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ABSTRACT

Simulation optimization is often conducted by applying optimization heuristics (e.g., genetic algorithms)
whereby the simulation model delivers the objective function value for the respective parameter set. For
real world simulation models, their evaluation time is a crucial constraint. This holds especially for material
requirements planning (MRP) parameter optimization of real production systems with many products,
because of an extensive search space. Approximating the objective function values by surrogate models
can be applied to reduce the search space. Based on a real world production system simulation model, the
performance of different regression models to identify simple surrogate models for fast objective function
approximation is evaluated in this paper. Specifically, a focus is put on the relationship between the MRP
parameters: lot-size and planned lead time, and the performance indicators: inventory and tardiness costs.
The paper evaluates a set of simple regression models and compares their objective function fit.

1 INTRODUCTION

Simulation is a valuable tool to represent the behavior of real production systems since analytical models are
usually not capable of including the complex relationships and interaction between materials, production
orders and resources. Specifically, production planning can be focused with such simulation models to
improve and/or optimize the planning parameters (Peirleitner et al. 2017; Felberbauer and Altendorfer
2014; Altendorfer et al. 2014). However, simulation run times of real size simulation models are rather high
and, therefore, most studies reduce the search space, for example, by clustering the planning parameters
and evaluating only one parameter for this cluster. In Peirleitner et al. (2017), where a real production
system is evaluated, e.g., only one factor is implemented for the MRP parameter lot-size, one factor for
the planned lead time and the safety stock. Even though this simplification leads to an optimization search
space which can be fully enumerated (within an appropriate range), a lot of improvement potential is lost
by such approaches. For simulation-based optimization of each single parameter, search heuristics, e.g.,
genetic algorithms, can be applied to find good (optimized) solutions (see Beham et al. 2012), whereby
such approaches need a larger amount of single simulation runs to perform well. In such search heuristics,
each single simulation run delivers an objective value to the heuristic which defines the next parameter set,
or the next generation of parameter sets, to be evaluated. Related to the high run time of real production
system simulation models covering the production planning parameter effects, the applicability of such
search heuristics is limited. Therefore, a more recent research stream on applying surrogate models has
to be evaluated in the context of production system simulation models. In this extended simulation-based
optimization approach with surrogate models, not all parameter sets are evaluated with actual simulation
runs. A surrogate model is created from the actually observed interdependencies between the parameters and
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the simulation’s response. Only promising solution points, according to the surrogate model, are evaluated
with actual simulation runs. The solution quality improvement with surrogate models is related to the fit
of the surrogate models to the simulation results, however generalization capabilities are also important.
The surrogate assisted optimization approach requires that the response of unseen configurations can be
estimated well. One approach is to use simple regression models (e.g., linear regression) to avoid an overfit
of the surrogate to the observed data. However, production system literature shows that the relationship
between the planning parameters lot-size and the key figures inventory and tardiness, as well as between
planned lead time and these key figures are not linear (Karmarkar 1987; Altendorfer 2015; Altendorfer and
Minner 2015). Therefore, simple linear regression models are conjectured to not work well. The objective
of the paper is to identify simple (non-linear) regression methods, which are on the one hand generic, but
provide on the other hand a good fit for the production system. This is conducted by using a real world
simulation model from a previous company project. Note that data is anonymized in this paper.

The paper is structured as follows. In Section 2, some relevant literature on simulation-based optimization
of production planning parameters and surrogate model applications is provided. The real world production
system which is simulated is introduced in Section 3 and Section 4 provides an overview of the applied
regression methods for surrogate models. The numerical results are discussed in Section 5 and some
conclusions are provided in Section 6.

2 LITERATURE REVIEW

In this section, relevant literature on simulation-based optimization for production planning and surrogate-
models is presented.

