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ABSTRACT

Parallelizing Bayesian Optimization has recently attracted a lot of attention. The challenge is usually to
estimate the effect multiple new samples will have on the posterior distribution of the objective function,
and the combinatorial explosion of the possible sample locations. In this paper, we show that at least
for multi-task Bayesian Optimization, parallelization is straightforward because the benefit of samples is
independent as long as they are sufficiently far apart in the task space. We propose a simple penalization
approach proportional to correlation based on the kernel and demonstrate that for the problem settings we
considered, the efficacy of our parallel multi-task Bayesian Optimization algorithm is close to the sequential
version, while being able to exploit parallel computation to speed up optimization. Depending on the setup
considered, we observe efficiencies of parallelization between 69% and 100%.

1 INTRODUCTION

Bayesian Optimization (BO) is a powerful and popular simulation optimization tool. Based on a few
evaluated solutions, it builds a surrogate model of the response surface (usually a Gaussian Process, GP,
regression model). Then an acquisition function (or infill criterion) uses the regression model to quantify
the benefit of a new objective function sample (simulation run) for a given input, balancing exploration
and exploitation. In each iteration, the process determines the next input for sampling with the maximum
expected benefit and updates the regression model based on the observation. The process is usually
sequential, with one new sample allocated per iteration. However, there is increased interest in parallelizing
BO, given that parallel processors are now standard in most computers, cloud computing gives everyone
easy access to massive parallelization, and because physical experiments can often be parallelized at no
additional cost. The challenges of parallelization are usually to estimate the posterior distribution from
multiple new samples, as well as the combinatorial explosion of the possible sample locations.

In this paper, we consider multi-task optimization, i.e., the case where multiple simulation optimization
problems have to be solved, and correlations among these problems may be exploited to speed up convergence.
An example could be when we would like to optimize the parameters of a traffic light controller, for different
(but related) traffic scenarios. We show that multi-task BO is much easier to parallelize, as the expected
value of information of sampling the performance of a solution on two different tasks may be considered
independent if the tasks are sufficiently distant to be considered uncorrelated. We propose a simple
penalization mechanism based on the GP kernel that defines correlation between tasks. Basically, we
penalize the expected improvement of the i-th sample to be taken in a batch proportionally to the correlation
between it and all previously chosen samples in the task space. We show that this simple mechanism allows
parallelization with an excellent speed-up within the settings tested.
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The paper is structured as follows. First, we review the literature on parallel BO in Section 2. In
Section 3 we define the considered multi-task problem, followed by the suggested parallelization strategy
in Section 4. Empirical results are reported in Section 5. The paper concludes with a summary and some
ideas for future work.

2 RELATED WORK

The development of parallel sampling techniques for Bayesian Optimization with Gaussian Process models
has recently attracted significant attention. In a key earlier work, Ginsbourger et al. (2007) present a
generalization of the popular Efficient Global Optimization (EGO) method (Jones et al. 1998) to the
parallel setting, proposing the q−EI acquisition function, extending the Expected Improvement acquisition
function to batches of q samples. Unfortunately, optimizing q−EI is difficult as computing both the function
and its gradient is highly expensive. To avoid this issue, Ginsbourger et al. (2010) propose two simple
heuristic methods, the Kriging Believer and the Constant Liar. The former builds batches by assuming
that at each step, the previous sample added to the batch will return the expected value of the GP model at
that point, whereas the latter assumes that a constant L is returned from each sample. The value of L can
be selected to generate the desired level of exploration in sample selection. In later work, Chevalier and
Ginsbourger (2013) suggest a closed-form approximation for q−EI, which performs well for small batch
sizes (q < 10).

Snoek et al. (2012) also propose a method for approximating q−EI, sequentially constructing batches
by attempting to maximize the expected acquisition function over all possible sample result of points
currently added to the batch, which they estimate through Monte Carlo sampling. The authors demonstrate
that parallel sampling, with batch sizes of 3 and 5, can improve on expert-level human hyper-parameter
optimization for several well-known machine learning test problems.

