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ABSTRACT

Green simulation is the reuse of past simulation outputs to enhance the efficiency of current and future
simulation experiments. One natural application of green simulation is in the context of simulation
optimization, wherein outputs from past iterations in a search can be reused in subsequent iterations. In
this article, we draw attention to challenges that arise when green simulation likelihood ratio estimators
are naively employed in simulation optimization. In particular, we show that for searches that identify new
designs based on past outputs, outputs in different iterations are conditionally dependent, violating one of
the assumptions for the validity of the likelihood ratio estimator. As a result, green simulation likelihood
ratio estimators of the objective and gradient can become biased. We demonstrate how this conditional
dependence and bias can adversely affect the behavior of gradient-based optimization algorithms.

1 INTRODUCTION

Green simulation was introduced by Feng and Staum (2017) as a new experiment design paradigm that
reuses outputs from past simulation experiments to improve the efficiency of future experiments. The appeal
of green simulation is that reusing past outputs can provide useful information about future experiments
at low computational cost. We consider simulation optimization problems where at each iteration, random
simulation outputs are generated and used to estimate the objective, gradient, or any other quantity of
interest. In this context, it is natural to apply green simulation to the outputs from previous iterations to
improve the quality of the estimation. We identify some challenges in this application of green simulation
and explore how they can influence the performance of optimization algorithms. Our main contributions are
(1) identifying the violation of a key assumption of Feng and Staum (2017), (2) analyzing the consequences
of this violation, and (3) illustrating the consequences in different examples.

Green simulation is motivated by the setting of repeated experiments, wherein experiments are run
periodically and the designs in the sequence of experiments change over time (Feng and Staum 2017).
This setting arises in practice when simulation is used to support periodic operational decisions, e.g.,
risk management of financial derivatives, estimation of project completion times, and projection of future
stock-outs. In these examples, the designs of the current experiment are the estimates of relevant risk
factors, the progress on different project tasks, and the inventory levels, respectively. In the model of Feng
and Staum (2017), the designs observed over time are assumed to follow a stochastic process and the current
design is assumed to be independent of the outputs from the past experiments. In many practical settings,
however, the current design is the result of past operational decisions that were based on the outputs of
previous experiments. For example, current inventory levels can be viewed as a consequence of previous
reorder decisions that were based on past stock-out projections.

In this article, we study green simulation in settings where the current design depends on the evaluation
of past designs. Specifically, we explore green simulation estimators through the lens of simulation
optimization, an application proposed by Feng and Staum (2017) as an avenue for future research. In
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simulation optimization problems, a decision-maker is concerned with identifying an optimal design
when the performance of a design must be estimated via stochastic simulation. For the aforementioned
inventory example, the decision-maker’s goal may be to determine the reorder quantities that minimize
some combination of reorder, holding, and stock-out costs.

Many simulation optimization algorithms feature a search process that identifies new designs for
evaluation based on the observed or estimated performance of the current design and possibly all past
designs. Simulation optimization searches can leverage green simulation estimators in several ways. Firstly,
simulation outputs can be reused to estimate the objective function at any or all previously visited designs
so as to guide a pattern search or to fit a metamodel. Secondly, green simulation estimates of the gradient
can be used in a gradient-based search, such as stochastic approximation. Thirdly, if stochastic constraints
are present, green simulation estimators can be used to estimate constraint violations.

If the computational cost of reusing outputs is low, green simulation estimators may be appealing for
all of the above purposes. Nonetheless, green simulation estimators at the current design use the same
outputs from past simulation experiments that were used by the search to identify the current design.
Consequently, conditional on the designs visited along a search path, the outputs from past experiments
are conditionally dependent. We further show how this conditional dependence can result in biased green
simulation estimators of both the objective and the gradient. Through a number of examples, we illustrate
how gradient-based searches, specifically stochastic approximation, can be misled by biased estimates of
the gradient, leading to slower convergence. Moreover, if green simulation estimators are used in the
extreme—with all past replications being reused—this bias can persist throughout a search. Although
we focus on gradient-based searches in our examples, we believe that non-gradient-based searches would
similarly suffer from the use of biased green simulation estimates of the objective.