2.1 Simulation-based Optimization of Production Planning using Solution Heuristics

The field of simulation-based optimization (Law and Kelton 2007; Fu et al. 2005) is still a rather young
research area. The efficient utilization of distributed computing infrastructures can certainly be seen as a
key enabling technology allowing optimization of more complex real-world simulation models. So far,
metaheuristic optimization approaches have been applied successfully in solving combinatorial optimization
tasks, such as vehicle routing, production scheduling, and layout optimization (Affenzeller et al. 2015).
However, with traditional mathematical methods, it is not possible to depict the complexity and the dynamics
of a holistic modeled production planning process of an organization. One possibility of decision support
within such complex and dynamic planning problems is the application of simulation (Negahban and
Smith 2014). With simulation, production processes can be presented realistically. It is possible to show
correlations between time- and capacity-dependent parameters and stochastic influences on the whole
planning system (Mourtzis et al. 2014). As a consequence, various optimization results can be evaluated
concerning defined quality parameters (Affenzeller et al. 2015). Recent applications of simulation-based
optimization or improvement of planning parameters are Gansterer et al. (2014) who study a simulation-
based optimization of MRP parameters, Jodlbauer and Huber (2008) who explore robustness and stability
of production planning parameters in the field of various production planning and control systems, such as
MRP. Furthermore, Hübl et al. (2013) examine the influence of dispatching rules on the average production
lead time for one- or multi-stage production systems and Altendorfer et al. (2016) evaluate the hierarchical
planning process with simulation. Also complex dispatching rules may be improved by using genetic
programming and evaluating the generated optimization results by simulation (Beham et al. 2010; Pitzer
et al. 2011; Hunt et al. 2014).

2.2 Surrogate Models for Solution Time Reduction

When applying simulation-based optimization, the evaluation of possible solution candidates is quite
expensive. A single simulation run can take from multiple minutes up to hours or even days (Koziel and
Leifsson 2013). When such complex problems have to be optimized, employing conventional heuristic
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approaches that need to execute hundreds of thousands of evaluations is not feasible due to time constraints.
This is where surrogate modeling comes into play. Surrogate models are approximations to other models
and can be evaluated in a much shorter time frame (Forrester and Keane 2009; Queipo et al. 2005). Given
an input vector x, they yield an output value y, depending on which target is modeled. Many different
surrogate modeling techniques are available in literature, e.g., linear regression (Neter et al. 1996), non-linear
regression, random forests (Breiman 2001), support vector machines, gradient boosted trees (Friedman
2001), M5’ trees (Quinlan 1992; Wang and Witten 1996), or Gaussian processes (Rasmussen 2004).
An extensive review on Kriging (i.e., Gaussian process) surrogates for simulations has been conducted by
Kleijnen (2009). Surrogate models are usually trained using a set of already known inputs and corresponding
outputs, commonly referred to as dataset. When such datasets are not available yet, some simulation runs
have to be executed in order to start the surrogate model building process. Once a sufficient number of
simulations with different input parameters have been executed, a dataset can be built and used for model
building. Usually, such datasets are split into at least two partitions. One is called the training partition, the
other one is called test partition. The training partition is used to learn the actual surrogate (i.e., regression)
model. Once training is complete, the test partition is used to evaluate the model’s performance on unseen
data, i.e., which wasn’t available for training. A third partition, referred to as validation partition may
be used in selecting the resulting model. Good models will only behave marginally weaker on the test
partition compared to the training partition. If the model performs significantly weaker, the model building
process may be subject to overfitting, i.e., the model memorized the training data, but does not generalize
well and therefore cannot predict data it has not seen before good enough. This condition is undesirable
(Hawkins 2004).

3 SIMULATED PRODUCTION SYSTEM

The simulation model applied for generating the dataset to train and test the regression models for their
applicability as surrogate model for production planning parameter optimization is a real world model. The
company for which the model has initially been built is an automotive supplier which produces transmission
system components. Production planning is conducted using MRP based on a customer demand forecast
that is updated regularly. The simulation model has been created within a practical optimization project to
improve the production planning of this company, however, a simple enumeration scheme as also introduced
in Section 1 has been applied there. In the initial study a total of approximately 57,000 simulation runs
were made, using 40 replications per iteration. Some production system features are introduced in this
section to better understand the planning complexity as well as the objective function results discussed in
further sections.

