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ABSTRACT

Improving production line performance and identifying bottlenecks using simulation-based optimization
has been shown to be an effective approach. Nevertheless, for larger production systems which are consisted
of multiple production lines, using simulation-based optimization can be too computationally expensive,
due to the complexity of the models. Previous research has shown promising techniques for aggregating
production line data into computationally efficient modules, which enables the simulation of higher-level
systems, i.e., factories. This paper shows how a real-world factory flow can be optimized by applying the
previously mentioned aggregation techniques in combination with multi-objective optimization using an
experimental approach. The particular case studied in this paper reveals potential reductions of storage
levels by over 30%, lead time reductions by 67%, and batch sizes reduced by more than 50% while
maintaining the delivery precision of the industrial system.

1 INTRODUCTION

The current state of the automotive industry is one of major change and transformation. Continuously
shorter product life-cycles with reduced implementation times, increasing number of variants, and disruptive
new technologies shape the industry. These challenges require current and future production systems to be
more flexible and re-configurable. At the same time the lead time will need to be reduced while keeping
internal and external customers sated (Koren 2010). One way of supporting companies to meet these issues
and challenges is higher quality decision-support, which also can be delivered faster than previously has
been possible. Currently, the established way of making predictions about future performance of production
systems is using discrete-event simulation (DES) models (Schruben 2010).

These models tend to increase in complexity through their life-cycle in order to be able to answer
complex questions about the system. Reducing model complexity has been studied in previous work by
Pehrsson et al. (2015), and the same technique has been applied to manually experiment with safety levels
to reduce storage levels and lead time (Lidberg et al. 2018). Reducing both lead-time and storage sizes
while maintaining a high delivery precision reduces the cost of inventory and time to market and is of great
importance for many companies (Hopp and Spearman 2011). Utilizing multi-objective optimization has
the potential to move key parameters closer to their ideal objective values, but also enables new insights to
be gained about the behavior of the industrial system. The process of improving simulation models, and
in extension real physical systems, combining DES and multi-objective optimization is commonly referred
to as simulation-based multi-objective optimization (SMO).

This paper presents the application of SMO on aggregated simulation modeling in a real world industrial
setup with results of lowering the storage levels by 31%, lead time by 67%, and batch sizes by more than
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50%, showing the potential of optimizing on the factory level. The paper begins with a theory section for
discrete event simulation, aggregation techniques and multi-objective optimization. Using these concepts,
an aggregated model will be constructed for an industrial system to be used in an optimization setup. The
results of the optimization will be presented and compared to the manual settings from our previous work.
Insights from the optimization will be used to improve the industrial system. Finally, the paper is ended
with conclusions and suggestions for future work.

2 AGGREGATED MODELS IN SMO

Focusing on the optimization level of SMO and describing in short how aggregation techniques can be
applied to complex DES models, this section is comprised of two parts. The first part deals with simulation,
modeling, and the possibility of reducing the computational time, data collection time and time required
for modeling by aggregating data and logic. The second part summarizes how optimization using genetic
algorithms can be applied to find solutions to many-objective problems.

2.1 DES and Aggregated Modeling

Building models to represent an already existing physical system or planned system is now common practice
in many industries (Negahban and Smith 2014; Banks et al. 2009). The models are used to improve or
verify system solutions for either future lines or current ones. Testing proposed changes in models before
implementing them physically increases the confidence and robustness of the proposed solution and reduces
the likelihood of implementing costly mistakes.

Different questions stated to the model requires different levels of model detail and have different
requirements for input data. Adding detail often means that the computational time will increase when
running the model, but also that the simulation project duration will be extended for gathering data (Chwif
et al. 2000; Fowler and Rose 2004).

To enable faster delivery of decision support to the decision maker one approach is reducing the level of
details in the models and thereby reducing the computational time. Several methods have been developed to
aggregate models by both mathematical and hybrid modeling (Zulkepli et al. 2012; Lefeber and Armbruster
2011; Asmundsson et al. 2006). With aggregation through DES modeling, reducing the requirements of
input data, and while maintaining the characteristics of a detailed model, one approach has been developed
by Pehrsson et al. (2014) and Pehrsson et al. (2015). Using this method, the only input parameters required
for the aggregation of production lines are processing time, availability, mean time to repair, average work
in process (WIP), maximum WIP, and minimum lead time.