A related issue arises in ranking and selection when the designs under consideration are determined
by a simulation optimization search (Eckman and Henderson 2018). In this setting, a search may use
the estimated ordering of previously explored designs to identify new designs. The primary issue is that
simulation outputs that were independent and identically distributed become conditionally dependent given
the identities of the explored designs. This conditional dependence can cause the statistical guarantees of
ranking-and-selection procedures to be violated when outputs are reused.

Reusing simulation outputs has been studied in different contexts, especially in stochastic simulation
metamodeling. For example, the nested simulation methods of Barton et al. (2013) and Xie et al. (2014)
use stochastic kriging (Ankenman et al. 2010) to reuse outputs from a few designs to estimate the response
surface for other designs. In reinforcement learning, off-policy learning methods reuse outputs to estimate
the action-value function of a policy (Precup et al. 2001; Mandel et al. 2014).

One particular implementation of green simulation is the so-called likelihood ratio (LR) method, also
known as the score function method. The LR method has been applied in metamodeling, sensitivity
analysis, and optimization; see, for example, L’Ecuyer (1990), L’Ecuyer (1993), Rubinstein and Shapiro
(1993), Kleijnen and Rubinstein (1996), Glasserman and Xu (2014), and Fu (2015). We focus on green
simulation via the LR method, which weights pre-existing outputs by appropriate likelihood ratios to provide
an unbiased estimator for the current experiment. This is the main implementation method studied in Feng
and Staum (2017). In doing so, we restrict our attention to simulation optimization problems in which
the design does not affect any structural parameters of the simulation model. This excludes, for example,
simulation-based optimization of dynamic systems where the objective is to find the best facility layout.

A related application of the LR method is importance sampling, a technique commonly used for variance
reduction or as an alternative to Markov chain Monte Carlo methods (Bugallo et al. 2017). Importance
sampling has also been used in stochastic optimization algorithms, such as stochastic gradient descent
(Zhao et al. 2015; Needell et al. 2016). A relevant extension of the importance sampling technique is
adaptive importance sampling (AIS), in which the proposal distribution is iteratively updated based on past
outputs to produce an estimator with smaller variance. AIS has also been incorporated into simulation
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optimization algorithms such as simultaneous perturbation stochastic approximation (SPSA) (Medina and
Taflanidis 2014; Spall 1998).

2 GREEN LIKELIHOOD RATIO ESTIMATORS IN SIMULATION OPTIMIZATION

In developing green simulation estimators based on the likelihood ratio method, Feng and Staum (2017)
consider a setting of repeated experiments in which the same simulation model (logic) is used to evaluate
different designs. If the designs represent the distributional parameters for the random variables in the
simulation model, outputs from previous designs can be weighted using the likelihood ratio method.

Mathematically, let x ∈X be a given design of interest; for clarity we use lowercase x when the design
is fixed and uppercase X when it is stochastic. In the setting of Feng and Staum (2017), the sequence
of designs {Xk : k = 1,2, . . .} is regarded as a discrete-time stochastic process on a Polish space X . For
a finite sequence of designs, X1, . . . ,Xn, we will refer to Xn as the current design and to X1, . . . ,Xn−1 as
past designs. Given Xn, the current simulation experiment samples a random vector Yn according to the
conditional likelihood f (·;Xn). Unless otherwise stated, we assume that for all x ∈X , the conditional
likelihoods f (·;x) have a common support Y , i.e., Assumption (A4) in Feng and Staum (2017). After
the random vector Yn is simulated, the simulation logic h(·) : Y 7→ R is applied to produce the simulation
output h(Yn).

Conditional on Xn = x, the goal of the current experiment is to estimate the expected performance

µ(x) = Ex[h(Yn)] =
∫

Y
h(y) f (y;x)dy, (1)

where Ex denotes expectation under the conditional likelihood f (·;x). In the simulation optimization
context, µ(x) is the objective function value at the iterate x. In (1), the design x is not an argument to the
simulation logic h(·), so it affects the expected performance µ(x) only through the conditional likelihood
f (·;x). The model described in (1) is not suitable for all settings; for example, if x represents the number
of servers in a queuing system and is a direct input to the system performance measure h(·), then (1) does
not apply. Nevertheless, in such settings it may be possible to “push out” the dependence of h(·) on x to
the conditional likelihood f (·;x) (Rubinstein 1992).

