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ABSTRACT

We present a study on simulation-based optimization for the Viennese subway system. The underlying
discrete event simulation model has several stochastic elements like time-dependent demand and turning
maneuver times, direction-dependent vehicle travel and passenger travel as well as transfer times. Passenger
creation is a Poisson process which uses hourly origin-destination-matrices based on mobile phone data.
The number of waiting passengers on platforms and within vehicles are subject to capacity restrictions.
As a microscopic element, passenger distribution along platforms and within vehicles is considered. There
are trade-offs between service quality (e.g. waiting time) and costs (e.g. fleet mileage). This bi-objective
optimization problem is transformed into a single-objective one by normalization and scalarization. The
goal is to find optimal time-dependent headways. Computational experience is gained from 48 test instances
which are based on real-world data. Several population-based evolutionary algorithms were applied. The
covariance matrix adaptation evolution strategy (CMA-ES) performed best.

1 INTRODUCTION

The Viennese subway network has 5 lines and consists of 104 stations at 93 locations. There are 10
locations where 2, or – in one single case – 3 lines intersect. Table 1 contains some facts and figures on
the subway system. For a schematic map of the whole subway network see Figure 2a.

During the course of a day, there are 1.23 million passenger movements. Figure 1 depicts the passenger
volume over time for the currently employed solution. There are two peaks: one in the morning between
7:00 and 9:00 and a second one between 16:00 and 19:00 o’clock. The U4 has the highest passenger
volume, followed by the U1, leaving the U3, followed by U6 and finally U2 as lines with lower loads.
Notice that most lines have a higher morning peak between 8:00 and 9:00 than between 7:00 and 8:00
o’clock. In case of the U6, there is no significant difference, but the U1 behaves contrary (i.e., its first peak

Table 1: Facts and figures on the Viennese subway system.

line line no. of line length
name color stations [km] [mi]

U1 red 19 14.54 9.04
U2 purple 20 16.86 10.48
U3 orange 21 13.40 8.33
U4 green 20 16.36 10.17
U6 brown 24 17.34 10.78

TOTAL 104 78.50 48.80
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Figure 1: Passenger volume over time (simulation of currently employed headways).

behaves vice versa during aforementioned time periods). The passenger volume reaches about 22,800 in
the morning, and 22,300 active passengers in the afternoon peak. About 31% perform 1 or 2 transfers.

Definition 1 The term headway refers to the time difference between two consecutive vehicles (e.g. 3
minutes). Its inverse, vehicles per time unit is referred to as frequency. The problem of headway optimization
is also referred to as transit network frequencies setting problem (TNFSP).

Vienna’s population (like many cities all over the world) is growing (Hanika 2015; United Nations 2014).
Urbanization and other contributing factors such as efforts to reduce CO2 emissions, pedestrianization,
improving the resident’s quality of life, etc. increase demand and call for frequent re-evaluations whether
provisions (i.e., tighter headways) are – now or in future – indispensable. Economic factors – namely,
capital and operational expenditure (including infrastructure preservation and expansion) – are contrary to
the goal of passenger satisfaction (i.e. service level). This project is dedicated to solve these conflicting
goals by determining the optimal hourly headways for each line of the Viennese subway network. The
subway network is only a part of the Viennese public transportation system, which includes 28 tram, 108
bus and 10 suburban railway lines. Due to the lack of data, different providers, the tram and bus lines being
no competition in terms of capacity, no or limited synchronization between different types of transportation
and the to expect issues when attempting to simulate not up to 5 but 151 lines, these are not considered.

We employ a simulation-based optimization approach, a concept that has already proven successful
in similar application contexts (Vázquez-Abad and Zubieta 2005; Osorio and Bierlaire 2013; Osorio and
Chong 2015; Chong and Osorio 2018; Ruano et al. 2017). Also, evolutionary algorithms have already
been applied to this kind of problem in a similar setting (Zhao and Zeng 2006; Guihaire and Hao 2008;
Yu et al. 2011). For a current review on the method, the reader is referred to Juan et al. (2015).