González et al. (2016) also consider batch sample allocation for optimization with Gaussian Process
models. They propose a heuristic method that approximates the effects of interactions between allocated
samples within a batch by penalizing the acquisition function around points selected for the batch to model
the local repulsion effect. In their method, samples are sequentially allocated to the batch by choosing points
to maximize the acquisition function penalized at all previously selected points. They discuss the design
of suitable penalization functions under the assumption of Lipschitz continuity of the acquisition function,
calculated using the maximum observed value of the target function, and an estimate of its maximum
gradient.

Rontsis et al. (2017) propose an alternative method for efficiently approximating q−EI. They show that
the best-case expectation over all probability distributions consistent with the model forms a lower bound
for q−EI, which can be calculated exactly as the solution to a convex optimization problem. They compare
this method empirically to other q−EI approximation methods, including the Constant Liar approach from
Ginsbourger et al. (2010) and Local Penalisation with EI from González et al. (2016), with their lower
bound method achieving best performance on a 1-dimensional test example for batch sizes of 4 and 5.

Several of the above works share a common principle to batch selection; they construct the batch
sequentially, iteratively optimizing over the acquisition function. While this may help to ensure only
highly relevant points are added, the requirement of repeated optimization can limit the scalability of the
parallelization. In contrast, Hernández-Lobato et al. (2017) propose a fully parallel approach for large
scale batch sampling with Gaussian Process models, whereby each point in the batch is independently
chosen using Thompson sampling. In this approach, each parallel thread collects a single Monte Carlo
sample from the posterior distribution of the model parameters conditioned on all previously observed data,
before choosing to sample the point that maximizes the expected function value given previous data and
conditioned on the obtained parameter value. They compare performance of this method against the Monte
Carlo based q−EI method of Snoek et al. (2012), demonstrating improved performance on large-scale
problems.
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Wang et al. (2016) present an alternative method for avoiding the computational expense of optimizing
the q−EI acquisition function exactly. They propose using infinitesimal perturbation analysis to construct
an unbiased stochastic gradient estimator for ∇q−EI, which can be used in stochastic gradient ascent
optimization. They show in numerical experiments that, for q > 4, using this approximation can lead to
faster convergence than calculating ∇q−EI through closed-form integration.

Wu and Frazier (2016) adapt the well-known Knowledge Gradient (KG) (Frazier et al. 2009) method
for the parallel setting, proposing the q-KG acquisition function for choosing Bayes-optimal batches of q
samples under the assumption that these will be the final samples allocated. q-KG is similar to parallel EI,
and is equivalent when function evaluations are noise free and the final solution is restricted to be from
the previously sampled points. As such, computing q-KG and its derivative analytically is very expensive.
The paper presents an alternative method for approximating q-KG by discretizing the search space.

To the best of our knowledge, no one has yet looked into the parallelization of multi-task Bayesian
Optimization.

3 CONTINUOUS MULTI-TASK OPTIMIZATION

In this paper, we consider the multi-task problem also considered by Ginsbourger et al. (2014) and Pearce
and Branke (2018). We assume that there exists a (discrete or continuous) set of tasks described by x ∈ X ,
and the tasks are distributed according to a known density P[x]. There are tunable parameters a ∈ A.
Running a simulation with parameters a on a task with features x yields a performance measurement
Yx,a = θ(x,a)+ε where θ : X×A→R is a deterministic latent function from (task, parameter) to expected
performance and ε is independent and identically distributed observation noise ε ∼ N(0,σ2

ε ). Our aim is to
find a mapping S : X→ A from a given task to the optimal parameter setting for this task that approximates
the true optimal mapping S∗(x) = argmax

a
θ(x,a) with incomplete information. The quality of our derived

mapping S(x) at the end of sampling is the corresponding true expected performance over all tasks:∫
x∈X

θ(x,S(x))P[x]dx. (1)

We assume we have a fixed budget of N samples (simulating a parameter setting on a task), and that we
can sample iteratively, i.e., in every iteration, we can select the task x and the parameter setting a from
which to sample performance Yx,a based on the information collected so far.

Given this formulation, if x is constant, the problem reduces to a single global optimization over A.
However, because there is a range of x, one must find the global optimal maxa θ(x,a) for each x.