A common way to estimate µ(x) is by running r independent replications of the simulation model and
then taking the sample average of the outputs, i.e., the Standard Monte Carlo (SMC) estimator:

µ̂
SMC
r (x) =

1
r

r

∑
j=1

h(Y ( j)), Y ( j) i.i.d.∼ f (y;x), ∀ j = 1, . . . ,r. (2)

For simplicity, we assume that the number of replications, r, is fixed for all designs, but this is not essential.
We see from (2) that only the outputs in the current experiment are used to estimate µ(x); outputs

from previous experiments, if any, remain unused. This observation motivates the use of the LR method
to reuse the outputs from past designs in the current estimate by properly weighting them using likelihood
ratios (Feng and Staum 2017). Let h(Ỹ ( j)) denote the simulation output of the jth replication from an
experiment of design x̃. Then the LR estimator that uses h(Ỹ (1)), . . . ,h(Ỹ (r)) to estimate (1) is given by

µ̂
LR
r (x, x̃) =

1
r

r

∑
j=1

h(Ỹ ( j))
f
(

Ỹ ( j);x
)

f
(

Ỹ ( j); x̃
) . (3)

Mathematically, the LR method is similar to importance sampling, but the two methods differ in their
purposes: the LR method is often used to reuse outputs from other designs that are fixed, while importance
sampling often tries to find an optimal design x̃ to minimize the variance of µ̂LR

r (x, x̃). Since f (·;x) and
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f (·; x̃) are assumed to have a common support, one can show that µ̂LR
r (x, x̃) is unbiased for any x ∈X :

Ex̃
[
µ̂

LR
r (x, x̃)

]
=

1
r

r

∑
j=1

∫
Y

h(y)
f (y;x)
f (y; x̃)

f (y; x̃)dy = Ex[h(Y )] = µ(x).

For a given design x, the green simulation individual likelihood ratio (ILR) estimator of µ(x), given
previous simulation experiments of designs X1, . . . ,Xn, is

µ̂
ILR
n,r (x) =

1
n

n

∑
k=1

1
r

r

∑
j=1

h
(

Y ( j)
k

) f
(

Y ( j)
k ;x

)
f
(

Y ( j)
k ;Xk

)
 , Y ( j)

k i.i.d.∼ f (y;Xk), ∀ j and ∀k. (4)

We can see from (4) that the ILR estimator is an average of LR estimators µ̂LR
r (x,Xk) for k = 1, . . . ,n. While

the ILR estimator reuses all past outputs, the number of operations needed to compute it grows linearly in
the number of iterations since the numerators of the likelihood ratios must be recalculated at each iteration.
In this article, we focus on the ILR estimator and refer to Hesterberg (1995), Hesterberg (1988), Owen
and Zhou (2000), Veach and Guibas (1995), and Feng and Staum (2017) for other LR estimators that have
been studied in the literature.

Among the six assumptions made in Feng and Staum (2017) to justify the use of the LR method in the
repeated experiments context, we focus on an assumption that is usually violated by simulation optimization
searches but can easily be overlooked. To facilitate further discussion, we paraphrase it using our notation:

Assumption 1 (Assumption (A2) in Feng and Staum (2017)) For any k, k′ 6= k, j, and j′, given Xk, Y ( j)
k |Xk

is conditionally independent of Xk′ and Y ( j′)
k′ |Xk′ .

This assumption holds in the repeated experiments studied in Feng and Staum (2017), where the
parameters Xk for k = 1,2, . . . follows a stochastic process that is independent of the stochasticity of
the simulation experiments. In the context of simulation optimization, however, this assumption can be
violated because the random sample in each simulation experiment affects the value of the next iterate.
This dependence can have an adverse effect on the optimization problem, as we will demonstrate.

