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ABSTRACT

This paper considers the problem of ranking and selection with covariates and aims to identify a decision rule
that stipulates the best alternative as a function of the observable covariates. We propose a general data-driven
framework to accommodate (i) high-dimensional covariates and (ii) general (nonlinear) dependence between
the mean performance of an alternative and the covariates. For both scenarios, we design new selection
procedures and provide certain statistical guarantees, by leveraging the data-intensive environment and
various statistical learning tools. The performances of our procedures are exhibited through simulation
experiments.

1 INTRODUCTION

Ranking and selection (R&S) is concerned with making the best selection among many alternatives, whose
unknown performances can be learned via sampling. Examples include selecting medicine and treatment
regimes in healthcare systems, selecting online advertisements targeting Internet users, and selecting
reaction/operational mechanisms for self-driving vehicles. In the past decades, the problem of R&S has
been a focal point in simulation literature; see Kim and Nelson (2006). Recently, Shen et al. (2017)
introduces a new R&S framework, called ranking and selection with covariates (R&S-C), in which the
mean performance of each alternative depends on some observable random covariates. The goal of R&S-C
is to identify a decision rule that stipulates the best alternative as a function of the covariates, as opposed to
a single alternative that is believed to be the best universally. In this way, the covariates information for
each alternative can be exploited to deliver better personalized decisions.

In this paper, we adopt such data-driven R&S framework but consider application contexts where the
observable covariates are high-dimensional. This is motivated by the exponential growth of data storage in
healthcare and e-commerce, in which high-dimensional covariates are becoming increasingly available. The
existing selection procedures developed in Shen et al. (2017) which are based on Ordinary Least Square
(OLS) may become inefficient and even inapplicable in such contexts. We propose a new selection procedure
for R&S with high-dimensional covariates (R&S-HC), that effectively incorporate machine learning tools
such as regularization and variable selection. Certain statistical guarantee is provided under moderate
assumptions. Moreover, notice that for simplicity, the R&S-C problem in Shen et al. (2017) assumes a
linear dependence between the mean performance of an alternative and the covariates. In the second half
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of the present paper, we extend our discussion to allow a general (nonlinear) dependence between them,
i.e., R&S with general covariates dependence (R&S-GD), and develop a selection procedure accordingly.

Our selection procedures for R&S-HC and R&S-GD utilize the ample data availabilities and rapidly
growing computation power. These developments reflect the perspective that simulation ought to play an
increasingly important role in decision making as a tool for system control; see Nelson (2016) for an
extensive discussion on the subject.

The contribution of our work is three-fold. First, we demonstrate that failing to account for covariates
in R&S when do they exist can lead to incorrect selection with a large probability. The problem deteriorates
when the mean responses of the alternatives become closer or the dependence between response and
covariates becomes stronger.

Second, we develop selection procedures to deal with high-dimensional covariates and general covariate
dependence. Specifically, we view the collection of simulation samples as a training procedure to estimate
the (parameters of) the dependence function. The results from machine learning theory are helpful in
characterizing how many samples are needed in order to control the estimation error below certain threshold.
Moreover, the estimation error can be easily linked to the probability of correction selection in R&S. Thus,
by reversing the arguments, we obtain the selection procedures for R&S-HC and R&S-GD with statistical
validity.

Third, we conduct experiments to show the advantage of integrating covariates in R&S and the efficiency
of our procedures. On one hand, we show that a right choice of the selection procedure can greatly reduce
the number of required sample; on the other hand, if one ignore the covariates or choose an over-simplified
model to characterize the dependence, it may result in an unsuccessful selection procedure regardless of the
number of simulation samples.

We close the introduction by briefly reviewing related work. The R&S problem was introduced in
1950’s for statistical selection problems arising in medical treatment selection; see Robbins (1952) and
Bechhofer (1954). We refer to the survey papers Kim and Nelson (2006) and Chen et al. (2015) for the
historical development and current status of the R&S research. The selection procedures in R&S literature
follow either of the two approaches: the frequentist approach (see, e.g., Rinott 1978; Kim and Nelson 2001;
Hong and Nelson 2007; Fan et al. 2016) or the Bayesian approach (see, e.g., Chen 1996; Chick and Inoue
2001; Frazier et al. 2008; Chick and Frazier 2012). Our paper takes a frequentist perspective and provides
stage-wise procedures.