The company supplies mechanical processed parts to different assembly lines of an internal customer
on a daily basis, i.e., each day a delivery is performed to the customer. The company uses the well-known
ERP (Enterprise Resource Planning) system SAP which has an MRP algorithm implemented to create
production orders. Based on the stocking policy of this company no safety stock is kept and, therefore,
the MRP parameters to be optimized are lot-size and planned lead time for each material (see also Hopp
and Spearman 2011 for MRP). The production system produces in its original setting 116 end items, i.e.,
products to be sold. Based on an ABC cluster analysis, 37 end items have been identified that make up
to 80 % of the capacity demand and only these items are simulated in detail. For the remaining items
only the capacity consumption is simulated. 30 of the 37 end items have a sequential BOM (bill of
material) structure, i.e., one raw material is processed in several mechanical processing steps until the end
item is generated. For the remaining end items, which consume some semi-finished materials, 16 such
semi-finished items are included in the simulation study as well. This leads to 106 planning parameters to
be optimized (53 lot-sizes and 53 planned lead time values). The production system consists of 32 machines
that are simulated and perform for example milling, turning and grinding operations. Most processing
steps can be performed only on one machine, however, for some processing steps alternative machines
exist. The dispatching of production orders is performed according to the EDD (earliest production order
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due date) rule and alternative machines are used to balance the order queues of the respective machines.
Additionally, most materials have also one or more external processing steps, e.g., hardening and laser
welding, which are simulated by an external lead time distribution. The model is created using a generic
simulation framework SimGen which has been introduced in Felberbauer et al. (2012) and Altendorfer
et al. (2013). The performance criterion applied in this study is the sum of inventory and tardiness costs
which are reported in Section 5.

4 REGRESSION MODELS

As stated above, the regression models applied for surrogate modeling should on the one hand be simple
and on the other hand provide a good fit between the simulation results and the approximated objective
value. In this section, firstly the simple linear regression model is briefly introduced, which only provides
the baseline for improvement by the non-linear models presented later on.

4.1 Linear Regression

In multiple linear regression models, the objective function is only approximated by linear influences of the
parameters applying different weights for each parameter. The term multiple indicates that more than one
parameter influence is used. Equation (1) and Figure 1 show how the objective function is approximated
with such a multiple linear regression whereby φ is the approximated objective function, the β -values are
the respective weights and the X-values are the planning parameters (Neter et al. 1996).

φ = β0 +β1X1 +β2X2 + · · ·+β106X106 (1)

Since the relationship between the planning parameters and the logistical key figures inventory and
tardiness costs, which add up to the overall objective value, is not linear (see also introduction section),
this multiple linear regression is only applied as baseline for comparison.

X

f(X)

Linear Model

Figure 1: A linear model for a one-dimensional function.

4.2 Random Trees and Forests

Non-linear approaches include the use of so called decision trees. Given some already observed input and
corresponding output variables, a decision tree can be created (Quinlan 1986). Training data is split in
different dimensions according to certain criteria, e.g., to create homogenous sets of data points. Each split
will then correspond to a node in the decision tree.

An exemplary decision tree with three splits is shown in Figure 2. Since it is a one-dimensional
function, only one dimension (X) can be used for splitting. In this example, the first cut is done at X < α

and two more at X < β and X < γ . If X < α and X < β are met, the left-most path in the tree will be
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taken and the value φ1 will be predicted. If X ≥ α and X < γ , the decision tree will predict φ3. Terminal
nodes, i.e., the leafs of the tree, represent the predicted values. The calculation of these predicted values
also depends on the specific implementation of the decision tree, e.g., the average of all observed values
in the split partition, as shown in Figure 2, can be used as prediction.