Our formulation also accounts for task distribution because in practice, under a constrained budget,
finding the optimal parameters for tasks with unusual outlying features (low P[x]) is less useful than finding
the optimal parameters for common tasks (high P[x]). Note that if the set of tasks is finite, the integral in
Equation 1 is replaced with a summation and P[x] is a probability mass function.

The above problem is similar to other multi-task BO settings, e.g., Hu and Ludkovski (2017) or Pearce
and Branke (2017b) where the space of alternatives/parameters is discrete, or Morales-Enciso and Branke
(2015) and Poloczek et al. (2016) who assume that tasks arrive sequentially and exploit the information
from previous tasks to solve the current task as efficiently as possible. Rather than trying to find the best
solution for each task, Swersky et al. (2013), Pearce and Branke (2017a) and Toscano-Palmerin and Frazier
(2018) look at the problem of finding one solution that works well on average over all tasks. Further
multi-task BO algorithms include Bonilla et al. (2007), Poloczek et al. (2017).

In this paper, we use the LEVI acquisition function, which is the simplest of the methods proposed
by Pearce and Branke (2018), and very similar also to the method proposed by Ginsbourger et al. (2014).
Following Pearce and Branke (2018), we use the notation x̃ = (x,a) ∈ X ×A and write functions of both
input variables as µn(x,a) = µn(x̃). We define the set of sampled task feature values {x1, ...,xn} = Xn,
parameters {a1, ...,an}=An, the set of input pairs {(x1,a1), ...,(xn,an)}= X̃n and column vector of responses
(y1, ...,yn) =Y n. We define the sequence of filtrations, F n, as sigma algebras generated by the data collected
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up to time n, F n = σ{(x1,a1,y1), . . . ,(xn,an,yn)}. Given prior mean and covariance functions µ0(x,a),
k0((x,a),(x′,a′)), one may use the Matrix Inversion Lemma (Hager 1989) to condition the prior functions
yielding the posterior mean and covariance functions as follows (Rasmussen and Williams 2004),

E [θ(x,a)|F n] = µ
n(x̃) = µ

0(x̃)+ k0(x̃, X̃n)(Kn +σ
2
ε I)−1(Y n−µ

0(X̃n)) (2)

Cov[θ(x,a),θ(x′,a′)|F n] = kn(x̃, x̃′) = k0(x̃, x̃′)− k0(x̃, X̃n)(Kn +σ
2
ε I)−1k0(X̃n, x̃′) (3)

where Kn
i j = k0((xi,ai),(x j,a j)) is the n×n matrix composed of the prior covariance function evaluated for

all the sampled input points X̃n. We have written k0(x̃, X̃n) to denote the 1×n matrix of prior covariance
between x̃ and all points in X̃n and likewise k0(X̃n, x̃′) is the n×1 matrix.

If the mapping is made by using the best predicted parameter S(x) = argmaxaµn(x,a), the predicted
performance of the mapping summed over all tasks, after a sample x̃n+1 has been simulated, can be calculated
as

E
[
Pn+1|F n, x̃n+1] =

∫
x∈X

E
[
max

a
{µn(x,a)+ σ̃

n((x,a); x̃n+1)Zn+1}
]
P[x]dx, (4)

where Zn+1 is the stochastic z-score of the new response value on the prior predictive distribution and is
given by

Zn+1 =
yn+1−µn(x̃n+1)√
kn(x̃n+1, x̃n+1)+σ2

ε

,

which is a standard normal random variable Zn+1 ∼ N(0,1) when conditioned on F n.
The incremental gain, or value of information, is the difference in predicted performance between

consecutive samples and can be expressed as

I (x̃) = E
[
Pn+1−Pn|F n, x̃n+1 = x̃

]
=

∫
x′∈X

E
[

max
a′
{µn(x′,a′)+ σ̃

n((x′,a′); x̃)Zn+1}−max
a′

µ
n(x′,a′)

]
P[x′]dx′. (5)

The Local Expected Value of Information acquisition function (LEVI) (Pearce and Branke 2018)
sequentially allocates samples to maximize the improvement at the sampled task only. For a given task x,
the contribution to the improvement in total performance of that task alone is given by the integrand of
Equation 5