This paper is structured as follows: Section 2 explains the problem of headway optimization and
introduces the objective function (1) as well as constraints (2). In Section 3 we describe the solution
method and its building blocks, namely the discrete event simulation model and (heuristic) optimization
algorithms. Next, the setup of the computational optimization experiment is introduced in Section 4.
Section 5 discusses results, before Section 6 concludes the paper and presents future research.

2 PROBLEM STATEMENT

As mentioned in Section 1, there are two conflicting goals: cost minimization (measured in productive
fleet mileage) and service level maximization (measured in mean waiting time per passenger). Equation 1
contains the objective function. We employ the traditional approach of normalization and weighted sum-
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based scalarization, thereby transforming a bi-objective into a single-objective optimization problem.

minZ =

(
m−mmin∗

mmax−mmin∗
·ϕ

)
+

(
w−wopt

wmax∗−wopt
· (1−ϕ)

)
. (1)

Notation:

m . . . productive fleet mileage of the current solution
mmin∗ . . . lowest observed productive fleet mileage (presumably near optimum)
mmax . . . highest productive fleet mileage at lowest possible headway

w . . . mean waiting time per passenger of the current solution
wopt . . . lowest possible mean waiting time per passenger

wmax∗ . . . highest observed mean waiting time per passenger (presumably near maximum)
ϕ . . . weight (i.e. ratio between fleet mileage and mean waiting time)
us . . . platform utilization of station s
S . . . set of stations

Note that, the first part concerning fleet mileage is deterministic (i.e., not subject to randomness).
The second part of the sum concerning mean waiting time per passenger is stochastic. This is due to
randomness from passenger creation (Poisson process) and other stochastic influences (e.g., vehicle travel
times between stations, passenger transfer times, etc. – see Section 3.1). Therefore, the weight (ϕ) has an
influence on the variance of the objective value Z. Since we employ not a fixed, but a varying number of
replications within the simulation model (Section 3.1), this has an influence on the results.

The sole constraint type is the stations’ respective platform capacity (2). In case a platform’s capacity
(more than 2 people per square meter) is exceeded, the solution is infeasible. The capacity of vehicles is
limited as well, but this does not directly cause infeasibility: waiting passengers who are unable to board
an overcrowded vehicle, continue waiting, thereby increasing the mean waiting time per passenger.

us ≤ 1 ∀s ∈ S. (2)

Table 2 contains the minimum and maximum values for productive fleet mileage and mean waiting
time per passenger used in the objective function (1). The maximum fleet mileage (mmax) and optimal
mean waiting time (wopt) were easy to obtain: since the technically lowest possible headway is 1.5 minutes,
we used this value for each line for each hour of operation and network variant (see Section 4), thereby
deriving the aforementioned extreme values. Since up to 31% of passengers (depending on the network
variant) perform 1 or 2 transfer operations, the optimum mean waiting time is significantly higher than the
expected average waiting time per waiting process (0.75 minutes). As for lowest fleet mileage (mmin∗) and
highest mean waiting time (wmax∗), we used one day long optimization runs with the covariance matrix
adaptation evolution strategy, CMA-ES (see Section 3.2) and set the weight (ϕ) to 1 (i.e., only optimizing
productive fleet mileage). This way we obtained the extreme values, which are presumably close to the
optimum fleet mileage and maximum mean waiting time.

Table 2: Extreme values (mmin∗ , mmax, wopt and wmax∗), passenger data and network length per variant.
no. of passenger volume transfering network length fleet mileage [km] waiting time [minutes]
lines l [million] [%] passengers [%] [km] [mi] mmin∗ mmax wopt wmax∗

5 1.23 100% 31% 78.5 48.8 13,769.67 128,738.36 1.0517 11.6664
4 1.04 85% 27% 61.6 38.3 11,612.07 101,094.52 1.0215 9.7596
3 0.68 55% 20% 48.2 30.0 8,025.90 79,115.24 0.9565 10.4336
2 0.45 37% 11% 30.9 19.2 4,188.11 50,679.28 0.8451 12.3837
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3 METHODOLOGY

