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ABSTRACT

We boost the performance of the Optimal Computing Budget Allocation (OCBA) algorithm, a widely used
and studied algorithm for Ranking and Selection (as known as Best Arm Identification) under a fixed budget.
The proposed fully sequential algorithms, OCBA+ and OCBAR, are shown to have better performance both
theoretically and numerically. Surprisingly, we reveal that in a two-design setting, a constant initial sample
size in a family of OCBA-type algorithms (including the original OCBA) only amounts to a sub-exponential
or even polynomial convergence rate of the probability of false selection (PFS). In contrast, our algorithms
are guaranteed to converge exponentially fast, as is shown by a finite-sample bound on the PFS.

1 INTRODUCTION

In simulation optimization, the study of Ranking and Selection (R&S) mainly focuses on how to efficiently
run simulations to identify the best design among a finite number of candidates (see, e.g., Chapter 17 in
Henderson and Nelson 2006). R&S has two major formulations. The fixed confidence setting challenges
us to achieve certain confidence level using the least possible simulation effort. The fixed budget setting,
on the other hand, requires to maximize the probability of selecting the best design using a fixed budget
of simulation runs. Our focus in this paper is on the fixed budget R&S. For fixed confidence, KN, BIZ
and many other efficient procedures have been proposed in the literature and we refer the reader to Kim
and Nelson 2001; Frazier 2014 for details and the references therein.

In fixed budget R&S, the Optimal Computing Budget Allocation (OCBA) algorithm in Chen et al.
2000 is considered as the one of the the most widely used algorithms. The static allocation ratios suggested
by OCBA has been shown to be asymptotically optimal from a large deviations perspective (see Glynn
and Juneja 2004). Meanwhile, its implementable version highlights a sequential style of budget allocation,
which is critical to its finite-sample performance (e.g., Chen et al. 2006). The framework of OCBA has
been extended to handle many applications (e.g., Lee et al. 2004; Chen and Lee 2010). Similar sequential
allocation style has also been explored in subsequent works (e.g., Pasupathy et al. 2015). However, to the
best of our knowledge, although the asymptotic properties of simple R&S procedures have been investigated
(e.g., Jacobovic and Zuk 2017), the formal analysis and characterization of sequential OCBA’s performance
remains an open research problem.

In view of the current void in OCBA’s theoretical performance guarantees, we are motivated to push
the boundary by performing in-depth analysis on its behavior, and developing insights for improving its
performance. Our contributions are outlined as follows.

1. We propose two fully sequential algorithms, OCBA+ and OCBAR, and provide a finite-sample
bound on its probability of correct selection (PCS), guaranteeing an exponential convergence rate.
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2. It is revealed that for a two-design case, if OCBA, OCBA+ and OCBAR choose a constant initial
sample size, then the PCS converges only at a sub-exponential (or even polynomial) rate.

3. Numerical experiments are conducted to show that both OCBA+ and OCBAR can achieve higher
PCS than the original OCBA under the same budget.

2 PROBLEM SETUP

We briefly review the setup for the fixed budget R&S problem and lay down some notations. Given a set
of K designs I = {1,2, . . . ,K}, the goal is to find (without loss of generality) the one with the highest
expected performance. Each design’s expected performance is unknown, and is typically evaluated through
multiple simulation runs and approximated by the sample mean

X̄i,Ni =
1
Ni

Ni

∑
r=1

Xir,

where Xir is a random variable representing design i’s rth simulation output, and Ni is the number of times
design i has been simulated. We will drop the subscript Ni when there is no ambiguity. The true and the
observed best designs are denoted by

b = argmax
i∈I

µi, b̂ := argmax
i∈I

X̄i,

respectively. We make the following standard assumptions to avoid technicalities, where N denotes a
normal distribution.
Assumption 1

1. The best design is unique, i.e., b is a singleton.
2. Xir ∼N (µi,σ

2
i ) and are independent across all i ∈I and r = 1,2, . . ..