E
[

max
a′
{µn(x,a′)+ σ̃

n((x,a′);(x,a))Zn+1}−max
a′

µ
n(x,a′)

]
P[x]. (6)

Since the expectation over Z cannot be solved for continuous a ∈ A, we propose to replace A with a finite
set AD of nA points which are randomly distributed according to a Latin Hypercube over the space A (scaled
by P[x]). The random elements of the set AD are held constant for each time step and are re-generated
between time steps such that the mapping does not overfit to a single discretization. Replacing A with AD,
Equation 6 can then be approximated by

E
[
max{µn(x,AD)+ σ̃

n((x,AD); x̃) Zn+1}−max µ
n(x,AD)

]
P[x], (7)

where µn(x,AD)= (µn(x,an+1),µn(x,a1), . . .)∈RnA is the vector of means and similarly for σ̃n((x,AD);(x,an+1)).
Gathering terms, Equation 7 is thus of the form

LEV I(x,a) = E [max{µ1 +σ1Z, . . . ,µnA +σnAZ}]P[x], (8)

which is the normal expectation of the maximum of linear functions. This expectation can be cheaply
evaluated using Algorithm 1 in Knowledge Gradient for Correlated Normal Beliefs (Frazier et al. 2009).

1996



Groves, Pearce, and Branke

4 PARALLELIZING CONTINUOUS MULTI-TASK OPTIMIZATION

Ideally when parallelizing BO, one would like to look several samples ahead and allocate k samples to
maximize the expected improvement E

[
Pn+k−Pn

]
. Unfortunately this is difficult, because the expected

value of information of several samples is not just the sum of the values of information of each individual
sample due to the correlation between the values of neighboring samples, and also because we are only
interested in the maximum for a particular task. LEVI (Equation 6) approximates Equation 5 by only
considering the improvement at the sampled location, but even under this approximation, the value of
information of multiple samples is not just the sum of LEVI values at each sampled location, because
we are only interested in the maximum for a task. In the multi-task setting, however, the goal is to
maximize performance for all tasks. Thus, if the samples are sufficiently far apart in task space, the value of
information from multiple samples can indeed be approximated just as the sum of the values of information
of the individual samples, in our case as the sum of the different LEVI values.

Based on this observation, we propose a simple penalty approach similar to González et al. (2016).
Let x̃t,k denote the k-th sample to be chosen in the t-th batch (iteration). Then, the first sample is placed at
the (numerically approximated) global maximum of the LEVI acquisition function, and thus identical to
the case of taking only a single sample per iteration. For batch sizes larger than one, the LEVI acquisition
function is modified by a penalization scheme in the neighborhood of tasks that have already been sampled.

As penalization, we propose the following function based on the kernel in task space:

φ((x,a),(x′,a′)) = 1− k0(a,a′). (9)

The acquisition function for the k-th sample in the t-th batch is then

LEV Ik(x,a) = LEV I(x,a)
k−1

∏
j=1

φ(x̃, x̃t, j). (10)

This strategy has the additional advantage that it doesn’t require to update the GP after each element
in the batch of samples is determined, an operation which has a computational complexity of O(n3).

5 EMPIRICAL RESULTS

In this section, we evaluate the performance of our parallelization strategy on some artificial benchmark
problems.

We generate test functions from a Gaussian Process prior where the task space X as well as the action
space A is [0,100]. Unless specified otherwise, the length scale in each dimension is 10, and the process
variance is σ2 = 102. We initialize each sampling procedure with 20 samples in a latin hypercube. In all
experiments, we use a uniform task distribution and all function evaluations have a noise added, ε ∼N(0,1).
To remove the influence of hyperparameter tuning we assume length scales are known.

To measure the quality of a mapping learnt by each method, for each experiment, a test set of 250
tasks values, Xtest , are generated from P[x], and the difference in performance between the true optimal a
and the performance of the a value determined by the mapping (referred to as the Opportunity Cost of the
mapping) is averaged over all xi ∈ Xtest . This is calculated using:

Opportunity Cost =
1

250 ∑
xi∈Xtest

max
a

θ(xi,a)−θ(xi,SN(xi)). (11)

All results are averaged over 100 runs. All experiments were performed on a compute node with two
Intel Xeon E5-2630 v3 8-core processors and 64GB RAM.