A subway system can be considered as a queuing network with synchronization and non-exponentially
distributed service times. It is thereby too complex to merely apply analytic methods from queuing theory like
Jackson networks (Jackson 1963) and its extensions. This is why we employ simulation-based optimization
as introduced by Fu (2002). Its functional principle is as such: an optimizer (i.e., algorithm) – in our case
various evolutionary algorithms – generates candidate solutions. These solutions are then handed over to
a simulation model for evaluation. The result of this process (i.e., the respective solution’s quality and
feasibility status) is then sent back to the optimizer in order to generate new and hopefully better solutions.
The next Subsections deal with the two aforementioned building blocks of simulation-optimization: the
simulation model (Section. 3.1) and (heuristic) optimization algorithms (Section 3.2).

3.1 Simulation Model

The features of the discrete event simulation model are: 1) Time-dependent passenger creation (Poisson
process) based on hourly origin-destination-matrices: created by the MatchMobile project (IKK 2017) using
anonymous mobile phone and counting data. 2) Direction-dependent passenger transfer times (triangular
distribution): several station have separate platforms (i.e., one per direction), thereby the transfer time is
potentially direction-dependent. 3) Stochastic passenger times (travel time = waiting + invehicle + transfer
time). 4) Direction-dependent vehicle travel times (log-normal distribution). 5) Time-dependent vehicle
turning maneuver times (triangular distribution). 6) Passenger distribution along platforms and within
vehicles: each platform and vehicle is divided into 3 sections (about 40 meters (44 yd) or 2 wagons per
section). Provided that the station is not overcrowded, a new or transfer passenger is assigned to a platform’s
section and potentially boards the vehicle’s corresponding section. In case the platform section in question
has no free capacity, the passenger moves on to the neighboring section. In case the overcrowded section
has two neighbors (i.e., the second or middle section is affected), the chance that the passenger moves to
the front or end section is 50%. If a vehicle’s section is overcrowded, the passenger is force to continue
waiting on the platform. The distribution is based on vehicles’ doors infrared counting data.

A far more detailed description, including distribution fitting and a sensitivity analysis of this discrete
event simulation model can be found in Schmaranzer et al. (2016). However, it does not contain the
aforementioned passenger distribution along platforms and uses older origin-destination-matrices (2012).

Since, as mentioned in Section 2, there are several stochastic elements, replications (i.e., simulation
re-runs) are required to account for statistical significance. We employ a varying number of replications
with a minimum of 3 and a maximum of 50 replications. The sequential evaluation process terminates
once a 99.9% confidence interval with a relative error of 1% has been constructed. Since the weight (ϕ),
used in the objective function (1), has an influence on the standard deviation of the objective value Z, the
average number of replications varies, i.e., there is a negative correlation with ϕ .

Due to the massive number of samples (i.e., 1.23 million passenger movements), the standard deviation
in mean waiting time per passenger is low. This allowed for the introduction of a “global denominator”.
It reduces the number of passengers as well as the capacities (platforms and vehicles) by a factor of 10.
This step of course increased standard deviation, but reduced the simulation run time significantly by a
factor of about 6 (0.58 instead of 3.52 seconds per run on an Intel i7-4770 with up to 3.9 GHz).

The simulation model was developed in AnyLogic 7.0.3 (64 Bit, Linux) and uses some other additional
Java libraries (JGraphT 1.0.1, Apache POI 3.15 and Apache Math 3.6.1).

3.2 Heuristic Optimization Algorithms

For the purpose of optimization (i.e., finding better solutions), several population-based evolutionary
algorithms are investigated. Basically, all are inspired by nature, namely theory of evolution and natural
selection. A set of solutions, called population, develops over time and ideally becomes better and better.
Solutions, which do not perform well, are removed form the population and replaced by new ones. This
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is achieved by various evolutionary operators, for example, crossover (i.e., breeding new offspring based
on the best solutions) and mutation (i.e., adding a bit of randomness to the genetic gen pool). In our case,
solutions are vectors comprised of continuous values. The length of such a solution vector varies and
depends on the network variant (i.e., number of lines l) and encoding type (e) – more later in the upcoming
Section 4. The six employed evolutionary algorithms (i.e., optimizers) are:

