buy (in case of underproduction) and sell (in case of overproduction) orders at the intra-day
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Figure 1: Sequence of the combined simulation and optimization model of the German EPS.
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market to maximize their yield and to even out the deviations from timetables determined by the day-ahead
auction to the real residual load. After this intra-day sequence, the aggregators re-optimize themselves
internally to maximize their profit of generating electricity. Finally, the local power balance in each county
can be determined by taking together the market based generation per unit, the renewable generation, and
the load. The emerging power balance on the aggregated level of grid groups is then used for DC power
flow calculations in order to assess situations overstraining the EPS. Evaluations and validations are also
done on aggregated levels for reasons of real data availability. DC power flow calculations (Zelmer 2010)
contain again an optimization but are not considered here.

In this paper, we mainly focus on the market sequences described in detail in Section 4. Before, a
brief introduction into the structure of the model and the simulation of the local electrical load plus the
renewable generation on county level is given. Therefore, Figure 2 sketches the basic structure of the
simulation and optimization model of the German EPS.

Domestic Level

- Object Oriented Market Model
- Simulation Model Control

Local Level (Counties)

- Simulation of local Load and 
  Renewable Generation

Federal State Level

- Input Data (e.g, Renewables, Load)
- Validation of Energy Amounts

Balancing Group Level

- DC-Power Flow Calculations
- Validation of Generation and
   Load Time-Series

Figure 2: Levels of the simulation model (map: c©GeoBasis-DE / BKG 2017, http://www.bkg.bund.de).

The locally resolved model level is build by 401 German counties, which can for instance be aggregated
to balancing groups or federal states. In order to determine the optimal dispatch of generation units (see
Sect. 4) on the domestic level, the residual electrical load must be calculated first. It serves as an input for
the electricity market optimization model, as it must be covered by the generation units dispatched by the
market results.

To deduce the residual electrical load on domestic level, we first simulate the renewable generation and
the electrical load on county level and then aggregate it on the respective model layers. As mentioned above,
a county represents the smallest entity of model levels. It composes of separate models for simulating
the fluctuating renewable generation (wind and solar), the seasonal renewable generation (geothermal and
hydro), the constant renewable generation (biomass and renewable gases), and the load of all final energy
consumption sectors (residential, trade and commerce, traffic (railways, buses), and industry).

We calculate the residential load based on standardized load profiles (VDI 2008) in addition with weather
data having a high spatial resolution (COSMO-REA6 2017) and census data (Destatis 2017). The electrical
load of the trade and commerce sector is determined by scaling standardized load profiles (VDEW 2002)
with specific energy consumption data of each economic sector (Destatis 2017) and numbers of employees
(BA 2017). The electrical load of the traffic sector (e.g., railways or electrical buses) is determined by
taking into account the overall annual consumption scaled with the inhabitants per county as a base for
a constant yearly load. As no standardized load of the industrial sector is available, we summed up the
derived demand curves of the other sectors and subtracted it from the real load curve (ENTSO-E 2018),
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normalized the resulting profile and scaled it with specific energy consumption data of each economic
sector (Destatis 2017) and numbers of employees (BA 2017) to the county level.

This regional model has already been described in detail in (Steber et al. 2018b), where the comparison
of simulated and real time series shows coefficients of determination (R2) greater than 90 %. Thus, the
determination of the local load and renewable generation is not dealt with further here.

In addition to the described model functionality, we need a forecast of load and renewable generation
on the domestic level, as the day-ahead market clearing takes place around noon on the day before delivery.
Therefore, we use a persistence forecast for solar generation and the load. The wind generation forecast
is realized by applying a RMSE profile to the wind data within the model. Thus, it is possible to gain a
forecast of the residual load as an input of the market model.

4 OBJECT ORIENTED GERMAN ELECTRICITY MARKET MODEL

For the simulation of the German electricity market, different individual market roles have to be modeled
using single software agents in AnyLogic (e.g., electricity exchange, generation unit (fleet) operators, or
generation units).

The focus here is on the modeling of market relevant decisions of the individual aggregators of fossil
fired and pumped-hydro-storage generation units. These aggregators are companies, which are active in the
electricity market and operate a fleet composed of different kind of generation units and thus represent the
suppliers of electricity. In addition, the electricity market model includes the spot-market as a platform for
electricity trading. Due to increasing renewable capacities and their poor long-term predictability, the spot
market is the primary sales market for renewable generation. With regard to the still increasing renewable
capacities plus the phase out of different generation units and model complexity, we neglect over the
counter (OTC) trades here. Thus, the whole generation for covering the residual load is contracted at the
spot (day-ahead plus intra-day) market at the current model status. In perspective, also some renewable
capacity should be integrated into the market by aggregators.