Assumption 1 enables the following proof of the unbiasedness of µ̂ ILR
n,r (x), conditional on the identities

of the designs X1, . . . ,Xn:

E[µ̂ ILR
n,r (x)|X1 = x1, . . . ,Xn = xn] =

1
n

n

∑
k=1

1
r

r

∑
j=1

E

h
(

Y ( j)
k

) f
(

Y ( j)
k ;x

)
f
(

Y ( j)
k ;Xk

)∣∣∣∣X1 = x1, . . . ,Xn = xn


=

1
n

n

∑
k=1

1
r

r

∑
j=1

E

h
(

Y ( j)
k

) f
(

Y ( j)
k ;x

)
f
(

Y ( j)
k ;Xk

)∣∣∣∣Xk = xk

= µ(x), (5)

where the second equality holds only if Assumption 1 holds. Every term in the ILR estimator, i.e., every
LR-weighted simulation output, is conditionally unbiased.

Besides reusing outputs to estimate the objective, the LR method can in some instances produce green
simulation estimators of the gradient. Gradient estimation in simulation optimization and sensitivity analysis
of stochastic simulation is an important research topic in its own right; general references include L’Ecuyer
(1990) and Fu (2015). In this article, we consider the so-called likelihood ratio (LR) or score function
(SF) gradient estimator due to its relation to LR estimators for the objective function value. Under certain
technical conditions, one can show that based on (1):

∇xµ(x) = ∇x

(∫
Y

h(y) f (y;x)dy
)
=
∫

Y
h(y)∇x f (y;x)dy =

∫
Y

[
h(y)

f (y;x)
f (y; x̃)

∇x log f (y;x)
]

f (y; x̃)dy.
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Inspired by the ILR estimator (4), the green simulation ILR gradient estimator is given by

∇̂µ
ILR
n,r (x) =

1
n

n

∑
k=1

1
r

r

∑
j=1

h
(

Y ( j)
k

) f
(

Y ( j)
k ;x

)
f
(

Y ( j)
k ;Xk

)∇x log f (Y ( j)
k ;x)

 , Y ( j)
k i.i.d.∼ f (y;Xk) ∀ j and ∀k. (6)

Due to the similarities between the ILR estimator (4) and the ILR gradient estimator (6), it is natural—or
at least computationally efficient—to use them together in a gradient-based simulation optimization search.
However, because of these similarities, the two estimators could be highly correlated, possibly leading to
undesirable behavior in the search.

As alluded to above, in the majority of simulation optimization algorithms, the current design Xn is
determined by the past random samples Y (1)

k , . . . ,Y (r)
k for k = 1, . . . ,n−1. For example, in many gradient-

based searches, simulation outputs generated from experiments of the current design are used to estimate
the gradient, and the next design is found by moving in the opposite direction (for minimization problems).
Therefore, knowing the current design Xn and previous design Xn−1 reveals additional information about the
previous random outputs h(Y (1)

n−1), . . . ,h(Y
(r)
n−1) that were used to estimate the gradient at Xn−1. Consequently,

for j = 1, . . . ,r, the random sample Y ( j)
n−1|{Xn−1,Xn} follows a different distribution than Y ( j)

n−1|Xn−1, i.e.,

conditional on Xn−1, Y ( j)
n−1|Xn−1 is not conditionally independent of Xn. So Assumption 1 is violated.

To articulate this dependence, denote the search process that identifies the next design by

Xn = s(Xn−1,h(Yn−1)), (7)

where Xn−1 = {X1, . . . ,Xn−1} and h(Yn−1) = {{h(Y (1)
1 ), . . . ,h(Y (r)

1 )}, . . . ,{h(Y (1)
n−1), . . . ,h(Y

(r)
n−1)}}. In other

words, Xn−1 represents the past designs and h(Yn−1) represents the past simulation outputs. In many
gradient-based searches, s(Xn−1,h(Yn−1)) = Xn−1−αn−1∇̂µ(Xn−1), where {αk : k = 1,2, . . .} is a gain
sequence and the gradient estimate ∇̂µ(Xn−1) is a function of the past outputs h(Yn−1). Although not
explicitly accounted for in (7), s(·) may also take random inputs, for instance when the next design
is determined stochastically. Examples include simulated annealing and model-based stochastic search
methods; see, for example, Kirkpatrick et al. (1983), Van Laarhoven and Aarts (1987), Aarts and Korst
(1989), Zhou and Chen (2013), and Hu (2015).