• (standard) genetic algorithm (GA, see Holland 1975)
• offspring selection genetic algorithm (OS-GA, see Affenzeller et al. 2009)
• relevant alleles preserving genetic algorithm (RAP-GA, see Affenzeller et al. 2007)
• age-layered population structure genetic algorithm (ALPS-GA, see Hornby 2006)
• age-layered population structure with offspring selection genetic algorithm (ALPSOS-GA)
• covariance matrix adaptation evolution strategy (CMA-ES, see Hansen and Ostermeier 2001)

For details on these algorithms we refer to the above cited articles and books. Basically, the offspring
selection genetic algorithm (OS-GA) aims for new populations where a certain percentage of offspring
must be of better quality than their parents, thereby attempting to ensure progression. The RAP-GA is
based on the OS-GA and allows population size alterations within certain parameters. As long as new and,
with reference to the preceding population, better offspring can be created, the population size is allowed
to grow up to a maximum size. The ALPS-GA employs age layers which aim at reducing premature
convergence (i.e., homogeneous individuals). It continues to explore new parts of the quality landscape
by creating a new sub-population of randomly generated individuals in its bottom layer. By measuring an
individual’s age, segregation into different age layers is performed. The goal of this scheme is to allow
young individuals to develop without being dominated by older ones. When this scheme is combined with
the OS-GA algorithm, it is refereed to as ALPSOS-GA. Last, the CMA-ES generates offspring not directly
by crossover, but with a sophisticated sampling approach. New candidate solutions are sampled according
to a multivariate normal distribution. It increases the chance of creating better offspring by constantly
updating a covariance matrix which represents the pairwise dependencies between variables.

As for the 5 GA variants, the following 4 crossover operators have been used: an average crossover
which calculates an average value out of two parents’ values at the respective position of their gene material.
An arithmetic crossover which randomly performs an average calculation or simply takes the value from
the first parent. Both do not differentiate between the quality of the parents (i.e., solutions’ respective
quality). The blend alpha and blend alpha beta crossover (Takahashi and Kita 2001) are also used and do
differentiate between better and worse parents. In both cases an interval is calculated and used as boundary
for a new random value. In the case of the blend alpha crossover, the aforementioned interval can exceed
only the better parents value, the other crossover can also exceed the limit set by the worse parent. For
each new offspring to be created, one of these crossover operators is chosen at random.

All algorithms are aware of the currently employed headways and base the creation of the first population
on it. The initial solution is the very first individual in the initial population, the remaining ones are generated
by applying a normal distribution with the currently employed headways as mean and a sigma of 3.

The algorithms themselves have various parameters which need to be tuned in order to fit the problem.
For this purpose, we defined a set of reasonable values for each parameter and ran a full factorial experiment,
based on two hour long optimization runs on one of the smaller test instances. This tuning instance has 2
lines (l = 2) and an encoding of 21 parameters (e = 21) per line (see Section 4). Therefore, this instance
has 42 optimization parameters (l ·e) in total. This network and encoding instance combination was chosen
because it offered the best combination of low run time – which is due to the significantly reduced passenger
volume – and still a high number of headways to be set. Table 3 contains the tuned parameter values.
Notice that the resulting population size does not vary much (50 to 60). Populations sizes (up to 300) were
tested, but the lower ones lead to better results – most likely due to the long evaluation time.

As for the used software: we employ several libraries from HeuristicLab 3.3.14 (Wagner et al. 2014),
which is an easy-to-use metaheuristics framework developed in C#.
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Table 3: Tuned parameter values for all algorithms.
parameter name GA OS-GA RAP-GA ALPS-GA ALPSOS-GA CMA-ES

re-evaluate elites false false false false false -
population size 60 50 50 50 50 60

elites in % (min. 1 elite) 20% 10% 10% 10% 10% -
mutation probability 40% 20% 20% 20% 20% -

selected parents - 100 - - 100 -
success ratio - 0.8 - - 0.8 -

maximum selection pressure - 100 - - 100 -
offspring selection before mutation - false - - false -

fill population with parents - false - - false -
min. population size - - 5 - - -
max. population size - - 75 - - -