Within the simulation and optimization model the spot market (day-ahead and intra-day) enables supply
and demand to be synchronized. Forecasts are integrated by forecasting service providers during run-time
where these services are based on past simulation model results (e.g., market prices, renewable generation,
load). The aggregators need these forecasts in order to optimize their bids at the day-ahead market and
thus to maximize their profits.

According to Figure 1, first market actions concerning one day take place once at the day-ahead
market and afterwards trades are made at the intra-day market over the whole day. So, Subsection 4.1
introduces the implemented day-ahead market model, Subsection 4.2 explains the day-ahead market clearing,
Subsection 4.3 describes the implemented intra-day market model and finally Subsection 4.4 represents
the optimal unit commitment of aggregators.

4.1 Day-Ahead Market Supply Curve Creation of Aggregators

As a first step in the entire sequence (see Figure 1), aggregators determine their bids for the day-ahead market
clearing based on available forecasts of aggregated bid curves, renewable generation and load. This bid
creation takes place every day before noon, where electricity is traded for delivery at the following day in 24
hour intervals (EPEX SPOT 2018). A bid must be submitted in the form of an supply curve with a minimum
price increment of 0.1e/MWh and a minimum volume increment of 0.1 MW. An hourly specified supply
curve may contain up to 256 price [e]/volume [MWh] combinations, where the allowed interval is from
−500e/MWh up to 3000e/MWh (EPEX SPOT 2018). These price/volume combinations must be linked
to a piecewise linear function (supply curve), where each determined price/volume combination represents
a sampling point. In general, the supply curve should guarantee the optimal dispatch of generation units
maximizing the yield as best as possible from the point of view of the aggregator at the time of bid creation.
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Figure 3: Exemplary residual demand curves (top) and derived revenue curves (bottom) of an aggregator
per forecast scenario with low (left), average (middle) and high demand (right).

To achieve this, the creation of day-ahead supply curves proceeds in each aggregator as follows (see
Figure 3). As there are forecast uncertainties, different scenarios of load and renewable generation are
taken into account, represented by the different colors in Figure 3. The number of forecast scenarios is
generally variable but too much scenarios overextend the run-time of the simulation model, whereas too
less scenarios lead to an inaccurate supply curve (see also 5.1). For determining the supply curve first
the revenue curve of the aggregator must be deduced based on the residual demand curve method (Varian
2016), which enables to map the influence of the aggregator on the market. Thus, the model takes also
market power (price makers and price takers) into account. In general, the residual demand curve indicates
the amount of a good depending on the price that is not covered by competing suppliers. Here, it represents
the marketable amount of energy per a fixed price from the point of view of an aggregator. According
to Eq. (1) the residual demand curve (rdcAgg

t ) results from subtracting the aggregated supply curve of the
concurrent aggregators (sc∑comp

t ) from the aggregated supply curve of all aggregators (sc∑agg
t ). The supply

curve of the competitors results from the aggregated supply curve of all aggregators minus the supply curve
of the one of the bid creating aggregator.

rdcAgg
t = sc∑agg

t − sc∑comp
t (1)

The provision of the past and forecasted aggregated supply curves is a forecast service within the
simulation model. To simplify matters, the forecasts are based on the statistics derived from relevant real
data time series (e.g., load, renewable generation) for the following day, which are present in the model
and falsified by a random forecast error based on real data evaluations.
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The revenue curve can easily be derived from the residual demand curve by multiplying the market
clearing price with the corresponding volume. The revenue curve is used for the final creation of the supply
curve within the MILP optimization model. Therefore, it has to be linearized.

The creation of realistic supply curves for the day-ahead spot market is challenging. In order to obtain
a maximum yield price/volume combination per scenario from the point of view of the aggregators, the
existing MILP optimization model for determining the unit commitment (Steber et al. 2018a) must be
extended

Therefore, first the optimization target function has to be adapted according to Eq. (2) to maximize the
revenue achievable at the day-ahead market

(
revDA

t
)
, also considering the generation cost coperation

t .

max
T=24

∑
t=0

(
revDA

t − coperation
t

)
=

T=24

∑
t=0

(
rdcAgg

t − coperation
t

)
(2)

An optimization run is done per each scenario resulting in a price-volume combination per forecast
scenario. It represents the optimal operation point of the generation unit fleet (volume) on the revenue
curve (price per volume) with regard to uncertainties.