Recently, there has been a trend of designing R&S procedures to better embrace the blessing of big
data from large-scale problems. In Luo et al. (2015), the authors consider the large-scale R&S where there
is a large number of alternatives. In Hunter and Nelson (2017) and Kamiński and Szufel (2018), parallel
procedures are designed for R&S simulation. These two considerations reflect two typical changes brought
by big data: the scale of the problem and faster computing devices. Comparatively, our work, extending
Shen et al. (2017), concerns another perspective of big data: the availability of side/contextual information
and the machine learning/statistical models to efficiently process this information.

In machine learning community, people have successfully utilized the side information/covariates to
improve prediction accuracy in tasks such as image classification (Chen et al. 2012), text mining (Aggarwal
et al. 2014), and recommendation system (Xu et al. 2013). This usually results in a refinement of the
original problem that is absent of the covariates. Thanks to the recent advances of statistical learning
theory, researchers are equipped with power tools for theoretical analysis when applying machine learning
algorithms for covariates. The research on R&S-C is also related with the contextual bandit problem (Lu
et al. 2010). Our R&S with high-dimensional covariates is partly motivated by the paper Bastani and Bayati
(2015).

The organization of the paper is as follow. In Section 2, we provide the mathematical formulation and
state the objective of R&S-C. We point out that the negligence of the covariates may lead to incorrect
selection with high likelihood. In Section 3 and Section 4, we present the selection procedures for R&S-HC
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and R&S-GD, respectively. We demonstrate the efficiency and effectiveness of our procedures in Section 5
through simulation experiments and conclude in Section 6.

2 MODEL SETUP

We consider a collection of K (finite) distinctive alternatives and aim to identify the best alternative through
simulations. Different from the conventional R&S setting, we let the performance of each alternatives depends
on X = (X1, ...,Xd)

ᵀ, a vector of random covariates with support Θ⊆ Rd . Concretely, the performance of
the k-th alternative is associated with the covariate through a function fk(·), i.e.

Yk(X) = fk(X)+ εk(X), 1≤ k ≤ K, (1)

where εk(X) ∼ N(0,σ2
k ) is the sampling error. Here, we do not make any additional restriction on the

function fk(·), say, it can be even a non-continuous (decision tree) function of X . The subscript k emphasizes
that the dependence between response and covariate can be different across different alternatives.

The objective is to identify the best alternative with the knowledge of the covariates,

k∗(x) := argmax
1≤k≤K

{E[Yk(X)|X = x]}= argmax
1≤k≤K

{ fk(x)}.

In such a way, our selection decision turns out to be a function of the covariates x. This further explains the
meaning of data-driven R&S, i.e., let the data x drive the decision.

To quantify the result of an R&S scheme, we adopt the Indifference Zone formulation (Bechhofer 1954).
Specifically, we define the correct selection (CS) event when one of the correct alternatives is selected:

CS(x) :=
{

fk∗(x)(X)− fk̂∗(x)(X)< δ | X = x
}
,

where k∗(x) and k̂∗(x) are the best alternative and the selected alternative respectively. To extend the CS
event for the setting of covariates, we adopt the same criteria as in the papers Ni, Ciocan, Henderson, and
Hunter (2017), Shen, Hong, and Zhang (2017) and define the conditional Probability of Correct Selection
(PCS) as

PCS(x) := P
(

fk∗(x)(X)− fk̂∗(x)(X)< δ | X = x
)
.

And based on the conditional PCS, we define two forms of unconditional PCS:

PCSE := E[PCS(X)]

where the expectation is taken with respect to the distribution of X , and

PCSmin := min
x∈Θ

PCS(x).