X < α

X < β X < γ

φ1 φ2 φ3 φ4

ρ(X)

T F

T F T F

X

f(X)

β α γ

φ1

φ4

φ2

φ3

Decision Tree Model

Figure 2: A decision tree model, splitting X at α , β and γ .

A random forest (Breiman 2001) is then an ensemble of such decision trees that are used to predict
target variables. The number of trees is a parameter that can be configured. Each decision tree is created
using a certain percentage of the available training data. Furthermore, the amount of available features
for each tree during its creation is configurable. The resulting decision trees form the random forest, as
depicted in Figure 3. A prediction is calculated by averaging over all predictions from the individual trees.

Decision Tree Model 1
Decision Tree Model 2
Random Forest Model

X

f(X)

Figure 3: Two decision tree models forming a random forest model.

4.3 Regression Tree

A regression tree is a more specialized form of a decision tree. The regression algorithm first starts by
constructing a decision tree, where every leaf predicts values using its own regression model, e.g., a linear
regression. Once the initial tree has been created, it is checked whether or not pruning of nodes increases
the model accuracy. This is done bottom-up by starting at the lowest splits. A split is temporarily removed
and replaced by a new regression model, e.g., a linear regression. The algorithm then decides whether or
not the previously removed split was better than the new single leaf node that uses the regression model.
Therefore, the regression tree’s accuracy, as well as the number of input variables required for the node
before and after the replacement, are analyzed. If the split was better, it is kept, otherwise, the split is
replaced by the leaf node with the new regression model, which effectively leads to the pruning of the
tree, as shown in Figure 4. Usually, the decision tree is initially created with leafs that represent linear
regressions for the split partitions. When pruning is started, new leaf nodes can be constructed using e.g.,
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Gaussian process models instead of linear regression models. The maximum number of initial leafs that
can initially be created depends on the chosen regression method. When employing linear regression, the
maximum number l can be calculated as shown in Equation (2)

l =
⌊

d
f +1

⌋
(2)

where d equals the number of points in the dataset and f the number of features, because each linear
regression needs at least f +1 points for prediction and one data point can only be present in one partition.
By pruning subtrees, the overall decision tree should be simplified, but model accuracy should be increased.
Examples for regression trees are for instance CART (Lawrence and Wright 2001) or M5’ (Quinlan 1992;
Wang and Witten 1996).

X < α

X < β X < γ

m1 m2 m3 m4

ρ(X)

T F

T F T F

X

f(X)

β α

Regression Tree Model

X < α

X < β

m1 m2

ρ(X)

T F

T F

m5

Figure 4: A regression tree model where one subtree has been pruned.

4.4 Gradient Boosted Trees

Gradient boosted trees (GBT) (Friedman 2001) are similar to random or regression trees, but do not aim
to predict the dependent variable with each tree again. Instead, an initial guess may be made, for instance
in form of a constant model and subsequent trees predict the residual error remaining. Thus, the sum and
not the average of the prediction of all trees creates a prediction of the target variable. Still, each tree may
only use a randomly chosen subset of the data and randomly chosen subset of the features. A well-known
example of GBT is AdaBoost (Schapire and Freund 2012).

5 NUMERICAL RESULTS

In this work we applied the 4 regression methods: linear regression (LR), random forest (RF), regression
tree (RT) and gradient boosted trees (GBT). Their performance as surrogate models for predicting inventory
costs (IC) and tardiness costs (TC) of a real-world production system with respect to the dispatching
parameters planned lead time and lot-size for each of the 53 materials (see Section 3) is evaluated. To
generate an appropriate data sample for this numerical study, the simulation model is evaluated at 3,000
randomly chosen configurations whereby the average cost estimation from 10 replications is calculated.
Thus, a total of 30,000 simulation runs have been performed and the number of evaluated combinations
is based on prior experiences.

In Table 1 and Table 2 we state the coefficient of determination (R2), mean absolute error (MAE) and
mean relative error (MRE) when using only one type of planning parameter for both of the predicted costs,
i.e., costs are approximated only applying the lot-size or the planned lead time parameters.