4.2 Day-Ahead Market-Clearing

Once the day-ahead supply curves have been created, submitted by the aggregators, and aggregated by the
market agent, he calculates its intersection with an artificially generated aggregated demand curve. Thus,
he determines the market-clearing price per hour (valid for all market participants – uniform pricing) and
the delivery obligations of the individual aggregators, which is feed back to them. The delivery obligation
of an aggregator per hour of the following day result from the intersection of the market clearing price
with its submitted respective supply curve.

4.3 Intraday-Market Actions

The next step in the simulation model (see Figure 1) is to evening out the delivery obligations of the
aggregators resulting from the day-ahead market and the forecast uncertainties by means of trading on the
intra-day market. Therefore, the aggregators have to submit sell and buy orders to the market.

The possibility to purchase or sell volumes is supported by the adaption of the unit commitment
optimization by two variables, as stated in Eq. (3), which maximizes the achievable revenue at the intra-day
market. In principle, these variables can be considered as dummy generation units, which buy (cID

t ) or sell
(revID

t ) electricity at a specified price (intra-day price; pID
t ). However, this happens with the difference that

the respective volume is determined by a competitive generation unit outside the fleet of the corresponding
aggregator.

max
(

revID
t − cID

t − coperation
t

)
∀ t ∈ T (3)

The hourly day-ahead market trading results (market-clearing price (pDA
t ) and the delivery obligation of the

individual aggregators) are the starting point of the intra-day market. To achieve a coupling of both markets,
the intra-day price assumed for the determination of buy and sell orders results from the product of an
iteratively changed factor ( f ID = 0.75 to 1.25) multiplied with the market-clearing price of the day-ahead
market (pID

t =pDA
t · f ID). The merging of orders at the intra-day market is handled by the market agent.

Existing European intra-day markets are characterized by a low market liquidity, which is in general the
ability to trade a certain amount of an asset quickly without a single transaction having a significant impact
on the market price (Weber 2010). In the model presented here, a non-liquid market is prevailing due to
the small number of players. In order to adequately reflect this lack of liquidity, the modeling approach
described in (Scharff and Amelin 2013) is used. Therefore, a function is implemented in the market agent
that controls the intra-day trading between the individual aggregators. Here, the temporal resolution of the
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Figure 4: Sequence of the intra-day market within the simulation model.

intra-day market is increased from 15 min to 1 h compared to the real intra-day market in order to ensure
the resource efficiency of the simulation model. The procedure follows a fixed iterative scheme, which is
shown in Figure 4 and described as follows: Buy and sell offers are entered in an open, electronic order
book with details of volume and price limit. All offers are sorted and compared according to price (pbuy/sell)
and volume (volbuy/sell). Buy offers are sorted in descending order, sell offers in ascending order of the
price. If several buy or sell orders have the same price, they are sorted in descending order of the volume.
The special feature of this procedure implemented here is that all buy and sell orders of an iteration have
the same price due to assuming the price as the day-ahead market price multiplied with f ID. Sorting the
orders by volume at the same price as on the real stock exchanges would therefore put smaller providers
at a disadvantage. Therefore, all buy and sell orders are selected and merged at random.

A trade is executed, if the first entries in the buy and sell order books match, e.g., the selling price is
less than or equal to the buy price (Genoese 2010). The price of the transaction is determined by the price
limit of the buy order. This pricing procedure is referred to as the pay-as-bid (Tierney et al. 2008). The
transaction volume is the minimum of both, the buy and the sell order. If an order has been successfully
executed, it is removed from both order books. Otherwise its order volume is adjusted accordingly. Thus,
it may happen that an order is merged several times with other orders, if in each case only part of the
order volume is served by a transaction (Eurex Exchange 2018). This process is repeated as long as there
are no matching orders anymore. Every successful trade is then published in the transaction order book.
Thus, the market activity is made transparent (Konstantin 2013).

4.4 Optimal Unit Commitment of Aggregators

Having determined the prices and volumes traded on the spot market, the aggregators know their final
delivery obligations and selling prices. Thus, they re-optimize their generation unit fleet by a final unit
commitment in order to maximize their profit under given conditions.

5 RESULTS

For the results presented in this Section, we first introduce the model setting. For our investigations, we
focused on the optimization parts of the model (see Figure 1).