2.2 Simulation-Based Optimization for Many Objectives Using Genetic Algorithms

Manual experimentation or design of experiment (DOE) studies have several limitations. Preparing experi-
ments is time-consuming and an exhaustive iteration through the design parameters will lead to increasingly
large experiment sets. In the effort to contain the size of the experiment sets, limits are imposed to the
experiment inputs, which also impose limits on the insights gained from the results.

Genetic algorithms can be used to optimize these settings without limiting the inputs (Floreano and
Mattiussi 2008). Letting the algorithm, preferably without external bias, explore the search space will lead
to better results which are also non-intuitive (Deb 2001). NSGA-II is a multi-objective genetic optimization
algorithm which has been applied frequently in SMO due to its applicability, accuracy, convergence and
diversification of solutions on the Pareto front (Deb et al. 2002; Dudas et al. 2014; Ng et al. 2011).

The most recent development has produced algorithms such as NSGA-III which has exhibited improved
performance for more than three objectives compared to other algorithms (Deb and Jain 2014; Jain and
Deb 2014). The algorithm depends on user-supplied or calculated reference points in the objective space.
These points are placed on a normalized hyper-plane constructed for all objectives, and for each solution
the distance to these points are minimized instead of selection by maximizing the crowding distance to
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neighbors as in NSGA-II. Selection by proximity to the reference points will increase the diversification
of the solutions.

3 MODEL FOR THE INDUSTRIAL SYSTEM AND OPTIMIZATION SETUP

This section describes the industrial system on a higher level and how the model is constructed which
represents the industrial system. The scheduling and ordering systems implemented in the model will be
discussed, because they differ from the real industrial case. Lastly, the setup of the optimization will be
explained, the different inputs to change, the outputs to measure, and goals to improve.

3.1 Industrial System and Model Setup

This paper shares the same type of industrial setup presented in previous work (Lidberg et al. 2018). A
number of issues are limiting the performance in the current setup of the system. Deviating capacities, large
batch sizes, uneven distribution of shifts, and large amounts of inventory result in long lead times through
the plant. The operation’s management requested more information, based on simulation and optimization,
in order to enable more informed decision-making on how to improve the situation. The industrial systems
consist of several machining lines (ML), producing four different component types, each comprised of
several variants. These components are assembled in one of two automated assemblies (AA), and then
transported into one of four final assemblies (FA). Between each of these steps, and after FA, are final good
inventories (FGI). To model this many interconnected systems in detail would be very computationally
expensive to run. Each line is therefore modelled using an aggregation technique, referenced in Section 2.1,
to obtain decision-support in a short amount of time. The largest portion of the simulation time is currently
the scheduling logic that is implemented in the model, which is not connected to the aggregation technique.

Figure 1 shows the setup of the industrial system, but also how the model is constructed. Each ML
is named A-D depending on the component they produce and {1,...,N} to denote the number of lines
for that component. AA and FA lines are only named iteratively with {1,...,N} where AAO1 delivers to
FA01-02 and AAOQ2 delivers to FA03-04. Input and output data from the model has been obfuscated to
protect company assets and are in some cases generalized due to the need for brevity. However, all data
relations has been preserved.

AAFGI ToFA

MLD2

Figure 1: High-level representation of the industrial system and setup of the model.
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MLC lines are affected by a setup time between the different variants leading to a large batch size and
therefore a large storage size. Setup times changing from one variant to another, regardless of the pairing,
has been estimated to be 40 minutes. The setup takes place at the Linelnput and LineOutput objects of the
ML when applied in the aggregation technique. These objects are two of the five objects in the modeling
technique and they are separated by a LineWIP object. An implementation is shown in Figure 2 below.
Controlling the WIP is handled by a pallet system where the total number of pallets is set by the maximum
WIP parameter mentioned earlier. At Linelnput the WIP pallets are assembled with incoming products
which are passing through the system. When exiting LineOutput, the pallets are passed to WIPControl and
the products are sent to the next step in the process, labelled Out.

WIPControl PalletSource

Pallets

Pallets

Figure 2: Schematic description of the aggregation technique.

