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ABSTRACT

Many service centers offer a “call-back” option, in which customers entering the queue are informed of
the anticipated (online) wait and can choose to wait either online or off-line till an agent contacts them.
We show that such a policy has the potential of both improving service performance and server utilization,
by balancing the load between overloaded and underloaded periods. However, our analysis suggests that
companies need not offer that service at all times, and that the delay guarantees proposed should be planned
according to the anticipated load throughout the day. In order to optimize the operation of such a system,
we develop an Iterative Simulation Algorithm to determine what delay guarantees the company should
offer in a time-varying environment. Those guarantees depend on service level targets the company wishes
to provide and the delay sensitivity of the online vs. off-line customers.

1 INTRODUCTION

Many call centers nowadays offer their customers a call-back option. The customers, who arrive to the
queue, are informed about the anticipated waiting time and the maximal delay till call-back. They can then
choose between waiting online in the regular queue or waiting offline for a call that will be initiated by
the organization. The offline wait is generally longer than a real time wait, which we would refer to as
an “online” wait, but enables the customer to do other things while waiting, and hence, some customers
prefer it. The customer decides whether to choose this option according to information provided regarding
the waiting time in queue as well as the maximal delay guarantees for the amount of time he would wait
for the call-back. By giving such a call-back option, the firm can balance loads and reduce waiting time
for online customers.

In many cases, the maximal offline delay guarantee is constant, offered to all customers and independent
of the system’s load. For example, big companies in Israel are required by law to offer a call-back option if
the online wait is longer than 3 minutes and, if such an option is chosen, to call-back the customers within
3 business hours. Such a policy is in the interest of the company, as it has the potential of both improving
service performance, and server utilization, by balancing load between overloaded and underloaded periods.
The problem with the current practice is twofold: 1. It ignores the fact that the length of offline delay
influences customer choice, i.e. customers are sensitive to the online and offline delays. 2. It also ignores
the daily pattern of load, and may move customers from overloaded periods to even more overloaded ones,
causing worse delays instead of improving them. Therefore, planning delay guarantees that vary over
time is important. In this work, we provide a simulation-based optimization algorithm, called the Iterative
Delay Guarantee (IDG) algorithm, to determine what offline waiting guarantees a company should offer
in a time-varying environment with customer choice. Those guarantees change over time and depend on
the load of the current state of the system as well as the anticipated load of future time periods.
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Though the call-back option exists in most service centers nowadays, the amount of research considering
the operations of service systems with call-backs is quite limited. Armony and Maglaras (2004b) studied
call-back in a stationary system where all customers are offered the same delay guarantee. They showed
that applying call-back improves system performance in stationary systems and reduces customers’ online
waiting time. The call-back option basically smooths the stochastic fluctuation of the workload. Armony
and Maglaras (2004a) studied the value of providing real-time delay information in the setting of Armony
and Maglaras (2004b). Legros et al. (2016) studied when to offer call-back using a Markov decision
process and characterized a threshold policy. Ata and Peng (2017) studied when to offer call-back under
arrival rate uncertainty and the ability to look a bit into the future.

Our research focuses on a time-varying system in which arrival rates change throughout the day and the
system alternates between overloaded and underloaded periods. Such alternation is caused by a mismatch
between service demand and capacity usually due to some constraints, and manifests itself in long queues
and customer waiting. The main focus of this work is to determine the appropriate delay guarantees for
systems to achieve specific service level goals for the online waiting times. We take into account the
influence on the customer’s choice. The longer the due date, the less attractive the alternative call-back
option for the customers becomes. We suggest that in order to utilize the benefits of the call-back option
properly, one should change the delay guarantee according to the anticipated state of the service system
during all the hours of a normal working day. This is in contrast to current practice of a long constant
delay guarantee regardless of current and future loads.