For a block-wise consideration of generation units and their assignment to aggregators we took public
available lists of generation units installed in Germany into account (UBA 2017, BNetzA 2017). Concerning
the amount and installed capacity of the aggregators of generation units, a large part of the generation unit
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capacity is accounted for by a few large suppliers. Only six aggregators account for a respective installed
generation capacity greater then 2 GW and around 70 % of the overall installed generation capacity. In
contrast there are 122 aggregators with less then 0.1 GW installed generation capacity which account for
4 % of the overall installed generation capacity. For the parameterization of the generation units we used
(DIW 2013).

5.1 Run-time

For optimal utilization of several cores, the optimization steps were implemented in such a way that the
calculations of the individual aggregators can be processed in parallel (multi-threading). First investigations
showed, that 76 % of the whole run-time are spent on creating the day-ahead supply curves. Additional
13 % are spent on the intra-day market mechanism and further 8 % on the final unit commitment.

The following parameters related to the optimization were identified, influencing the run-time of the
model: Gurobi MIPGap-Parameter (accepted maximum relative distance from optimum (standard: 0.005)),
the amount of sampling points of the aggregator’s revenue function (standard: 6), and the amount of scenarios
for day-ahead supply curve creation (standard: 8). We found, that varying the amount of sampling points
of the aggregator’s revenue function has no significant effect on the run-time here. In contrast, setting
the MIPGap parameter to 0.01 reduces the run-time around 10 % and cutting in half amount of scenarios
for day-ahead supply curve creation brings a run-time reduction of circa 35 % by guaranteeing only small
deviations of traded volumes and market prices.

5.2 Resulting Dispatch of Generation Units

Figure 5 shows exemplary the resulting generation dispatch for a big aggregator (Figure 5a) and a small
aggregator (Figure 5b) for the same time-span of the whole February 2016. Concerning the big aggregator,
we observe the following behavior: Due to the low variable costs, the nuclear fired generation units run
under full load throughout. In the second half of the month, a drop in demand can be observed down to
nuclear power plant capacity. The use of each type of generation unit is also clearly visible, depending on
the total generation volume. As expected, pumped-hydro storages (blue) are mainly used during peak times.
Concerning the small aggregator, we observe the following behavior: He is mainly active during times of
high generation of the big aggregator. As his portfolio contains generation units with high variable costs,
his behavior to act mainly during times of high load (resulting mostly also in high prices) is plausible.

Concerning the utilization of generation units we gained the following results (compared to (AEE
2013)): nuclear fired generation units 99 % (cf. 99 %), lignite fired generation units 93 % (cf. ca. 70 %),
hardcoal fired generation units 56 % (cf. ca. 43 %), and gas fired generation units 27 % (cf. ca. 39 %).
These deviations mainly result from fixed fuel prices over the whole year and inaccurate generation unit
parameters as we used only public available data (DIW 2013) which do not map all existing technologies
detailed enough.
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Figure 5: Resulting exemplary generation dispatch for February 2016.
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5.3 Market Prices

According to (Destatis 2017) the mean electricity price at the EPEX spot market was 34.2e/MWh in
2016. The evaluation of a one year simulation run for 2016 shows that around 80 % of all resulting hourly
electricity market prices were in the interval of 25e/MWh to 40e/MWh, with a maximum incidence
around 30e/MWh, which is in line with the real mean electricity market price of 2016.

5.4 Model Behavior at Times of Negative Residual Load

If the renewable generation exceeds the load, this results in a negative residual load. However, this only
occurs for ten hours in the entire simulation year. The aggregators react clearly to this extreme situation
and submit extremely low offers for this period. Thus, the market clearing price falls also to a level around
(and below) 0e/MWh, which represents a real behavior.

6 CONCLUSION

To perform a complex analysis of future EPS, we set up a hybrid simulation model of the German EPS, which
also includes optimization mainly for considering the market mechanisms. In this paper, we contributed
an object-oriented electricity market model which can be utilized to study different exchange mechanisms
and behavior patterns of generation units. Therefore, we introduced our general model and the derivation
of the residual load. Moreover, we explained the implementation of an object-oriented electricity market
model including the day-ahead market supply curve creation and the intra-day market actions in detail.
Simulations results showed that the run-time of the model can be influenced by the amount of sampling
points of the revenue function of the aggregator. In order to reduce the run-time the optimization steps
were implemented in parallel. Additionally, our simulation results gave interesting insights in the model
behavior at times of negative residual load and demonstrated realistic generation dispatch of generation
units for different aggregators.

The following steps within the research project KOSiNeK include mainly the integration of aggregators
of renewables and running through future development scenarios (e.g., resulting from the grid development
plants of different entities) taking also the phase-out of coal-fired generation units into account.
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