Remark 1. PCSmin provides a lower bound for PCSE; in other words, PCSmin is a more demanding criterion
when evaluating R&S procedures.

2.1 The Advantage of Covariates

Consider the dependence of performance response and the covariates specified as in (1), if we ignore the
covariates and adopt the conventional R&S procedures, the objective becomes to choose

k∗ := argmax
1≤k≤K

{E[Yk(X)]}= arg max
1≤k≤K

{E[ fk(X)]} .

For the simplicity of discussion and without loss of generality, we assume K = 2 and µ1 = E[ f1(X)]>
µ2 = E[ f2(X)]. Then a successful R&S procedure should end up selecting the first alternative, regardless of
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the value of X . However, it can happen that for certain value of X = x, we have f1(x)< f2(x)−δ , which
means we select the significantly inferior alternative. The probability of such wrong selection is

P( f1(X)< f2(X)−δ ).

To get a better sense of the quantity, we consider X D
= N(0,Σ) and the functions

fi(X) = µi +θ
ᵀ
i X D

= N(µi,θ
ᵀ
i Σθi), i = 1,2.

Then the probability of incorrect selection is

P( f1(X)< f2(X)−δ ) = P
(

Z <
µ2−µ1−δ

θ
ᵀ
1 Σθ1 +θ

ᵀ
2 Σθ2

)
,

where Z is the standard normal random variable. The probability becomes larger when the gap between
µ1 and µ2 is small and when θ1 and θ2 have large norms. This indicates that we will pay a high price
ignoring the covariates when either the mean performances of the alternatives are similar or there is a
strong dependence between the response and the covariates. To make things even worse, the probability
will further scale up when there are K > 2 alternatives. The same analysis can be done for the case that
we ignore part of the covariates or that we consider an over-simplified class of fi’s (e.g. linear instead of
non-linear). In other words, the argument here warns us that the conventional objective of R&S is not
the right goal to pursue with the existence of covariates. Even if we have guarantee on the probability of
correct selection of the best mean performance (namely µ1 in the above example), the procedure can lead
to a high probability of selecting the inferior ones due to the negligence of the covariates.

On the other hand, by taking the covariates into account, it avoids the above mistake. But this requires
a more complicated design in the R&S procedure. Specifically, we need to propose an R&S procedure that
utilizes the simulation samples efficiently to entangle the dependence between response and covariates. As
a result, the structure of dependences and simulation data should be taken into account when designing
simulation schemes.

3 R&S WITH HIGH-DIMENSIONAL COVARIATES

In statistics and machine learning, the model of Lasso (least absolute shrinkage and selection operator)
enables one to deal with the high-dimensional data efficiently by performing regularization and variable
selection at the same time; see Tibshirani (1996). Here we adopt Lasso for designing R&S procedure in the
data-rich setting. In the first place, we make the following assumptions over the general framework in
Section 2.
Assumption 1. (i) The functions fk’s in (1) are linear of covariates X ∈Rd and have sparse coefficient

vectors βk’s. Specifically,
fk(X) = Xᵀ

βk,

and the number of non-zeros (cardinality) in βk’s are bounded by s0, i.e. ‖βk‖0 ≤ s0 for all
k = 1, ...,K. (Note that our results in the paper hold for any given s0, the choice of which depends
on the application context.)

(ii) For each alternative k = 1, ...,K and simulation trial l = 1,2, ..., we have

Ykl(x) = fk(x)+ εkl

where the sampling error εkl ∼ N(0,σ2
k ) and εkl is independent of εk′l′ for any (k, l) 6= (k′, l′).

In other words, the simulation errors are independent across different alternatives and different
simulation samples.
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(iii) We assume the support Θ of X is bounded by an L1 ball with radius B.
The key to an efficient R&S procedure in the high-dimensional setting is the application of Lasso in

estimating the coefficients βk’s. Therefore, we first give a brief overview of the Lasso problem. Generally,
the problem of Lasso regression can be posed as the following:

Y = X β
0 + ε (2)

Y = (Y1, ...,Yn) ∈ Rn is the vector of response, X ∈ Rn×d is the design matrix, and ε is a vector of
N(0,σ2)-distributed measurement errors. In the OLS regression setting, we estimate β 0 with

β̂OLS := (X ᵀX )−1X ᵀY.