As we can observe, the models are not able to predict the costs well and some models, RF and GBT,
show much better performance on the training set than on the test set suggesting that overfitting might
be the problem. Specifically the R2 values indicate a bad surrogate model fit in the test sample, whereby
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Table 1: Model accuracies using lot-sizes only.

INVENTORY COSTS (IC) TARDINESS COSTS (TC)

R2 MAE MRE R2 MAE MRE

LR training 0.4288 926.02 0.0596 0.4191 16,648.39 0.5876
test 0.4090 1,005.23 0.0649 0.3916 17,685.17 0.6085

RF training 0.7593 655.81 0.0421 0.7588 11,329.47 0.3875
test 0.4173 988.04 0.0635 0.4114 16,945.52 0.5626

RT training 0.4288 926.02 0.0596 0.4191 16,648.39 0.5876
test 0.4090 1,005.23 0.0649 0.3916 17,685.17 0.6085

GBT training 0.7972 589.79 0.0380 0.7949 10,648.49 0.3733
test 0.3887 1,007.21 0.0649 0.3622 17,896.34 0.6059

Table 2: Model accuracies using planned lead times only.

INVENTORY COSTS (IC) TARDINESS COSTS (TC)

R2 MAE MRE R2 MAE MRE

LR training 0.2625 1,036.64 0.0673 0.2863 18,854.17 0.9415
test 0.2670 1,098.39 0.0713 0.2618 19,456.98 0.9312

RF training 0.7788 764.17 0.0497 0.7361 13,541.45 0.6908
test 0.2330 1,143.45 0.0743 0.2630 19,507.13 0.9365

RT training 0.2625 1,036.64 0.0673 0.2863 18,854.17 0.9415
test 0.2670 1,098.39 0.0713 0.2618 19,456.98 0.9312

GBT training 0.7754 650.34 0.0423 0.7786 11,804.17 0.5813
test 0.2319 1,116.46 0.0727 0.2324 19,933.61 0.9471

the slightly higher R2 values for lot-size indicate a higher influence of this parameter on the dependent
variables inventory and tardiness costs. This is in line with production system modeling literature stating
that lot-size has a high influence on production lead time which directly influences inventory and tardiness
(see Karmarkar 1987 and Altendorfer 2015). However, it also shows that both planning parameters have
to be taken into account when generating a feasible surrogate model.

In Table 3 the results for these 4 surrogate modeling approaches taking both planning parameters for each
material into account, i.e., 106 parameters, are presented. In general, the results show that the performance
of the prediction dramatically improves. This indicates that there is a strong interaction between these
two parameters and that neither parameter alone is able to explain the costs well, which is again in line
with analytical findings. The comparison of the different surrogate modeling approaches identifies different
approximation qualities:

• Linear regression (LR)
– IC and TC: This approximation method leads to the worst fit for both dependent variables (see

the low R2 values). Based on these results, this method cannot be proposed for the surrogate
modeling application at hand.

– Based on the linear behavior of the approximation (see Section 4.1) and the results from analytical
production literature on the non-linear relationships in production systems (see Section 1), this
is an intuitive result.

• Random forest (RF)
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Table 3: Model accuracies using both lot-sizes and planned lead times.

INVENTORY COSTS (IC) TARDINESS COSTS (TC)

R2 MAE MRE R2 MAE MRE

LR training 0.6907 715.04 0.0466 0.6907 13,329.08 0.5737
test 0.6857 764.73 0.0500 0.6655 14,223.26 0.5897

RF training 0.9143 411.52 0.0268 0.9560 5,202.04 0.2025
test 0.8363 587.79 0.0384 0.9141 7,257.49 0.2703

RT training 0.8860 386.06 0.0244 0.9355 5,326.46 0.1612
test 0.8816 423.08 0.0267 0.9170 6,407.63 0.1966

GBT training 0.9705 228.47 0.0147 0.9788 3,531.73 0.1265
test 0.8956 443.30 0.0286 0.9216 6,717.87 0.2453

– IC: This model provides a good fit for the training samples (R2 = 0.91), however the fit for
the test samples is not as good (R2 = 0.84).