We use a simulation-based approach to determine the appropriate delay guarantee in order to reduce the
average waiting time in the online queue to a certain predetermined threshold. We call our approach IDG
- Iterative Delay Guarantee algorithm. It is inspired by the ISA (Iterative Staffing Algorithm) of Feldman
et al. (2008). ISA basically uses simulation to check how staffing decision variables affect performance
and adjusts them accordingly till reaching the targeted service level or the maximal iteration number, or to
a point where the change in performance after each iteration is very minor. The use of simulation allows
us to include realistic features that are fitted from real call center data in our model.

2 MODEL DESCRIPTION AND CALIBRATION

We model the service system as a variation of the time-varying Erlang-A queueing system. Customers
arrive to the system according to a non-stationary Poisson process with rate Λ(t). At the time of their
arrival, t, they receive information regarding the anticipated online wait for service, W (t) along with a
maximal delay guarantee, D(t). The customers then make their decision as whether to join the online queue
or the call-back queue. Customers who prefer to wait online have finite patience which is exponentially
distributed with rate θ . If the online wait exceeds the customer’s patience, he/she abandons the online
queue. There are N(t) statistically identical servers at time t. Service times are assumed to be exponentially
distributed with rate µ . Figure 1 provides a pictorial illustration of the model.
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Figure 1: The queueing model.
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Customer Choice Following Armony and Maglaras (2004b), we model the customer’s decision
according to a multinomial logit (MNL) choice model. We denote u1(t) = r−c1W (t)+ξ1 as the utility of
the online option and u2(t) = r− c2D(t)+ξ2 as the utility of the offline (call-back) option. Particularly, r
is value of service. c1 is the online waiting cost and c2 is the offline waiting cost. We assume c1 > c2 as
the offline wait is much more pleasant compared to the online wait. ξi’s are the random terms capturing
the unobserved factors. We assume ξi’s are i.i.d. Gumbel. This implies that for a customer arriving at time
t, the probability of choosing to wait online is

P1(t) =
er−c1W (t)

er−c1W (t)+ er−c2D(t)
=

e−c1W (t)

e−c1W (t)+ e−c2D(t)
,

and probability of asking for call-back is P2(t) = 1−P1(t).
Customer preferences to the different waiting options are important factors as they affect dramatically

the effectiveness of the call-back options. Customers with low sensitivity to waiting costs tend to stay
and wait online regardless of the announced waiting times. That fits a situation in which customers wait
in queue for an important service that cannot be postponed, such as medical consultation or a call to the
stock exchange teller. On the other hand, when customers are highly sensitive to online waits, they are
more willing to postpone their service. In such situations, by applying call-backs, the system can become
more efficient in reducing the online waits as the customers’ decisions highly depend on suggested delay
guarantees. For example, using the case-study data that will be described later and a constant delay of 3
hours, if c1 = c2 the expected online waiting time of served customers is 66 minutes, while if c1 = 5c2
(c1 = 15c2), the online waiting time reduces to 9.7 (3) minutes, respectively. Other performance measures,
such as probability of abandonment and the probability of immediate service, also improve as that ratio
grows. Companies may influence the ratio between online and offline waiting costs by changing the
environment of the online wait.

Delay Estimator We use the head-of-line (HOL) delay as our delay estimator. The HOL delay
estimation method basically announces the elapsed waiting time of the first customer in queue, who is
next to enter service, to the latest arriving customer. HOL delay is simple to implement and is shown to
be accurate in various applications (Ibrahim and Whitt 2011, Senderovich et al. 2014). It provides more
up-to-date information among historical average-based estimators, and thus avoids delayed feedback in
systems with customer choice (Dong et al. 2018).