Figure 1 shows the reduction in opportunity cost per iteration gained by batch sample allocation for
different batch sizes. At each iteration, Parallel MaxiLevi (PML) selects and performs a batch of (either 4,8
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PML (8x)
PML (16x)
SML

Figure 1: The performance gain from parallelization for the PML algorithm for batch sizes 4, 8 and 16.
At each iteration, PML selects and samples a batch, compared to a single sample for SML.

or 16) samples, compared to a single sample for fully sequential sampling (SML). Perhaps unsurprisingly,
the performance gain increases for larger batch sizes, although the gain is sub-linear. The speed-up factor
due to parallelization for these PML batches is summarized in Table 1 .

Figure 2a shows the efficacy of different batch sizes compared to the same total sampling budget allocated
sequentially. As expected, the efficacy suffers slightly with increasing batch size, but the deterioration is
very moderate.

Figure 2b shows a similar result, but using a length scale of 30 in each dimension for the underlying
Gaussian Process. A larger length scale makes the overall learning problem simpler, because the underlying
functions become smoother and a sample carries information about a larger neighborhood, which is why
all sampling schemes reduce opportunity cost much more quickly than for the case of smaller length scale.
We expected that the efficiency of parallelization would suffer due to the larger length scale, because it
would be more difficult to identify several samples that are interesting to evaluate but also sufficiently far
apart in the task space to be uncorrelated. As Table 2 shows, the effect was only noticeable for batch size

Table 1: Number of iterations and samples needed to achieve an opportunity cost of 0.1.

Batch Size Samples Iterations Speedup Efficiency
1 77 77 - -
4 80 20 3.85 0.96
8 90 11.3 6.81 0.85

16 95 6 12.83 0.80
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100
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(a) Length Scale 10

10 20 30 40 50 60
Samples Taken

10 3

10 2

10 1

100

OC

PML (4x)
PML (8X)
PML (16X)
SML

(b) Length Scale 30

Figure 2: The efficiency of various PML batch sizes compared to sequentially allocating the same total
number of samples, for different underlying GP length scales.
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Table 2: Number of iterations and samples needed to achieve an opportunity cost of 0.01 for length scale
of 30.

Batch Size Samples Iterations Speedup Efficiency
1 28 28 - -
4 28 7 3.95 0.99
8 32 4 8 1

16 40 2.5 11.1 0.69

20 30 40 50 60 70 80 90
Samples Taken

10 1

100

OC

PML (4x) Task pen.
PML (4x) Task+Tool pen.
Sequential MaxLevi (4x)

Figure 3: The performance of Parallel MaxLevi (batch size 4) for two different penalization functions.

of 16, where the efficiency dropped from 80% to 69%, but the results still confirm that the approach loses
efficiency for large batch sizes and length scales.

Finally, Figure 3 compares our proposed approach, which only penalizes based on the task dimension,
to an approach that penalizes in both dimensions, i.e., tasks and parameter. As can be seen, results are
better if the penalty is only applied in the task dimension, as it is perfectly fine to sample similar parameter
settings for different tasks, because their expected improvements are still independent.

6 CONCLUSION

In this paper, we have considered parallelization of multi-task Bayesian Optimization. Because for multi-
task optimization the total expected value of information for samples sufficiently apart in task space to
be uncorrelated is just the sum of the individual expected values of information, we have proposed a
simple penalization scheme that penalizes the acquisition function proportional to the correlation with
already selected samples in the same batch. Initial empirical results are very promising, indicating that
this simple scheme may achieve an efficiency of approximately 69-80% for a case of 16 processors, and
higher efficiencies for smaller numbers of processors or smaller length scales.

Clearly, this approach should be tested more widely, on a wider range of test problems with different
length scales, in combination with other multi-task Bayesian Optimization techniques (including multi-
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objective optimization), and when hyperparameters have to be learned. Also, we plan to compare the
mechanism with other parallelization mechanisms from the literature.
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