Then, under a fixed budget T of total simulation runs, the goal is to maximize the probability of correct
selection (PCS), i.e.,

PCS := P
(
b̂ = b

)
= P

{⋂
i6=b

{X̄b > X̄i}
}
,

by carefully allocating the budget. Several algorithms have been proposed for solving this problem, and
their performance is typically measured via the following approaches. The first approach is to take a large
deviations (LD) perspective. Denoting by PFS the probability of false selection (defined as 1−PCS), it
has been shown that many algorithms exhibit the behavior

− lim
T→∞

1
T

logPFSA (T,P) = RA (P),

where A is an algorithm, P is a problem instance, PFSA (T,P) is the PFS of A under budget T and
problem P, and RA (·) ≥ 0 is called the LD rate function. Asymptotically optimal algorithms can be
derived by maximizing RA (see, e.g., Glynn and Juneja 2004; Glynn and Juneja 2015), but it is an
insufficient performance measure since it only focuses on the asymptotic performance. For example,
although Te−T ,T 2e−T ,T 3e−T , . . . all have the same LD rate, they behave quite differently for small values
of T . The second approach is to approximate PFSA (T,P) using tight bounds, but it could be very challenging
for highly adaptive algorithms such as OCBA (see Section 3.1 for details). Another approach is to plot
out the PCS curve and visually inspect how fast it converges to 1 as T increases. The main criticism,
however, is that such results are problem-specific and may not represent the general performance very well.
In this paper, we will improve OCBA from an LD perspective, where the improvement is substantiated by
a finite-sample PFS bound combined with numerical results.
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Algorithm 1 OCBA (Chen et al. (2000))
1: Input: N0,∆,T .
2: Initialization: Simulate each design N0 times and compute X̄i and S2

i . Ni← N0. T ′← N0K.
3: while ∑i∈I Ni ≤ T do
4: Compute α̂1, . . . , α̂K using (1) and plug-in estimates.
5: for i = 1, . . . ,K do
6: Run max{0,bα̂iT ′c−Ni} replications for design i.
7: Ni←max{Ni,bα̂iT ′c}. Update X̄i and Si.
8: end for
9: T ′← T ′+∆.

10: end while
11: Output: b̂ = argmaxi∈I X̄i.

3 IMPROVING THE OCBA ALGORITHM

The plan of this section is to first review the original OCBA algorithm, and then present the improved
versions for comparison. Our purpose is to help the reader quickly grasp the motivations behind our
algorithms, while results involving more technicalities are deferred to Section 4.

3.1 OCBA+ Algorithm

The original OCBA algorithm proposed in Chen et al. 2000 is summarized in Algorithm 1, and it is built
on two key components. One is the inverse signal-to-noise ratio allocation rule,

αb = σb

√
∑
i6=b

α2
i

σ2
i
,

αi

α j
=

σ2
i /δ 2

bi

σ2
j /δ 2

b j
, i 6= j 6= b, (1)

where αi := Ni/T and δbi := µb−µi. The ratios in (1) are derived through asymptotically maximizing an
approximated PCS as T → ∞. In practice, the µi’s and σi’s are unknown and thus are replaced by their
estimates X̄i and Si. We let α̂i denote the estimated αi by plugging in µi’s and σi’s in (1). This leads to
the other more important component (see Chen et al. 2006 on its efficiency): sequential allocation, where
at each iteration OCBA increases the available budget T ′ by ∆, updates the estimates timely, and matches
the Ni’s with the recomputed allocation ratios to the greatest possible extent. This adaptive scheme makes
OCBA particularly robust against estimation noise. However, as we will show in Section 4.1, a major
drawback of a constant N0 is that it only leads to a polynomial convergence rate of PCS.