Routing Rules The routing rule proposed by Armony and Maglaras (2004a) assumed a constant
delay garantee. Therefore, it cannot be implemented directly. As Armony and Maglaras (2004a) explained,
in an appropriate routing rule for call-back systems, the servers should prioritize offline queue customers if
the delay constraint may be violated. Hence, we suggest the following routing rule: serve the online queue,
unless there is a customer whose delay guarantee is about to be violated, i.e. at time t, the customer’s delay
guarantee is less than or equal to t +1/(N(t)µ). This rule is based on the assumption that service times
are i.i.d. with total rate N(t)µ at time t. In such a case, the next agent who becomes available serves the
call-back queue customer. If the online queue is empty and there are customers in the call-back queue, they
will be served before their due time. Specifically, let Ai be the arrival time of customer i. If this customer
chooses the call-back option, he/she should be served before Ai+D(Ai). Customers in the call-back queue
are sorted by increasing delay guarantees; thus we switch service priorities in favor of call-back customers
whenever the first customer’s due time is less than or equal to t + 1

N(t)µ .

2.1 Model Calibration: Case Study from an Israeli Call Center

In this work we use a call center case study to demonstrate our approach. It is based on data from a medium
size Israeli bank call center which offers a call-back option. The data was generously made available to
us by the SEELab at the Technion.
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2.1.1 Basic Data

Each call has several components: the interactive voice response (IVR) component, the queue component
where the customer waits to speak with an agent, and the service component where the customer is served
by the agent. The data captures the starting time, ending time, type of call— incoming/call-back—and
outcome (e.g. abandoned, choice of call-back, etc.). The sequence of events for a customer is usually
as follows: First the customer reaches the IVR. If the problem is answered by the IVR, the call is then
terminated. Otherwise, the customer waits in queue until an agent becomes available. While the customer
waits in queue, he/she might be provided with information regarding the estimated waiting time in the online
queue. The data does not have information about the exact content of the system announcements. To the
best of our knowledge, at the moment the customer enters the queue he/she is offered the call-back option
with a constant delay guarantee of 3 hours. If the customer chooses to stay and wait in the online queue,
that call-back option is offered again periodically while waiting. In our model, we make the simplified
assumption that the call-back decision is made at the entrance to the system. From the data we observe
4% of the customers choose the call-back option. The average time till customers are called back is 54
min. On the other hand, 6% of the call-backs are made after more than 3 hours.

2.1.2 Model Fitting

The call center is open from 8:00 to 22:00 during weekdays. We divide the daily time horizon into 28
half-hour time intervals. We assume that the arrival rate is piecewise constant. For each interval i, we fit
the arrival rate Λi using the average arrival count. We also assume that the number of servers, Ni, is fixed
in each interval. By utilizing the differences in the HOL delay, we estimate (c1,c2) by fitting a logistic
regression model. The fitted values are c1 = 0.48,c2 = 0.031, which suggest that the customers are about
15 times more sensitive to online wait than offline wait. To estimate the abandonment rate θ , we fit a
simple linear regression model for the probability of abandonment using the average waiting time, taking
into account only the customers who waited (Mandelbaum and Zeltyn 2004). The slope of the line, which
is our estimate of θ , is 1/20, i.e. the average patience time is 20 min. Figure 2 provides some details of
our fitted model. The mean service time is 4.16 min.

(a) Fitting the piecewise constant arrival
rate function.

(b) Fitting the probability of choosing the
call-back option.

(c) Fitting the abandonment rate.

Figure 2: Case study data and parameter estimation for the model.

2.1.3 Settings

To test how the call-back option can help to balance the load, we set the number of agents so that the
system will alternate between overloaded and underloaded periods. (If there is a perfect match between
offered load and capacity, the queueing system will behave as if in steady state (Yom-Tov and Mandelbaum
2014); in such situations a constant delay guarantee such as the one suggested by Armony and Maglaras
(2004a) is expected to perform very well.)
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From now on, we will assume that each time interval i has a different delay guarantee Di, which is
constant throughout the interval. The service level is specified so that the maximal waiting time in the
online queue shall stay below a desired threshold Tw. Hence, our performance target is maxi{Wi} ≤ Tw,
where Wi is the average waiting time of the online queue on time interval i. Our goal is to find appropriate
delay guarantees of the call-back option, Di’s, that achieve the desired service level.