In the simulation optimization context, the conditional dependence introduced by the search process
s(·) and the consequent violation of Assumption 1 imply that the second equality in (5) no longer holds.
Therefore the ILR estimator of the objective, µ̂ ILR

n,r (x), is conditionally biased given the identities of the

designs X1, . . . ,Xn. For similar reasons, the ILR estimator of the gradient, ∇̂µ
ILR
n,r (x), is also conditionally

biased. In Section 3, we illustrate different adverse effects of using these biased green simulation estimators
in simulation optimization problems.

3 NUMERICAL ILLUSTRATIONS

We present three numerical examples, in increasing order of complexity, to illustrate the adverse effects
of naively applying green simulation ILR estimators in simulation optimization. The first example shows
how conditional bias can appear in the ILR estimator of the objective after only two iterations of a search
and how it could theoretically be eliminated. The second and third examples highlight how the trajectories
of gradient-based searches behave when ILR estimators are used by the search. In these examples, we
observe that the conditional bias of the ILR estimators of the objective and the gradient can be reduced by
taking more replications at each iteration.

3.1 Green Simulation ILR Estimators in a Two-Iteration Search

We first consider two iterations of a simple search to demonstrate some of the deficiencies of ILR estimators
when used in simulation optimization. This example focuses on the dependence among simulation outputs

2053



Eckman and Feng

that is introduced by the search; discussions about the underlying optimization problem are omitted. To
simplify the discussion that follows, we assume that the simulation logic returns the scalar input Y as its
output, i.e., h(Y ) = Y .

Suppose that the search starts at an initial design x1 = 1/2 and generates Y1 ∼ Bernoulli(x1). Based
on Y1, the search chooses the second design to be either x2 = 1/3 or x2 = 2/3—using the decision rule
illustrated in Figure 1—and then generates Y2 ∼ Bernoulli(x2).

x1 = 1/2

Y1 = 0

X2 = 1/3w.p. 4/5

X2 = 2/3w.p. 1/5
w.p. 1/2

Y1 = 1

X2 = 1/3w.p. 1/4

X2 = 2/3w.p. 3/4

w.p. 1/2

Figure 1: Decision rule for identifying second design X2 based on Y1.

For a given second design x2, the true objective value is µ(x2) = x2 and the green simulation ILR
estimator of the objective is

µ̂
ILR
2,1 (x2) =

1
2

Y1
f (Y1;x2)

f (Y1;x1)
+

1
2

Y2,

where f (y;x) = xy(1− x)1−y. Given x1 and x2, the conditional expectation of the ILR estimator of the
objective at the second design is

E
[
µ̂

ILR
2,1 (X2)|X1 = x1,X2 = x2

]
=

1
2
E
[
Y1

f (Y1;x2)

f (Y1;x2)

∣∣∣∣X1 = x1,X2 = x2

]
+

1
2
E[Y2|X1 = x1,X2 = x2]

=
1
2

[
∑

y1∈{0,1}
y1

f (y1;x2)

f (y1;x1)
g1(y1;x1,x2)

]
+

1
2
E[Y2|X2 = x2]. (8)

where g1(y1;x1,x2) = P(Y1 = y1|X1 = x1,X2 = x2). Since x1 is fixed, Bayes’ rule yields

g1(y1;x1,x2) =
P(X2 = x2|Y1 = y1,X1 = x1)P(Y1 = y1|X1 = x1)

∑y1∈{0,1}P(X2 = x2|Y1 = y1,X1 = x1)P(Y1 = y1|X1 = x1)
. (9)

The probabilities shown in Figure 1 can be substituted into (9) to check that

g1

(
0;

1
2
,
1
3

)
=

16
21

, g1

(
1;

1
2
,
1
3

)
=

5
21

, g1

(
0;

1
2
,
2
3

)
=

4
19

, and g1

(
1;

1
2
,
2
3

)
=

15
19

,

and hence

E
[

µ̂
ILR
2,1 (X2)

∣∣∣∣X1 =
1
2
,X2 =

1
3

]
=

31
126

<
1
3

and E
[

µ̂
ILR
2,1 (X2)

∣∣∣∣X1 =
1
2
,X2 =

2
3

]
=

49
57

>
2
3
.