The blessing of high-dimensional covariates setting is a better assessment for the performance of the
alternatives due to the better availability of covariates, but this can be offset in by the induced simulation
costs, if the R&S scheme is not carefully designed. Conversely, when we are parsimonious in simulation
budget, the number of samples n can be much smaller than the dimension d. This can result in a singular
matrix of X ᵀX , which makes the OLS estimates fail. However, Lasso provides us an elegant way to
handle this situation and thus results in an R&S procedure for which the number of required simulations
does not scale up with the number of covariates.

Different from OLS setting, Lasso adopts the penalized loss function

β̂ = argmin
β

‖Y −X β‖2
2

n
+λ‖β‖1,

where ‖ · ‖2 denotes the L2 distance. A huge literature in statistics have demonstrated its successfulness in
handling large dimensional covariates. For our R&S application, intuitively speaking, a bound for PCS
entails a characterization of the Lasso estimation errors, namely, how far the β̂k deviates from βk. To
proceed, we follow the results in Bühlmann and van de Geer (2011) and start with a discussion of the
compatibility condition.
Definition 1 (Compatibility condition) Let the (scaled) Gram matrix

Σ̂ :=
X ᵀX

n
.

We say that the compatibility condition is met for the set S0 ⊆ S = {1,2, ...,d}, if for some φ0 > 0, and for
all β satisfying ‖βSc

0
‖1 ≤ 3‖βS0‖1, it holds that

‖βSc
0
‖2

1 ≤
(

β
ᵀ
Σ̂β

)
s0/φ

2
0 ,

where s0 is given in Assumption 1. And we call φ0 as the compatibility constant.

In fact, the compatibility constant φ0 is an intrinsic value of matrix Σ̂. Both for fixed/random design
matrix X , one can compute restricted isometry constant (Candes et al. 2006) or restricted eigenvalue
(Bickel et al. 2009) as candidates for φ0. As we can see in the following proposition, φ0 plays an important
role in characterizing the Lasso estimation error.
Proposition 1. Suppose that the Σ̂ is normalized such that Σ̂ j j = 1 for j = 1, ...,d. Let the regularization
parameter be

λ := 4σ̂

√
t2 +2logd

n
for a given t > 0, where σ̂2 is an estimator for the noise variance σ2. Then with probability at least 1−α,
where

α := 2exp(−t2/2)+P(σ̂ ≤ σ),
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we have that
‖β̂ −β

0‖1 ≤ 4λ
2s0/φ

2
0 .

Notice that in the bound, both the definition of α and λ require an estimate of the variance of error
ε. A desired property of the estimate σ̂ is that it is greater than true σ with high probability. To achieve
this, we use sample variance of Y as the estimator of σ as proposed in Bühlmann and van de Geer (2011).
Concretely, with notations in (2), we propose the estimator

σ̂
2
n :=

c
n−1

n

∑
i=1

(Yi− Ȳ )2

where Ȳ = 1
n ∑

n
i=1Yi and c as a constant to be determined. It is easy to verify that Eσ̂2

n = cσ2
Y ≥ σ2 for

c≥ 1 and
(n−1)σ̂2

n

cσ2
Y

D
= χ

2(n−1).

Usually, people choose c = 1 for estimation of σ2, but here since the goal is different - looking for an
upper bound on σ . So we choose it large so as to control P(σ̂ ≤ σ).

The Lasso loss function and Proposition 1 provide a full picture of doing linear regression with sparse
and high-dimensional covariates. In R&S setting, what we need to do is to conduct the same procedure for
each of the alternatives. The conventional choice of the design matrix X is the random Gaussian matrix.
To adapt it for the R&S setting, an all-one column is appended in the end. With the Proposition 1 in mind,
we design the following R&S-HC procedure:

Step 0. Setup: Let t =
√

1
2 log 6K

α
and n0 be the minimum number to guarantee the Gram matrix Σ̂

associated with the random Gaussian design matrix has a compatibility constant φ0 with probability
1− α

6K .