3 THE ITERATIVE DELAY GUARANTEE ALGORITHM

In this section, we introduce an iterative algorithm to find the appropriate delay guarantees. We denote
D(i, j) as the delay guarantee of the call-back option in period i after the j-th iteration. Set α ∈ (0,1) as
the decreasing rate. We also set

di j =

{
max

{
Wi,

1
c2

log
(

Niµ

Λi−Niµ

)
− c1

c2
Wi

}
if Λi > Ni+di j µ,

Wi if Λi ≤ Ni+di j µ,
(1)

as the lower bound for Di. This lower bound is set for two purposes. 1. We want to make sure the offline
delay is longer than the online delay, as the company would not offer call-back that is shorter than the
online waiting. Hence, di j ≥Wi. 2. We want to make sure we do not commit to a delay guarantee we
cannot hold; that could happen if we overload the offline queue, i.e. Ni+di j µ < Λie−c2di j/(e−c2di j +e−c1Wi).
From this constraint we extract di j, as an additional bound in (1).

We start by initializing D(i,0) to be some very large number such that even for very large values of
delay (e.g. ten times more than the average service time), customers will still choose to wait online with
probability close to 1. In each iteration, we run 150 replications of the queueing model over a two-day
time horizon; each day consists of a 14-hour time interval (8:00–22:00). That time horizon is divided into
I equal intervals. (In the simulations we show here time intervals are of 30 minutes.) We then check for
each time interval if performance targets are met. In iteration j, if the online delay target is violated in
interval i, we set D(i, j) = max{αD(i, j−1),di j}; otherwise, we set D(i, j) = max{D(i, j−1),di j}. In the
latter case, we reduce the offline delay guarantee to encourage more people to wait offline. We terminate
if performance targets are met for all time intervals or we run out of computational budget. we summarize
the iterative algorithm below.

The Iterative Delay Guarantee Algorithm
Input: Maximum number of iterations: J; Online delay threshold: Tw; Decreasing rate: α .
Output: Offline delay guarantees: Di, i = 1,2, . . . , I.
Initialization: Set j = 0, D(i, j) = 1000, and run simulation to get Wi’s for i = 1,2, . . . , I.
Step 1. Set j = j+1.
Step 2. Calculate di j.
Step 3. For each interval i, i = 1, ..., I: If Wi ≤ Tw, set D(i, j) = max{D(i, j− 1),di j}; Otherwise, i.e. if
Wi > Tw, set D(i, j) = max{αD(i, j−1),di j}.
Step 4. Run simulation with updated D(i, j)’s to get Wi’s for i = 1,2, . . . , I.
Step 5. If maxiWi > Tw and j < J, go back to step 1; Otherwise, output D(i, j) for i = 1,2, . . . , I.

3.1 Simulation Results for the IDG Algorithm

We next examine the IDG algorithm for the simulation system calibrated in Section 2.1. We set the target
average online delay at 3 minutes. In addition, to the average online delay in each time interval, we also look
at other performance measures, including i) E[W |Sr]: the overall mean waiting time of the online queue
customers who didn’t abandon the queue; ii) P(ab): the proportion of online queue customers abandoning
the queue; iii) P(cb): the proportion of customers choosing the call-back option; iv) E[Wcb]: the average
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offline wait; v) RMSE:=
√

1
I ∑

I
i=1(Wi−E[w|Sr])2, which measures the balance of performance during the

day and how close they are to the average waiting time.
Figure 3 shows in detail that the mean waiting times converge towards the targeted value of 3 minutes

(left diagram) and the corresponding changes in the values of delay guarantees (right diagram). The
simulation started without call-backs (1st iteration) where the maximal average wait experienced by the
online customers is about 8 minutes around 11:00 AM as seen in Figure 3(a); those values converge nicely
to the target. The delay guarantee on Figure 3(b) demonstrates that call-backs are much more essential
through overloaded periods while underloaded periods may not need call-backs at all.