batch size - - 10 - - -
comparison factor - - 0.75 - 0.5 -

effort - - 750 - - -
age gap - - - 10 10 -

aging scheme - - - linear linear -
number of layers - - - 50 50 -
age inheritance - - - 0.25 0.75 -

mating pool range - - - 1 1 -
plus selection - - - false - -

initial iterations - - - - - 200
µ - - - - - 10

initial σ - - - - - 3
recombinator - - - - - log-weighted

4 COMPUTATIONAL EXPERIMENT SETUP

The aforementioned solution method (Section 3) is applied to 48 different test instances. These instances
were created to serve several purposes: a fast instance combination for tuning the algorithms’ respective
parameters (Section 3.2) was required. And foremost, in order to properly compare and prove the effectiveness
of a solution scheme, several different problem instances are a necessity. The instances were created by
using 4 different versions of the Viennese subway network, 4 different kinds of solution encoding, and
applying 3 different weights (ϕ = 0.25, 0.50, 0.75). The first two are described in detail in the upcoming
paragraphs. Weights have already been introduced as part of the objective function (1) in Section 2.

As for network versions: Figure 2a contains the whole Viennese subway network. marks Stephansplatz
(i.e. the city center) and its renowned landmark St. Stephen’s Cathedral. Since this network version contains
5 lines, it is referred to as l = 5. The other variants (l = 4, l = 3 and l = 2; Figure 2b, 2c and 2d, respectively)
are reduced versions of the full network. They were created by removing one line after another. The main
criteria for this being the respective line’s passenger volume (Figure 1) and area coverage. The latter being
the reason why in l = 3 (Figure 2c) the U3 was removed instead of the U6 line.

On to solution encoding: Since the origin-destination-matrices change hourly, changing headways on
an hourly basis too comes naturally. Given that the subway system is operating from 04:50 to 01:00
(Monday – Thursday), each line has 21 optimization parameters (e = 21). In order to fill and empty
the lines with vehicles, their release starts at 04:30 and ends at 01:00. In the hourly encoding, the first
optimization parameter of each line applies to the time period prior 05:00. Other encoding variants are 2
and 3 hour long headways, the result being 11 (e = 11) and 7 (e = 7) optimization parameters per line,
respectively. The smallest version re-uses headways by means of indices and works as such: each line
has merely 4 optimization parameters (e = 4). Those values are assigned to 21 specific time periods:
{0,0,1,2,2,3,1,1,3,3,3,3,2,2,2,3,1,1,0,0,0}. The 4th and 5th as well as the 13th, 14th & 15th, for example,
all have an index of 2. So, the solution’s line’s value at this particular index is used as headway for the
morning (07:00 to 09:00 o’clock) and afternoon peaks (16:00 to 19:00 o’clock).

The resulting number of optimization parameters lies between 8 and 105 (l · e). We refer to the 8
parameter variant as smallest and to the 105 parameter version as largest instance. A run time of 6 hours
proved to be sufficient for the large one. The run time of all other instances was set in relation to the
number of optimization parameters (15 minutes accuracy). The smallest one has a run time of 45 minutes.
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One evaluation of all 48 instances takes almost 40 hours of computation. Given, that 6 different
algorithms are used, and 5 independent optimization runs (not to be confused with replications) are
performed, a total of 1,200 hours is required. All experiments were conducted on the Vienna Scientific
Cluster 3 (VSC 2018), which is a high performance computing (HPC) cluster comprised of 2,020 nodes,
each one equipped with two Intel Xeon E5-2650v2 processors (2.6 GHz, 8 cores) and at least 64 GB RAM.

(a) Complete network (l = 5). (b) Network without U2 (l = 4).

(c) Network without U2 & U3 (l = 3). (d) Network with U1 & U4 (l = 2).
Figure 2: Network variants (based on the schematic plan of the Viennese Subway network as of 2014).

5 COMPUTATIONAL RESULTS

Tables 4, 5 and 6 contain the final results for all network as well as encoding variants and all 3 applied
weights (ϕ), respectively. 5 independent and reproducible optimization runs per variant and algorithm were
performed. The average objective value Z of the initial solution (i.e., the currently employed headways)
served as baseline and the reported values represent average percentage deviations from that baseline. The
best and second best results are highlighted bold and italic respectively. The worse are in gray.