Step 1. First-stage Sampling: Generate the random design matrix X0 ∈ RN×d for some large enough N.
Append all-one column to X0 and obtain X ∈ RN×(d+1). Simulate the responses for each of the
first n1 row of the design matrix and denote them by Ykl, k = 1, ...,K, l = 1, ...,n0. Construct our
estimation of σ̂2

k , such that P(σ̂2
k > σ2

k )≥ 1− α

6K , k = 1, ...,K.

Step 2. Second-stage Sampling: Compute n′k = max{n0,128Bs0σ̂2
k (t

2 +2logd)/δ} for k = 1, ...,K. If
n1 < n′k, take n′k−n1 more rows from the design matrix X and simulate the response. Denote the
design matrix for k’th alternative as Xk and the response as Yk, estimate

β̂k = argmin
β

‖Yk−Xkβ‖2
2

n
+λk‖β‖1,

with λk specified as Proposition 1.
Step 3. Selection: for each covariate x, return

k̂∗(x) = argmax
1≤k≤K

{xᵀβ̂k}

as the selected one.

Theorem 1 Under Assumption 1, the R&S-HC procedure achieves PCSmin ≥ 1−α.

The proof for the above statistical validity follows from a direct application of Proposition 1. The
number of alternatives K appears several times in the R&S-GD procedure and this is due to our usage of
Boole’s inequality (“union bound”) when bounding the PCS. The usage of union bound is inevitable here
and this is essentially caused by the lack of distributional results on β̂k−βk in Lasso.
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4 R&S WITH GENERAL DEPENDENCE

By considering a general dependence between response and covariates, we are able to take advantage
of the machine learning algorithms to model the response. Like Section 3, we need a learning scheme
for estimating the dependence function fk’s. Imagine through simulations, we obtain samples (Xkl,Ykl)
l = 1, ...,n for the k’th alternative. We propose to estimate fk’s through minimizing the empirical risk:

f̂k = argmin
f∈F

n

∑
l=1

L(Ykl, f (Xkl)) (3)

where L(·, ·) is the loss function and F is a class of candidate functions. For example, F can be
linear functions, decision trees, neural networks and etc. And in this paper, we consider the L2 loss, i.e.
L(x,y) = (x−y)2. A successful R&S procedure here entails a good estimation of fk. Also, we need to know
how well our estimation f̂k approximates the true dependence fk.
Assumption 2. (i) The loss function L(·, ·) takes value in [Bl,Bu] on the support of response-covariate

pair (Y,X).
(ii) The covariates are drawn from a distribution p∗.

(iii) For each alternative k = 1, ...,K and simulation trial l = 1,2, ..., we have

Ykl(X) = fk(X)+ εkl

where X ∼ p∗ and the sampling error εkl ∼N(0,σ2
k ); εkl is independent of εk′l′ for any (k, l) 6= (k′, l′);

and εkl is independent of X .
Remark 1. (iii) is a classic assumption in statistical learning theory. It enforces the training and testing
data come from the same distribution, which is the backbone to guarantee the generalization error. As a
consequence, we target PCSE here rather than PCSmin as in last section.

First we introduce the notion of Rademacher complexity as a characterization for the complexity of a
generic function class C . Then we present the relation between Rademacher complexity and the estimation
error. People usually use covering numbers or VC dimension as its upper bound. We refer the interested
readers to Vapnik (1998) for more details. Also, we note that the computation of Rademachar complexity
(as an upper bound) can be challenging for some base function class F , which may result in a loose upper
bound. In fact, experiments show that the sample required in practice is much smaller than the upper bound
specified by the theory.
Definition 2 (Rademacher Complexity) Define the Rademacher complexity of C as

Rn(C ) := E

[
sup
f∈C

1
n

n

∑
i=1

Ui f (Zi)

]
where Z1, ...,Zn are drawn i.i.d from p∗ and U1, ...,Un are i.i.d. uniform distribution over {−1,1}.
Proposition 2. Define L = {(x,y)→ (y− f (x))2 : f ∈F} as the loss class, the composition of L2 loss
function and dependence function f ∈F , we have

Ep∗ [( f̂n(X)− f (X))2]≤ 4Rn(L )+

√
2log(2/η)

n
· (Bu−Bl)

with probability 1−η . Here the expectation is taken with respect to X and f̂n is the empirical risk minimizer
for n samples as in (3).