Table 1 shows the daily average performance measures along IDG algorithm iterations. At the first
iteration of the algorithm, all customers are informed with an initial and identical Di of 1100 minutes.
This value is high enough so that even if customers are expected to wait one hour in the online queue,
the probability of choosing the call-back option is less than 0.5%. In such a case, the system acts as if
there is no call-back option at all. Hence, the abandonment probability is 0.17 and the mean waiting time
for the online customers is 2.38 minutes with RMSE of 25.34. At the final iteration we see improvement
in all performance measures. The mean waiting times have decreased to 1.10 minutes and became more
balanced as RMSE decreased to 9.50. The proportion of abandonment is 0.030 and the call-back rate is
now 32.61%. By reducing delay guarantees, the value of E[Wcb] decreases as well. In summary, we see
that the algorithm managed to reduce waiting time, and they converge to the proposed performance target
time during highly loaded periods.

(a) Average online delays. (b) Offered offline delay guarantees.

Figure 3: Mean waiting times for online queue customers and delay guarantee values in minutes for different
iterations of the IDG algorithm.

Table 1: Change in performance measures along IDG algorithm iterations.

Iteration number E[W |Sr] (min) P(ab) P(cb) E[Wcb] (min) RMSE
1 2.54 0.173 0 - 27.87
16 2.27 0.092 0.145 24.87 20.03
23 1.65 0.055 0.259 19.34 15.91
31 1.33 0.036 0.290 17.02 11.46
45 1.10 0.030 0.326 13.68 9.50

2089



Yom-Tov and Zeitler

4 SENSITIVITY ANALYSIS

To conduct sensitivity analysis, we use a stylized sinusoidal arrival rate function: λ (t) = R+ γ · sin(ωt),
0≤ t ≤ T , with R = 50,γ = 10,ω = 1. For simplicity, we set the service rate µ and the patience rate θ both
to 1, meaning the service time is about 1

6 of a full cycle. As µ = 1, R measures the average workload. We
assume the ratio among online and offline waiting costs is 15 (customers are indifferent between waiting
1 minute on line or 15 minutes offline), similarly to our case study.

We demonstrate the effectiveness of the IDG algorithm by comparing the performance of the delay
guarantees generated by the IDG algorithm to other methods. In particular, we conduct comparisons of
the following delay guarantee policies: a) no call-backs; b) a constant delay guarantee of 180 minutes; c)
a constant delay guarantee of 60 minutes; d) locally optimal solution in which we determine Di for each
interval ignoring the load in later periods, i.e., each time interval is considered as a stationary system of its
own. This stationary delay guarantee was motivated by Armony and Maglaras (2004b); adjustments were
done to incorporate abandonment instead of balking; e) the IDG delay guarantees.

4.1 Change in Staffing Level

In this section, we explore how different call-back policies work for different staffing levels. The system we
simulate alternates between overloaded and underloaded periods. We apply the square root staffing policy,
i.e. the staffing level n := R+β

√
R, as an overall staffing decision, where R = ΛE[S] is the average of total

offered load over a day. We change the staffing level by varying the square root staffing parameter β . Large
(positive) β will result in a mostly underloaded system that has a brief overloaded period, while small
(negative) β creates a mostly overloaded system that has a brief underloaded period. Though call-back
helps in both, we expect precise planning of call-back to be more important in the latter.