The ILR estimator is therefore biased low when X2 = 1/3 and biased high when X2 = 2/3. Furthermore, the
ILR estimator is also unconditionally biased in this example. From Figure 1, it can be seen that X2 = 1/3
with probability 21/40 and X2 = 2/3 with probability 19/40, and so
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E[µ̂ ILR
2,1 (X2)] =

(
31

126

)
21
40

+

(
49
57

)
19
40

=
43
80

, whereas E[µ(X2)] =

(
1
3

)
21
40

+

(
2
3

)
19
40

=
59
120

.

From (8), it can be inferred that the conditional (and unconditional) bias of the ILR estimator would
disappear if the denominator in the likelihood ratio were replaced with the conditional likelihood g1(y1;x1,x2).
Unfortunately, the derivation of this conditional likelihood in (9) implicitly requires knowledge of the
distribution of the simulation outputs h(Y ). If this knowledge were available, it would be possible to
estimate µ(x) via numerical integration and avoid the need to simulate altogether.

3.2 Minimizing a Constant Objective Function with Bernoulli Random Samples

We now study a more optimization-oriented example and explore how the conditional dependence and bias
of the ILR estimators are manifested throughout a search.

Let x ∈X = [0,1] be the design at any iteration and let Y |x∼ Bernoulli(x) with support Y = {0,1}.
In addition, the simulation logic is a constant function given by h(0) = h(1) = 1. As a result, the objective
function is also a constant, i.e., µ(x) = Ex[h(Y )] = 1 for all x ∈X . We consider minimizing µ(x) over
X using a gradient-based search. Admittedly, this problem is trivial and does not require any (simulation)
optimization. Nevertheless, it provides valuable insights about the use of green simulation ILR estimators
in simulation optimization.

Since the simulation logic is constant, the SMC estimator for the objective is always accurate, i.e.,
unbiased with zero variance. Furthermore, any gradient estimate based on finite differences or infinitesimal
perturbation analysis (IPA) will be zero with probability 1, hence the iterates will not move away from
the initial design. In contrast, the likelihood ratios in the ILR estimators of the objective and the gradient
depend on the random outputs at each iteration, resulting in non-zero variance for both estimators. As we
will see, using ILR estimators in a gradient-based search affects the search’s behavior in surprising ways.

For any x∈X , the probability mass function (pmf) of the Bernoulli distribution is f (y;x) = xy(1−x)1−y

for y ∈ Y . The likelihood ratio is then f (y;x)
f (y;x̃) =

x
x̃1{y = 1}+ 1−x

1−x̃1{y = 0}, where 1{·} is the indicator

function. In addition, the score function is ∇x log f (y;x) = 1{y=1}
x − 1{y=0}

1−x . As a result, the green simulation
ILR estimators for µ(x) and its gradient are given by

µ̂
ILR
n,r (x) =

1
nr

n

∑
k=1

 ∑
j:Y ( j)

k =1

x
Xk

+ ∑
j:Y ( j)

k =0

1− x
1−Xk

 , ∇̂µ
ILR
n,r (x) =

1
nr

n

∑
k=1

 ∑
j:Y ( j)

k =1

1
Xk
− ∑

j:Y ( j)
k =0

1
1−Xk

 . (10)

For illustration, we test a stochastic approximation algorithm and initialize it in the center of the design
space, i.e., X1 = 1/2 with probability 1. At the kth iterate Xk, the objective value is estimated by µ̂ ILR

k,r (Xk)

and the next design is Xk+1 = max{min{Xk−αk∇̂µ
ILR
k,r (Xk),1},0}, where αk is the step size or learning

rate at each iteration; we consider a sequence of diminishing step sizes αk = 0.1/k in this example.
We first run the above algorithm with 1 replication per iteration for 100 iterations. Figure 2a depicts the

estimated objective value on the vertical axis and the iterates on the horizontal axis for three macroreplications
of the algorithm. That is, the horizontal changes on a given curve describe the trajectory of the search
path while the vertical changes show how the ILR estimate of the objective at the current iterate changes
throughout the algorithm. The search trajectories shown in Figure 2a tend to be fairly smooth because the
ILR estimate of the gradient only changes by a single term from iteration to iteration. In contrast, if LR/SF
gradient estimates based on outputs at only the current design were used in a stochastic approximation
algorithm, the search trajectory would be expected to oscillate back and forth from iteration to iteration.