– TC: Again, good model accuracy for the training samples can be observed, even higher than
for IC. The accuracy of the test prediction is slightly lower.

– In general, the method provides an acceptable performance.
• Regression tree (RT)

– IC: Even though the performance within the training partition in terms of R2 is worse than for
RF and GBT, good test results for R2 as well as MAE and MRE show that this method is one
of the best.

– TC: The model achieves similar results like for IC, but is not as good during test as in training.
– In general, the good performance of this method can be explained because this method splits the

solution space into small slices which are linearized and therefore approximate the non-linear
production logistical behavior.

• Gradient boosted trees (GBT)
– IC and TC: The method provides an excellent fit for the training samples (R2 = 0.97 and

R2 = 0.98), however, a lower performance for the test samples (R2 = 0.90 and R2 = 0.92) is
observed.

– In general, the R2 performance of this method in the test partition is still the best of all methods,
nevertheless, the slightly worse MAE and MRE performance suggest that it might be better to
apply RT here.

To better understand the approximated values when applying these regression methods for surrogate
modeling, Figure 5 shows the scatter plots from the best models whereby results from the training set are
yellow and results from the test set are orange. Looking at the results of RF and GBT shows that the
estimation quality depends on the absolute value of the costs. It can be observed that higher costs are
underestimated and lower costs are overestimated. This effect is more pronounced for the test samples.
For RT only a slight underestimation of high costs can be observed but no overestimation of low costs.

In general, these results lead to the suggestion that the methods RF, RT and GBT can all be applied
for surrogate modeling, however, the results of RT are better in the sense of cost estimation bias. The
slightly lower estimation performance of RT in comparison to RF and GBT for high costs is compensated
by the fact that in the surrogate models specifically low costs should be estimated well to identify possible
solution candidates to be simulated. Parameter sets with high cost estimates will usually not further be
evaluated.

For further simulation-based solution heuristic improvement, an interesting issue is the influence of
single planning parameters on the objective function, i.e., sum of inventory and tardiness costs. An in depth
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Figure 5: Scatter plots depicting the accuracy of all models.

analysis of the surrogate model results in evaluating the influence of single planning parameters on the R2

performance has been conducted. In this simple analysis, each planning parameter’s impact is evaluated
by applying the regression model to the original dataset for all other planning parameters and randomized
assignment of the respective parameter values. The reduction in the R2 value between the original model
and the model with randomized parameter assignment for the evaluated parameter is calculated and a higher
R2 reduction indicates a higher parameter influence. The detailed results omitted in this paper show that in
all regression models only two planning parameters (planned lead time and lot-size of one material) have a
very strong impact (see https://dev.heuristiclab.com/AdditionalMaterial). Thus, the costs in this simulated
real-world production plant are highly dependent on the dispatching of a single material which is a valuable
insight also for a simulation-based optimization heuristic.

6 CONCLUSION

In this paper the application of 4 different regression methods, i.e., linear regression, random forest,
regression tree, and gradient boosted trees, for surrogate modeling in simulation-based optimization of
a real production system is investigated. Based on a simulation model of a real production system, the
regression models are applied to estimate the effect of lot-size and planned lead time on the inventory and
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tardiness costs. Linear regression does not perform well, which is in line with analytical results showing
that these parameter influences are non-linear. The results for the other three regression methods are
promising and provide a sufficient fit for application as surrogate models. In detail, the regression tree
method performed best in this study and is therefore suggested for application. Even though the random
forest and the gradient boosted trees show a better R2 performance in the training sample and partially also
in the test sample, the performance in the test sample for mean absolute error (MAE) and mean relative
error (MRE) are worse. Furthermore, random forest and the gradient boosted trees both partially lead to a
bias for low and high cost estimates, i.e., low costs are overestimated and high cost are underestimated.