Scheduling principles included in the model consists of a safety stock and order point system from the
FGI A-D into AA. This constitutes a pull flow where orders are only started in ML if there is a need from
AA. From AA and forward, the products will be assembled using a push system and be routed, depending
on the type of product, to the correct FA. Dispatching from FAFGI to the customer follows a fixed schedule
of departures and is setup to deliver 13 200 products each week running on weekdays only. Order data is
extracted from the real-world planning system.

The model is constructed using Siemens Tecnomatix Plant Simulation version 14.0.2. The simulation
horizon is 28 days, where 7 days is warm-up time for the model, this will mean that the total target number
of products delivered is 39 600. To get statistically sound results, four replications are performed for every
evaluation.

3.2 Optimization Settings

In order to reduce the total storage size and reduce lead time, lowering the safety level o of each variant i,
for each storage S € {A,B,C,D,AA,FA}, is crucial when considering the type of order system used in the
model. The machining storages and components are represented by m = {A,B,C,D} where m C S. The
minimum, maximum, and step size for these parameters is formulated in (1).

ie{l,.... 4} Ar #B,
Oyi = § .
ie{l,...,7'Ar=B

Batch sizes f;, for component C and each variant i, signifies the third input to be changed in the
optimization. Due to the time it takes to setup between different variants of component C, the production
lines need to be run with a larger batch size. This in turns affects the total storage size because of the need
to increase the safety stock levels to be able to replenish an article before depletion. B¢; also controls the
minimum amount to start in the line, multiple batches can be queued to reach the production targets.

where «,; € {1,...,20}, r € m and Aa,; = 1. €))

Bei € {32,...,2048} where i € {1,...,4} and AB¢; = 32. (2)
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The last input parameter is an experiment variable ¥;, where i € {1,...,4}, which controls how the
shifts and paces are divided among the production lines. By improving the synchronization in the plant,
running assembly on additional time with less jobs per hour (JPH), less strain is put on the machining
areas leading to a possible reduction in safety levels (Hopp and Spearman 2011). The parameter operates
on 4 levels, described in Table 1. Each column, 1-4, for ¥; represents the number of shifts used and which
capacity used for that shift. Shift 1 represents the day shift, Shift 2 represents the evening shift and Shift 3
represents the night shift, each comprising 40 hours per week. On the weekend, Shift 4 operates 24 hours,
consisting of day time, and Shift 5 comprises the night time but is omitted here. AAO1 moves from using
three shifts with an unbalanced pace in y; to a balanced pace over four shifts in 4. On the other hand,
FAO1 is not utilized in 9» and 74, indicated by the lack of paces. Only changes in AA and FA are accounted
for here, machining lines are already performing at maximum capacity, over a number of shifts.

Table 1: Target JPH for each shift per line. Every active shift will have a JPH associated to it.

! Y2 Y3 Ya

Shift 1 2 3 4711 2 3 4 1 2 3 4 1 2 3 4
AAO1 | 37 37 15 30 30 30 30 30 30 27 27 27 27
AAO02 | 41 41 34 33 33 33 33|33 33 33 33|33 33 33 33
FAO1 | 20 20 10 10 10

FAO02 | 17 17 15 30 30 30 20 20 20 27 27 27 27
FAO3 | 21 21 21 21 21 21 2121 21 21 21|21 21 21 21
FAO4 | 20 20 13 12 12 12 12 (12 12 12 12 (12 12 12 12

For outputs, average lead time in hours per product LTs, average storage level for each storage WIPs,
number of products delivered NumOut, and total number of hours waiting for components for each AA
WCyn. Where k € {1,2} represents AAO1 and AAO2 respectively. The first objective (3) represents the
maximum average lead time for the machining components, with the average lead time for AA and FA
added. The second objective (4) minimizes the total amount of storage in the model. Lead times and
storage sizes are highly influenced by changes to a,;, Bci, and paces in ¥. The third and fourth objective,
(5) and (6) respectively, operate on one output each. The last objective (6) ensures that the solution delivers
the right amount of products to the customer.

minLT _Plant = mEaX{LTr} + LTyp + LTga 3)
rem
minLeanBuf fer = min{ Z WIP;} 4)
jes
2
minWaitingParts = min{ Z Z WCi, } 5)
k=1rem
maxOut = max{NumOut }. (6)

The optimization will be run using NSGA-III, due to the number of objectives used. Table 2 lists the
settings for the algorithm and calculating the number of reference points follows the approach from the
original paper (Deb and Jain 2014; Das and Dennis 1998).
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Table 2: Settings for the NSGA-III algorithm used in the optimization.