Another important observation from Figure 2a is that the ILR estimator underestimates the objective
throughout the algorithm, with the negative bias being most significant during the first few iterations. This
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(a) Estimated objective vs. iterates for r = 1.
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(b) Estimated objective vs. iterates for r = 10.
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(c) Bias in objective vs. iteration.
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(d) Bias in gradient vs. iteration.

Figure 2: Minimizing a constant objective function using stochastic approximation with ILR estimators.

negative bias can be most easily understood by considering the first two iterations of the algorithm. From

(10), ∇̂µ
ILR
1,1 (X1) is positive when Y1 = 1 and negative when Y1 = 0. A positive estimate of the gradient at

the first design means that the second design will be to the left of X1, hence the term X2/X1 appearing in
µ̂ ILR

2,1 (X2) will be less than 1. Therefore the ILR estimator of the objective at this value of X2 will be biased
low. Similar reasoning shows that the ILR estimator of the objective is also biased low when the gradient
estimate at the first design is negative.

We run the same experiment with 10 replications per iteration and plot the estimated objective function
value versus the iterates for three macroreplications in Figure 2b. Again, the ILR estimator underestimates
the objective function value, especially early in the algorithm, and the search trajectories are smooth.

We further run 10,000 macroreplications of the algorithm for r = 1 and r = 10 to assess the average
bias of the ILR estimator of the objective, as depicted in Figure 2c. The average bias plotted in Figure 2c is
the unconditional bias, as opposed to the conditional bias—given the identities of the designs—discussed
in Section 2. As suggested by the curves in Figures 2a and 2b, the negative bias is most significant in the
first few iterations and persists for over 100 iterations. Figure 2c also shows that the magnitude of the bias
is smaller for r = 10 than for r = 1. This suggests that increasing the number of replications per iteration
is a possible remedy for reducing, but not eliminating, the bias of the ILR estimator of the objective.
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The reason that the bias can be reduced by increasing the number of replications can be seen by again
considering the first two iterations. For r = 1, a single output from the first design appears in µ̂ ILR

2,1 (X2) as
either X2/X1 or (1−X2)/(1−X1), both of are less than 1, conditional on X2. However, when r = 10, there
are 10 terms of the form X2/X1 or (1−X2)/(1−X1), the average of which is now closer to 1, conditional
on X2. In other words, with more replications per iteration, the average of the weighted outputs from the
past designs tends to be less extreme.

We also plot the average bias of the ILR estimator of the gradient for r = 1 and r = 10 in Figure 2d.
Given the symmetry of the problem, the ILR gradient estimate is likely unconditionally unbiased in this
example, as indicated by the closeness of the two curves to the true value of zero.

3.3 Minimizing a Quadratic Objective Function with Normally Distributed Random Samples

In this example, we consider a simple yet meaningful simulation optimization problem that involves
minimizing a quadratic objective function with normally distributed random samples. This example is
intended to resemble the situation in which a search is approaching the local optimum of a smooth objective
function. We observe that the conditional dependence and bias of the ILR estimators of the gradient can
inhibit the convergence of a gradient-based search.

For any design x∈R, the corresponding random sample is normally distributed with mean x and known
fixed variance σ2, i.e., Y |x∼ N(x,σ2). The simulation logic h : Y →R is the quadratic function h(y) = y2

and the objective function is µ(x) = E[h(Y )|x] = E[Y 2|x] = σ2 + x2 with a global minimizer x∗ = 0. We
consider solving this problem with a gradient-based algorithm, by simulating random samples Y (1)

n , . . . ,Y (r)
n

at each iterate Xn and then estimating the objective and gradient at the current iterate via the ILR estimators.
For a sampling design x̃ and target design x, the likelihood ratio is f (y;x)/ f (y; x̃) = exp

(
x̃2−2y(x̃−x)−x2

2σ2

)
.