In further research we plan to apply this regression model for surrogate model supported simulation-
based optimization of real production systems. In detail the number of simulation runs to initialize the
surrogate model could be investigated. With surrogate model supported simulation-based optimization the
solution quality improvement can be compared to simulation model results and a simulation time reduction
in comparision to a traditional grid search procedure can be studied.
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Hübl, A., H. Jodlbauer, and K. Altendorfer. 2013. “Influence of Dispatching Rules on Average Pro-

duction Lead Time for Multi-stage Production Systems”. International Journal of Production Eco-
nomics 144(2):479–484.

Hunt, R., M. Johnston, and M. Zhang. 2014. “Evolving less-myopic Scheduling Rules for Dynamic Job
Shop Scheduling with Genetic Programming”. In Proceedings of the 2014 Annual Conference on
Genetic and Evolutionary Computation, 927–934. New York, NY, USA: ACM.

Jodlbauer, H., and A. Huber. 2008. “Service-level Performance of MRP, Kanban, CONWIP and DBR
due to Parameter Stability and Environmental Robustness”. International Journal of Production Re-
search 46(8):2179–2195.

Karmarkar, U. S. 1987. “Lot Sizes, Lead Times and In-Process Inventories”. Management Science 33(3):409–
418.

Kleijnen, J. P. C. 2009. “Kriging Metamodeling in Simulation: A Review”. European Journal of Operational
Research 192(3):707–716.

Koziel, S., and L. Leifsson. 2013. “Surrogate-based Modeling and Optimization”. Applications in Engi-
neering.

Law, A. M., and W. D. Kelton. 2007. Simulation Modeling and Analysis, Volume 3. McGraw-Hill New
York.

Lawrence, R. L., and A. Wright. 2001. “Rule-based Classification Systems using Classification and Regres-
sion Tree (CART) Analysis”. Photogrammetric Engineering and Remote Sensing 67(10):1137–1142.

Mourtzis, D., M. Doukas, and D. Bernidaki. 2014. “Simulation in Manufacturing: Review and Challenges”.
Procedia CIRP 25:213–229.

Negahban, A., and J. S. Smith. 2014. “Simulation for Manufacturing System Design and Operation:
Literature Review and Analysis”. Journal of Manufacturing Systems 33(2):241–261.

Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. 1996. Applied Linear Statistical Models,
Volume 4. Irwin Chicago.

Peirleitner, A. J., K. Altendorfer, and T. Felberbauer. 2017. “Simulation based Manufacturing System Im-
provement focusing on Capacity and MRP Decisions—A Practical Case from Mechanical Engineering”.
In Proceedings of the 2017 Winter Simulation Conference, edited by W. K. V. Chan et al., 3876–3887.
Piscataway, New Jersey: IEEE.

2047



Karder, Altendorfer, Beham, and Peirleitner

Pitzer, E., A. Beham, M. Affenzeller, H. Heiss, and M. Vorderwinkler. 2011. “Production Fine Planning
using a Solution Archive of Priority Rules”. In 3rd IEEE International Symposium on Logistics and
Industrial Informatics (LINDI), 2011, 111–116. Piscataway, New Jersey: IEEE.

Queipo, N. V., R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P. K. Tucker. 2005. “Surrogate-based
Analysis and Optimization”. Progress in Aerospace Sciences 41(1):1–28.

Quinlan, J. R. 1986. “Induction of Decision Trees”. Machine Learning 1(1):81–106.
Quinlan, J. R. 1992. “Learning with Continuous Classes”. In 5th Australian Joint Conference on Artificial

Intelligence, Volume 92, 343–348. Singapore: World Scientific.
Rasmussen, C. E. 2004. “Gaussian Processes in Machine Learning”. In Advanced Lectures on Machine

Learning, edited by O. Bousquet, U. von Luxburg, and G. Rätsch, 63–71. Berlin, Heidelberg: Springer.
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