Figure 4 summarizes some of the performance measures as a function of β . In general, as β decreases,
all performance measures deteriorate since resources are scarcer. This is clearly evident in the no CB
option. However, having the call-back option and setting the right delay guarantee for each time interval
improve system performance dramatically. When the delay guarantee is fixed, having a shorter delay
guarantee improves performance, i.e. no call-back is outperformed by a constant delay guarantee of 180
min, which is outperformed by the constant D of 60 min. Setting a locally optimal D (Armony and
Maglaras) performs surprisingly well. That method is only slightly worse than the IDG algorithm for most
performance measures; differences are more apparent for lower values of β . We contribute this to the fact
that the former does local optimization only, and doesn’t take into account the effect of a certain due date
suggestion on the load in the interval for which the customers are referred to. For this example, it seems
from these graphs, that the constant delay guarantee of 60 minutes achieves a similar average performance
as the IDG algorithm. However, as shown in Figure 5, though the average wait for D = 60 is less than for
the IDG algorithm, the constant D can’t assure any upper bound for online waiting. Note that, as opposed
to the IDG algorithm, other delay guarantee setting methods do not take into account any targeted threshold
as an input. Thus, if we want to promise our customers that whenever they call, their average online wait
won’t exceed a certain amount of time, we must use the IDG algorithm. Furthermore, the constant delay
methods do not check if the service center is capable of returning the call-back within the promised delay
guarantee, as shown in Figure 4(d); when we set D at a constant level of 60 min, call-backs are made after
more than two hours for β <−0.5. This is problematic, if the system promises customers a specific delay
guarantee it should hold to it, otherwise, it may harm customer trust in the system.

4.2 Change in Cycle Length

In this section, we explore the impact of changes in cycle length ω . When we increase ω , the system
alternates between overloaded and underloaded periods more frequently. Note that IDG is the only method
that takes a global viewpoint. In particular, the fixed D ignores cycle length, and Armony and Maglaras
method takes the local optimization approach. We conjecture that the local optimization approach may not
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(a) E(W |Sr). (b) P(ab). (c) RMSE.

(d) P(cb). (e) E(Wcb).

Figure 4: Performance measures as a function of β .

perform well when the cycle length is small relative to D; in such cases, customers may be transferred
from a moderately-loaded time period to a highly-loaded time period.

We compare performance measures, for the different delay guarantee policies, for ω = 0.5, ω = 1, and
ω = 2. We set the staffing level at 50. Simulation results in Table 2 show that in general, performance
measures improve for all delay setting methods as ω increases, but the IDG method has an advantage over
the other methods. For ω = 2 the IDG algorithm outperforms all other delay setting methods for mean
online wait, mean offline wait, and probability of immediate answer.

In order to understand better the differences between the policies, we examine in Figure 6 how the
delay guarantees fluctuate over a full arrival rate cycle. We first observe that the IDG algorithm in general
sets the delay guarantee in an opposite pattern to the one of the offered load, i.e. high delay guarantees are
set during underloaded periods while low delay guarantees are set in overloaded periods. This does not
happen at all in the Fixed D policy, and to a lesser extent in the Armony and Maglaras stationary policy.
In more detail, when ω = 2, if we look at the first time interval in Figure 6(a) for example, we see that a
delay guarantee of 60 minutes is offered by both the Fixed 60 minutes and Armony and Maglaras policies.
Consequently, customers who choose the call-back option should be served within the first hour although
the offered load increases during that time. On the contrary, a 100-minute delay guarantee is offered by
the IDG algorithm where customers should be served within a bit more than 1.5 hours and the offered load
after 1.5 hours is lower than at the first time interval. Furthermore, when looking at Figure 7(a), showing
the mean online waiting times for each time interval and each delay guarantee policy when ω = 2, we see
indeed that the mean online waiting time at the first time interval is a bit higher for the IDG algorithm but
at the second time interval it clearly outperforms both the Fixed 60 and Armony and Maglaras. Another
example is for the fifth time interval, where the IDG delay guarantee is quite long (over 3 hours) while
Armony and Maglaras and Fixed 60 delay guarantees are much shorter (2 hours and 1 hour accordingly).
Thus, more customers choose the call-back option for Armony and Maglaras and Fixed 60 methodologies
although the system is in an underloaded period and furthermore, 1–2 hour delay guarantees transfer the
customers to another time interval where the offered load is higher.
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Figure 5: Mean online wait for β =−0.5 and 1.5-minute threshold, comparing IDG algorithm and D = 60
delay guarantee setting methods.