Given the random samples Y ( j)
k , j = 1, . . . ,r, at designs X1, . . . ,Xn, the ILR estimators for the objective and

the gradient at a design x are

µ̂
ILR
n,r (x) =

1
nr

n

∑
k=1

r

∑
j=1

(
Y ( j)

k

)2
exp

(
X2

k −2Y ( j)
k (Xk− x)− x2

2σ2

)
, and

∇̂µ
ILR
n,r (x) =

1
nr

n

∑
k=1

r

∑
j=1

(
Y ( j)

k

)2
exp

(
x2

k−2Y ( j)
k (Xk− x)− x2

2σ2

)(
Y ( j)

k − x
σ2

)
. (11)

At the kth iterate Xk, the next design is Xk+1 = Xk−αk∇̂µ
ILR
k,r (Xk), where a constant step size αk = 0.1 is

used in this example. A reason for using constant step size in this example is to examine whether the ILR
gradient estimator accurately estimates the zero gradient at the minimizer x∗ = 0. For simplicity, we use a
fixed variance σ2 = 1 and initial design x1 =−2.

We first run the above algorithm with 5 replications per iteration for 100 iterations. Figure 3a shows the
estimated objective value versus the iterates for three macroreplications. The search trajectories shown in
Figure 3a exhibit a tendency to overshoot the minimizer before looping back. In addition, the ILR estimator
appears to underestimate the objective function when the search trajectory first approaches the minimizer.
We also run the algorithm with 50 replications per iteration and observe that these issues disappear, as
shown in Figure 3b.

In Figure 3c we plot the average (unconditional) bias of the ILR estimator of the objective throughout
the search based on 10,000 macroreplications. For both r = 5 and r = 50, there are two dips in the average
bias: one during the first few iterations of the search and another during the iterations at which the search
first approaches the minimizer. After the second dip, the bias of the ILR estimator of the objective shrinks.
As was the case in Example 2, the magnitude of the bias decreases as the number of replications per
iteration increases.
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(a) Estimated objective vs. iterates for r = 5.
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(b) Estimated objective vs. iterates for r = 50.
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(c) Bias in objective vs. iteration.
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(d) Bias in gradient vs. iteration

Figure 3: Minimizing a quadratic objective function using stochastic approximation with ILR estimators.

Figure 3d shows that the ILR gradient estimator initially overestimates the gradient, then underestimates
it, before the bias eventually vanishes. For both r = 5 and r = 50, the peak and valley in Figure 3d coincide
with the two valleys in Figure 3c. This suggests that due to the similarity of the ILR estimators of the
objective and gradient in (11), the magnitudes of the biases of the two estimators are greatest at the same
times, but the directions can be different. The dip in the bias of the ILR gradient estimator explains how the
algorithm can overshoot the minimizer because the gradient estimate is negative instead of zero, indicating
further improvement to the right.

4 CONCLUSIONS

We have discussed how in a simulation optimization search, past simulation outputs are conditionally
dependent given the visited designs, an aspect that may be easily overlooked when trying to leverage
green simulation. As a consequence, green simulation estimators of the objective function and gradient
are conditionally biased, as demonstrated by our analysis of likelihood ratio estimators. Through several
simple examples, we showed how these properties of green simulation estimators can affect the behavior
of gradient-based searches by changing the shape of a typical search trajectory and potentially hindering
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the algorithm’s convergence. It remains unknown just how significant these issues could be for practical
simulation optimization problems or non-gradient-based searches. For this reason, we advise caution when
considering whether to reuse past outputs within simulation optimization searches.

While common random numbers are frequently used in simulation optimization to reduce the variance of
estimated differences in objective values, we believe that they would clash with green simulation estimators.
In particular, common random numbers might further exaggerate the bias of the green LR estimators.

Another future research direction is to study how green simulation stochastic kriging estimators can be
used in simulation optimization. In stochastic kriging, a metamodel is constructed from the outputs of a
fixed set of designs, but in green simulation optimization, the set of designs grows over time as new designs
are evaluated and the model is updated. The identities of new designs would depend on the metamodel
fitted from the previous outputs, possibly adding a conditional bias to the metamodel.
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