At a weight of 0.25 (Table 4) – i.e., higher priority on mean waiting time – the CMA-ES performed
best in all cases. Its average best result over all instances with this weight is -9.14%. The GA performed
takes the second place in 13 out of 16 instances. RAP-GA performed worse of all in 7 out of 16.

At an equal weight of 0.50 (Table 5) again, the CMA-ES performs best. Its average best result over
all instances is -6.96% and thereby not as well as with preceding weight of 0.25. The GA performs well
again, but merely in 7 out of 16. Apart from the ALPSOS-GA, the other algorithms achieve 2nd place more
often than with a weight of 0.25. This time, the ALPSOS-GA is the worst performer in 8 out of 16 cases.
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Table 4: ϕ = 0.25 (higher priority on mean waiting time per passenger).
no. of no. of opt. run time diff. to initial solution’s Z
lines l parameters [hours] GA OS-GA RAP-GA ALPS-GA ALPSOS-GA CMA-ES

2
8 0.75 -4.06% -4.21% -3.99% -4.02% -4.10% -4.43%

14 1.50 -4.32% -4.24% -4.19% -4.19% -4.23% -4.59%
22 1.50 -3.64% -3.40% -3.47% -3.47% -3.24% -4.04%
42 3.00 -3.78% -3.18% -3.37% -2.81% -2.87% -4.54%

3
12 1.50 -9.17% -9.17% -8.97% -9.16% -8.91% -9.85%
21 1.50 -8.74% -8.23% -8.01% -8.53% -8.31% -10.27%
33 2.25 -7.87% -7.39% -6.85% -6.72% -6.81% -9.40%
63 3.75 -7.82% -6.10% -5.70% -4.53% -4.65% -9.49%

4
16 1.50 -10.76% -10.65% -10.01% -11.44% -11.60% -12.78%
28 1.50 -9.31% -8.59% -6.29% -9.19% -8.75% -12.58%
44 3.00 -9.67% -9.10% -8.07% -8.70% -7.51% -12.47%
84 5.25 -9.26% -7.28% -6.03% -5.08% -5.54% -12.65%

5
20 1.50 -7.65% -7.21% -5.45% -7.53% -7.68% -9.71%
35 2.25 -7.36% -5.63% -5.66% -7.17% -6.86% -9.62%
55 3.00 -6.52% -6.34% -5.07% -5.41% -5.71% -9.96%

105 6.00 -6.50% -4.64% -3.55% -2.72% -3.84% -9.90%
TOTAL -7.28% -6.58% -5.92% -6.29% -6.29% -9.14%

Table 5: ϕ = 0.50 (equal prioritization).
no. of no. of opt. run time diff. to initial solution’s Z
lines l parameters [hours] GA OS-GA RAP-GA ALPS-GA ALPSOS-GA CMA-ES

2
8 0.75 -9.12% -9.24% -9.15% -9.17% -9.09% -9.27%

14 1.50 -8.33% -8.47% -8.45% -8.42% -8.26% -8.57%
22 1.50 -10.09% -10.10% -10.17% -10.05% -9.90% -10.49%
42 3.00 -10.68% -10.57% -10.65% -10.28% -10.29% -11.08%

3
12 1.50 -5.86% -5.99% -5.84% -5.83% -5.91% -6.49%
21 1.50 -5.43% -5.40% -5.34% -5.53% -5.17% -5.77%
33 2.25 -6.56% -6.57% -6.66% -6.53% -6.42% -7.23%
63 3.75 -6.77% -6.63% -6.76% -6.80% -6.61% -7.74%

4
16 1.50 -3.93% -4.09% -3.91% -3.86% -3.99% -4.27%
28 1.50 -3.98% -4.01% -3.82% -3.88% -3.95% -4.26%
44 3.00 -4.73% -4.72% -4.60% -4.77% -4.64% -5.49%
84 5.25 -4.82% -4.45% -4.56% -4.46% -4.58% -5.81%