We propose the following R&S procedure for general covariates dependence function, namely R&S-GD:

Step 0. Setup: Choose η = αδ 2

4K and n0 =
8K2 log(2/η)(Bu−Bl)

2

δ 2 . Specify the dependence function class F

and thus the loss class L . Choose n′0 such that Rn(L )< αδ 2

8K for all n > n′0. Let N = max{n0,n′0}.
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Step 1. Sampling: Generate N samples Xkl from p∗ for each alternative k = 1, ...,K, l = 1, ...,N, and
record the responses Ykl accordingly. Estimate f̂k as the empirical risk minimizer:

f̂k = argmin
f∈F

N

∑
l=1

(Ykl− f (Xkl))
2

for k = 1, ...,K.
Step 2. Selection: for each covariate, return

k̂∗(x) = argmax
1≤k≤K

{ f̂k(x)}

as the selected one.

Theorem 2 Under Assumption 2, the R&S-GD procedure achieves PCSE ≥ 1−α.

Remark 2. The R&S-GD involves only one stage of sampling, compared with two stages sampling in
Section 3. This is caused by the nature of the statistical learning procedure in (3). By minimizing (3), we
estimate the dependence functions fk’s. Notice that the error bound in Proposition 2 does not change with
respect to the variances σ2

k ’s. The Rademacher complexity provides a “sufficient” number of samples we
need to estimate the true dependence; this number can be conservative and greater than “necessary”, but
it is not affected by the variances. In conventional R&S procedures, the first step of sampling is usually
used to estimate the variances, which becomes redundant in the GD setting here. As to the indifference
zone threshold δ , it determines the basic number of samples required n0 and also controls the Rademacher
complexity Rn(L ). Noticeably, the number of samples required in R&S-GD procedure is an upper bound
(more than necessary), therefore the number of samples required in practice can be smaller.

5 SIMULATION EXPERIMENTS

In this section, we conduct two simulation experiments for our R&S procedures. Purportedly, we demonstrate
that a right choice of R&S scheme can (1) efficiently reduce the numbers of simulation samples and (2)
guarantee a high PCS.

5.1 R&S-HC

In this experiment, we consider three alternatives and the responses dependent linearly on the covariates:

Yk(X) = Xᵀ
βk + εk,

where k = 1,2,3. Let the dimension of covariate be 1000, i.e. X ∈ R1000 and the sparsity ‖βk‖0 = s0 = 10.
This means each coefficient vector only has 10 non-zero entries. In R&S-HC, our procedure indeed
guarantees PCSmin, but here to make the results comparable, we assume the entries of X is i.i.d. Gaussian
normal and report the PCSE . To make a sense of the procedure, we first conduct 10 trials of simulation, for
each of which we initiate the true βk’s by randomly choosing 10 non-zero indices and assigning a random
value uniformly from {−1,1}; the simulation errors εk are generated i.i.d. from N(0,0.5). Then we do
estimation with Lasso and make the selection decision based on our estimates β̂k’s. The results are plotted
as in Figure 1, where each trial is plotted with a different color.