Figure 6(b) shows the different delay guarantee values for different time intervals along a cycle when
ω = 0.5. If we look at the first time interval again, we see that the Fixed 60 and Armony and Maglaras
offer relatively short delay guarantees compared to the IDG algorithm. Consequently, customers would
choose call-backs with higher probabilities for the former delay setting methods and will be delayed for 1
hour. During this hour the offered load increases. At the end of this hour, the delay guarantee of Armony
and Maglaras increases. Thus, less customers choose the call-back option at the busier time interval as
opposed to the IDG algorithm which delays less customers to a busier time interval but then offers a shorter
delay guarantee in order to balance the loads. Figure 7 shows the mean online waiting times for each
delay guarantee policy when ω = 0.5, although the IDG is generally slightly outperformed by the Fixed
60 policy, it is clearly showing the difference between the two methods regarding the threshold. While the
IDG algorithm assures all customers that the wait, on average, is less than 1.5 minutes, the Fixed 60 has
no such feature. As for the Armony and Maglaras method, we see that many customers were transferred
to overloaded time intervals which causes long waits between time intervals 4–12. The Fixed 60 policy
performs quite well for all ω values as it simply offers a good alternative for the customer at any given
moment. Thus, even if customers are transferred from an underloaded period to an overloaded period, the
call-back option will be chosen again during the overloaded period and this may “balance” the damage.

(a) ω = 2. (b) ω = 0.5.

Figure 6: Delay guarantee values in minutes for different delay guarantee setting methods and different
values of ω .
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Table 2: Performance measures when staffing under different values of ω , using different delay guarantee
setting methods.

Delay guarantee method ω E[w|Sr] (min) %CB P(ab) RMSE E[Wcb] (min) P(w = 0)
No call-backs 0.5 17.344 0 0.023 1.849 - 0.322

1 15.902 0 0.022 1.169 - 0.351
2 15.183 0 0.020 0.867 - 0.355

Fixed 180 min 0.5 1.983 6.43 0.011 0.224 43.86 0.541
1 1.924 5.81 0.009 0.203 34.93 0.546
2 1.919 4.63 0.010 0.174 29.14 0.559

Fixed 60 min 0.5 0.869 22.65 0.004 0.094 47.78 0.433
1 0.761 21.84 0.004 0.087 50.93 0.450
2 0.722 13.21 0.004 0.085 38.59 0.571

Armony and Maglaras 0.5 1.448 15.51 0.009 0.216 87.23 0.505
1 1.395 12.02 0.008 0.188 64.90 0.536
2 1.207 6.20 0.006 0.136 60.92 0.609

IDG algorithm 0.5 1.038 27.53 0.005 0.127 58.01 0.322
1 0.954 24.97 0.004 0.103 44.33 0.466
2 0.651 10.44 0.004 0.097 25.56 0.628

(a) ω = 2. (b) ω = 0.5.

Figure 7: Mean online waiting times in minutes for different delay guarantee setting methods and different
values of ω .

5 CONCLUSION

In this work, we study the implementation of the call-back option in a time-varying environment with
customer choice. We consider a queuing model with two types of queues: online and call-back, where
customers choose their preferred queue based on information regarding the expected online wait and maximal
offline wait. As opposed to most service centers nowadays which offer a constant delay guarantee, we
propose to change the promised delay guarantee depending on the time of day. In particular, in overloaded
periods, we will reduce the delay guarantee to make the call-back option more attractive. We used an
iterative simulation-based optimization algorithm to find the desirable delay guarantee for each time interval.
We then analyze the performance of the IDG algorithm through a case study of a medium-sized call center.
The case study shows that the IDG manages to reduce online waiting times to the desired level and improve
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various other system performance measures. We also conduct extensive sensitivity analyses by comparing
the IDG algorithm performance to other delay setting methods. We find that when resources become limited
or fluctuate, the performance of IDG exceeds all other methods. Furthermore, our method can guarantee
that the online waiting time won’t exceed a predefined threshold and checks whether the promised delay
guarantee is even feasible.
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