5
20 1.50 -5.12% -4.99% -4.97% -5.03% -5.00% -5.35%
35 2.25 -5.17% -5.02% -5.00% -4.96% -4.82% -5.57%
55 3.00 -5.90% -5.77% -5.57% -5.50% -5.48% -6.76%

105 6.00 -5.72% -5.56% -5.28% -5.38% -5.51% -7.22%
TOTAL -6.39% -6.35% -6.30% -6.28% -6.23% -6.96%

At a weight of 0.75 (Table 6) – i.e., higher priority on productive fleet mileage – the CMA-ES performs
best in all cases once more. Its average best result over all instances is -36.77%. Also the 2nd place has
a clear winner with the GA in all 16 instances. Like back at a weight of 0.50, the ALPSOS-GA is the
worst performer in 11 out of 16. The achieved improvement is considerably higher than in the other weight
variants because, Z of the initial solution correlates with ϕ in a positive manner. The reason for this being
that the headways which are actually in effect are obviously tailored towards equality between cost (i.e.,
fleet mileage) and quality of service (i.e., mean waiting time), or even a bit more directed towards the
latter. So at a high priority on fleet mileage (ϕ = 0.75) the quality of the currently employed headways is
significantly lower. This makes the other weight variants (especially, ϕ = 0.50) more difficult to optimize.

At a weight of 0.25 the CMA-ES manages to evaluate 4,740 solutions of the largest instance with
105 parameters. This number increases to 6,730 and 7,180 at a weight of 0.50 and 0.75, respectively.
This effect is due to the aforementioned (Section 3.1) negative correlation between weight and number of
replications. As mentioned back in Section 2, subjection of Z to randomness varies.
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Table 6: ϕ = 0.75 (higher priority on fleet mileage).
no. of no. of opt. run time diff. to initial solution’s Z
lines l parameters [hours] GA OS-GA RAP-GA ALPS-GA ALPSOS-GA CMA-ES

2
8 0.75 -40.92% -40.86% -40.71% -40.66% -40.67% -41.10%

14 1.50 -39.74% -39.70% -39.59% -39.46% -39.25% -40.00%
22 1.50 -41.52% -41.40% -41.29% -40.95% -40.57% -42.02%
42 3.00 -41.83% -41.50% -41.53% -40.28% -39.82% -42.66%

3
12 1.50 -35.37% -35.28% -35.03% -35.00% -34.98% -36.11%
21 1.50 -34.25% -33.76% -33.38% -33.13% -33.21% -35.04%
33 2.25 -36.05% -35.71% -35.18% -34.74% -34.27% -37.12%
63 3.75 -36.13% -34.88% -34.46% -33.48% -32.98% -37.92%

4
16 1.50 -31.53% -31.37% -30.79% -31.15% -30.47% -32.68%
28 1.50 -29.83% -29.70% -29.03% -29.58% -29.09% -31.87%
44 3.00 -32.19% -31.55% -31.08% -30.90% -30.43% -34.00%
84 5.25 -32.42% -30.73% -30.32% -29.43% -29.20% -34.86%

5
20 1.50 -32.81% -31.38% -31.95% -32.15% -31.60% -34.80%
35 2.25 -32.33% -30.87% -30.65% -30.97% -30.06% -34.55%
55 3.00 -33.25% -31.62% -30.92% -30.51% -30.48% -36.30%

105 6.00 -33.81% -31.50% -30.33% -29.45% -29.74% -37.32%
TOTAL -35.25% -34.49% -34.14% -33.87% -33.55% -36.77%

Figures 3 and 4 depict how the algorithms performed in the smallest (l = 2 and e = 4) and the largest
(l = 5 and e = 21) test instances over time with different weights. Again, 5 independent and reproducible
runs where performed. Only the algorithms’ respective best run was added to the plots.

First, the smallest instance with 8 optimization parameters in total: all algorithms show a steep descent
within the first ten minutes. Since – as mentioned in Section 3.2 – the initial population contains the
currently employed solution, all start below the initial solution. Due to the low number of optimization
parameters, this instance is easy and swiftly to optimize. Results between the algorithms (see Tables 4, 5
and 6) as well as the shape of the curves do not vary much between the 3 different weights.
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Figure 3: Best Z per algorithm over time (smallest instance with 8 optimization parameters).