From the figures, we observe that the estimation error and the wrong selection probability decrease fast
to 0 with less than 100 simulation samples. Furthermore, we simulate for 5000 trials with 100 samples each,
and we compute that the 95% confidence interval for PCSE is [0.995,0.999]. If we adopt R&S procedure
in Shen et al. (2017), we will need at least 1000 samples to implement OLS regression. Comparatively, our
design leverages the sparsity (via Lasso) and effectively reduces the number of samples used. Specifically,
in our design, the number of required samples grows linearly with the sparsity s0 but logarithmically with
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(a) Estimation Error (b) PCSE

Figure 1: Simulation Results for R&S-HC: In (a), we plot the estimation error against the number of simulation
samples. The estimation error is the summation of the L1 error for the alternatives, i.e. ∑

3
k=1 ‖β̂k−βk‖1.

In (b), we plot the PCSE against the number of simulation samples. The PCSE is obtained by randomly
generating N = 3000 samples from p∗ and computing the selection accuracy based on β̂k’s.

the dimension of the covariates d. In fact, this sample efficiency highlights one useful scenario for R&S-HC:
when there is a large number of covariates but only a few are relevant. If this is (or assumed to be) true, we
can take advantage of the sparsity structure and save a great number of simulation samples.

5.2 R&S-GD

In this section, we conduct an experiment where the dependence between response and covariates is
nonlinear. Similar to the previous section, we consider three alternatives:

Yk(X) = fk(X)+ εk,

k = 1,2,3. Let the covariate X ∈ R10 and the entries follow i.i.d. Gaussian normal, thus specifying the
p∗ in Assumption 2 (b). We assign the dependence function fk’s to be random forests (Breiman (2001))
composed of three decision trees with randomly specified splits and depth. Consequently, the dependence
functions are non-linear (even non-continuous). As before, the simulation errors εk are generated i.i.d. from
N(0,0.5). We obtain our estimates f̂k’s by learning a random forest to minimize empirical risk (3) and then
base our selection on f̂k’s. We conduct 10 different random trials and plot the results as Figure 2.

Different from the linear setting, much more simulation samples is required to have good prediction
and selection accuracies. There is no surprise because we are searching the true dependence fk’s from a
larger class of functions than the linear class. To counter the effect of the generality of dependence, we
need more samples to identify the true functions and to make the correct selections.

Additionally, we do another experiment to see the importance of choosing a general enough function
class. With the same setting as above, we consider two different function classes, say, F in (3), to be the
class of linear functions or decision trees. Notice that the true function as a random forest function is not
included in the two classes, this will result in an unsuccessful selection no matter how the procedure is
designed or how many number of samples are collected. A linear model or a decision tree model here
is not sufficient to capture the complicated dependence between response and covariates. As we can see
in Figure 3, it results in the gap between the blue/orange curve and the green curve. This warns us the
danger of choosing an over-simple model, like the linear model here, which will cause a large probability
of selecting the non-optimal alternative.
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(a) Out-of-sample MSEs (b) PCSE

Figure 2: Simulation Results for R&S-GD: In (a), we plot the out-of-sample Mean-squared Errors (MSEs)
against the number of simulation samples. The MSE’s are computed from the prediction error of f̂k on
N = 3000 new samples from p∗. In (b), we plot the PCSE against the number of simulation samples. The
selection decision is made upon the estimate f̂k’s.

(a) Out-of-sample MSEs (b) PCSE

Figure 3: Comparison of Different Function Classes: Given the true dependence being a random forest
function, we compare learning the true from linear functions (OLS), Decision Tree (Tree) and Random
Forest (RF). The MSE and PCSE are defined in the same way as Figure 2. The curve is averaged from 100
simulation trials.

In short, if the response and covariates have a general nonlinear dependence, it costs more simulation samples
to achieve a reliable R&S scheme. However, the additional samples are indispensable because adopting an
over-simple function class to model the dependence pays a high price of making wrong selections.

6 CONCLUSION

In this paper, we extend the framework of R&S-C with two novel R&S procedures: R&S-HC and R&S-GD.
These two procedures enable the full generality of how we model the dependence between responses and
covariates in R&S. Statistical guarantees are established with the help of results from high-dimensional
statistics and statistical learning theory. Simulation experiments demonstrate the efficiency of our procedures
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and illustrate the importance of choosing the right scheme as well as the proper class of dependence
functions.
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