Parameter name

Setting

Population size

Reference points

Mutation type

Mutation distribution index
Mutation probability
Crossover type

Crossover distribution index
Crossover probability

100

84
Polynomial
5

0.041667
SBX

20

0.9

4 RESULTS

The optimization was set to run until 40 000 evaluations had been performed and all the results are shown
in Figure 3 using a parallel coordinates chart. The first settings are the objectives followed by the inputs
¥; to Bcs. Only few insights can be gained from presenting this data unformatted, mainly regarding the
maximum and minimum values of the input and objective values. Interesting to note is that due to the
setup of the model, every result not reaching 39 600 for maxOut could be considered infeasible.

minWaitingParts

2 minLeanBuffer
= minlT_Plant
2o B4

Figure 3: The entire solution set from the optimization in a parallel coordinates chart.

For Figure 4, the results are filtered on maxOut reaching 39 600. A coloring scheme is also applied to
highlight the different settings for ¥;, where 7, and 73 are considered to represent the same effect. Contrasting
71 and Y4, representing the maximum unlevelled flow and the maximum levelled flow respectively, y; has
better performance for minLeanBuffer and 7, performs better in minLT_Plant. Increasing the number of
shifts will reduce the lead time by itself, on the condition that a customer exists, because lead time in the
model is based on calendar time.
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minLeanBuffer
minWaitingParts

= minlT_Plant

"

18370

4

Figure 4: Filtered on delivery target and colored by 7.

To further analyze the results, a Non-Dominated Sorting (NDS) filter was applied where only the
bestsolutions on the Pareto front are selected. This is shown in Figure 5, where the filtering from Figure 4 is
kept active. This nearly removes all solutions where 7, is used, and should minWaitingParts be considered,
7 can be removed entirely. The high settings for aps and a3 are explained since they are low volume
variants and increasing the safety level for either results in a minor increase in storage levels, thereby not
affecting the objectives sufficiently for them to be minimized.

Finally, by limiting the values for the largest batch sizes, Bc1 and B¢, the objectives minLeanBuffer
and minWaitingParts are automatically reduced. The lowest results for minWaitingParts are not possible to
reach with this configuration, because setup takes up a larger portion of the production time. Considering
only these attributes, the setup time and batch size can be considered to be the bottleneck for further
reducing storage size and lead time. In Figure 6, the results are presented, where only values with 4 remain
in the solution space. Following the setting for each parameter, a recipe is formed for the optimized setup
of the industrial system.

Comparing the starting conditions of the industrial system with the results achieved for the manual
experiments in Lidberg et al. (2018) and to the optimized settings presented in this article, the improvements
are presented in Table 3. Optimization enables the simultaneous improvement of several result parameters
without manual supervision. This leads to better decision support provided to the decision maker, where
she can take decisions considering a range of parameters.

Table 3: Comparison between base values, manual experiments and optimization for ML.

Parameter name Base Experiments Optimization
WIP 10 920 7914 6786
LT 49 h 49 h 18 h
Batch sizes 3100 3100 1248
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Figure 5: Only selecting solutions on the Pareto front.
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Figure 6: Setting limits on batch sizes.
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S CONCLUSIONS AND FUTURE WORK

This paper shows the potential in utilizing multi-objective optimization together with aggregated DES
modeling to enable fast insights into the operation and improvements on an industrial system on the factory
level. Compared to previous studies, SMO enables faster delivery of results, with better accuracy, and
allows additional input and output parameters to be included. The results from the optimization are also
of more value to the decision maker than regular experiments, leading to reductions in the storage levels
by 31%, lead time by 67%, and total batch sizes by more than 50%.

Additional work would connect knowledge extraction and data-mining to the optimization to make sure
that the conclusions drawn from the optimization data is also of high quality. To improve the industrial
system even further, identifying the bottleneck system would be of great interest. Finding the bottleneck
and giving suggestions on how to improve it would aid the operations of the industrial system. For the
dispatching schedule, testing the advantages of dispatching on weekends is also interesting. In another
direction, testing the aggregation technique on an even higher level, i.e. supply chains, would also be of
interest.
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