The largest instance, with 105 optimization parameters, is a different situation (Figure 4): at a weight
of 0.25 (Figure 4a) the algorithms (especially the GA and CMA-ES) need quite some time (∼25 minutes,
the GA and CMA-ES ∼100 minutes) to find a significantly better solution than the initial solution marked
by 5. After about 140 minutes the CMA-ES has passed all competitors. The GA needs about 200 minutes
to pass all but the CMA-ES. In Figure 4b all but the CMA-ES manage a steeper descent at the starting
point and within 40 minutes. The CMA-ES needs about the same time (140 minutes) than in the previously
mentioned case to catch up and exceed the other algorithms. Finally, at a weight of 0.75 (Figure 4c)
all algorithms have steeper and constantly decreasing curves. This time the CMA-ES is much quicker
and passes other algorithms after ∼20 minutes. It performed significantly better in this instance than his
competitors. This can be observed in Figure 4 as well as in the previously shown tabular results (Tables 4, 5
and 6) where the results and the shapes of the curves vary stronger than in the smallest instance (Figure 3).
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Figure 4: Best Z per algorithm over time (largest instance with 105 optimization parameters).

Last, a closer investigation into the tradeoff between productive fleet mileage and mean passenger waiting
time per passenger (Figure 5). The data points (i.e., coordinates) are the best results of an optimization
experiment with the CMA-ES on the large instance with 105 optimization parameters where the weight
(ϕ) was altered from 0 to 1 in steps of 0.025. The run time was increased to a whole day per optimization
run. As always, 5 independent and reproducible runs per variant were performed.

The currently employed solution results in 45,909 km (28,527 mi) fleet mileage and 2.69 minutes mean
waiting time per passenger. The best optimized solution with ϕ = 0.375 leads to 45,548 km (28,302 mi)
and 2.59 minutes, thereby reducing both target measures by 0.79% and 3.72% respectively. So there is
actually one with which both target values could be improved. As mentioned before, the currently employed
solution is a bit closer to the equally balanced solution than the more passenger-oriented one (ϕ = 0.25).
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Figure 5: Fleet mileage vs. mean waiting time (large instance with 105 optimization parameters).

6 CONCLUSIONS AND PERSPECTIVES

All in all, the CMA-ES performed best in every single one of all 48 test instances. The (standard) genetic
algorithm took the 2nd place and produced promising solutions in all instances (2nd best in 36 out of
48 cases). Both do not require many parameters and are thereby easier to tune. The ALPSOS-GA was
the worse performer in 22 of 48 instances. It is likely that this is due to run time limitations and this
algorithm’s many parameters. Profiling runs of the algorithms’ implementations within the HeuristicLab
framework has shown that the “book-keeping” overhead is negligibly low. Advanced offspring selection
and aging-layer concepts seem not suitable for this specific problem. Apparently, there is no danger in
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terms of premature convergence and the aforementioned solution schemes do not manage to produce the
necessary number of generations within the run time limit. However, in small instances the difference
between these populations-based algorithms seems almost negligible. In larger instances, especially with
unequal weights, the gap increases. The equally weighted instances were more difficult to improve due
to the relatively good performance of the initial solution. The currently employed headways are close to
equality but a bit more tailored towards quality of service (i.e., mean waiting time). The optimized solution
at a weight of 0.375 offers both, cost reduction of 0.79% and service quality improvement of 3.72%.

As for the future, we are going to develop problem-specific crossover operators in order to improve
the results. Furthermore, we intend to test the use factors instead of values – possibly a combination of
both – as optimization parameters and use discrete instead of continuous encoding. Also, different types
of metaheuristics or a Pareto-based solution approach could be an option to solve the problem. Other
extensions concern the implementation of planned disruptions. For the time being, the real world system is
still unaffected by this study. Possible future impacts are changes in the lines’ respective hourly headways
(i.e. new schedule), planning of vehicle acquisition, infrastructure alterations, disruption management, etc.
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