Algorithm 2 OCBA+

1: Input: α0 ∈ (0,1),T .
2: Initialization: Simulate each design N0 = bα0T/Kc times and compute X̄i and S2

i . Ni← N0.
3: while ∑i∈I Ni ≤ T do
4: Compute α̂1, . . . , α̂K using (1) and plug-in estimates.
5: Simulate design l = argmaxi α̂i/Ni once.
6: Nl ← Nl +1. Update X̄l and Sl .
7: end while
8: Output: b̂ = argmaxi∈I X̄i.

To fix this, we propose the OCBA+ algorithm, which is presented in Algorithm 2. We motivate OCBA+
as follows. The ratio α0 is a constant between 0 and 1, which forces N0 to grow proportionally with T and
guarantees that the PFS converges exponentially fast (see Section 4.3). In addition, similar to the “most
starving” version in Chen and Lee 2010, we get rid of ∆ and modify Algorithm 1 into a fully sequential
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one: at each step we compute the ratio α̂i/Ni as a measure of how much design i’s allocated budget deviates
from the target ratios. Then, the next simulation replication goes to the design with the largest such ratio,
since it is the least sampled (with respect to the ratios) and hence needs simulation the most. This way, we
try to explicitly match that the ratios Ni/T ’s with those specified in (1). As we shall see in Sections 4.1
and 5, the fully sequential feature of OCBA+ not only facilitates theoretical analysis, but also improves
OCBA’s numerical performance.

3.2 OCBAR Algorithm

In addition to OCBA+, we propose another fully sequential algorithm, OCBAR (“R” meaning “Random-
ized”), which is summarized in Algorithm 3. Notice that OCBAR also requires N0 to grow proportionally
with T . This is because a constant N0 will again result in a sub-exponential convergence rate of the PCS,
as we shall see in Section 4.2. The only difference between OCBAR and OCBA+ is in step 5, where the
next design to simulate is randomly sampled by using the ratios (α̂1, . . . , α̂K) as a probability distribution.
The rationale behind the randomized sampling strategy is twofold:

1. Similar to many randomized algorithms, the randomness in OCBAR is introduced for “exploring”
the design space, especially when we are not confident about the designs’ performance due to
estimation error in early stages.

2. Using (α̂1, . . . , α̂K) as a sampling distribution still achieves the optimal allocation ratios in (1)
asymptotically as T → ∞.

Algorithm 3 OCBAR

1: Input: α0 ∈ (0,1),T .
2: Initialization: Simulate each design N0 = bα0T/Kc times and compute X̄i and S2

i . Ni← N0.
3: while ∑i∈I Ni ≤ T do
4: Compute α̂1, . . . , α̂K using (1) and plug-in estimates.
5: Independently draw a design l from the distribution specified by α̂1, . . . , α̂K .
6: Simulate design l once. Nl ← Nl +1. Update X̄l and Sl .
7: end while
8: Output: b̂ = argmaxi∈I X̄i.

4 CONVERGENCE ANALYSIS

In this section, we focus on a two-design case and reveal that if the initial sample size N0 is chosen as
a constant (independent of T ), then OCBA, OCBA+ and OCBAR can only achieve a sub-exponential
convergence rate of PCS, essentially due to the error in variance estimation. In particular, the convergence
rate of OCBA and OCBA+ with a constant initial sample size is at most polynomial. Furthermore, we
show that OCBA+ and OCBAR can achieve an exponential convergence rate. Although it is known that
any static allocation achieves exponential convergence rate (see Glynn and Juneja 2004), our results do
not imply adaptive algorithms such as OCBA, which only achieve sub-exponential convergence rate, are
inferior than static allocations. Instead, abundant empirical results in the literature have shown that adaptive
algorithms usually work better. The reason is, exactly as we have mentioned at the end of Section 2, that
the convergence rate is only asymptotic and thus has limited implication on finite-sample performance.
However, within the same class of OCBA-type algorithms, we show that OCBA+ and OCBAR are improved
versions of the original OCBA in terms of both asymptotic convergence rate theoretically (in Section 4)
and finite-sample performance empirically (in Section 5).
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4.1 Constant N0 in OCBA+ and OCBA

To keep the main idea uncluttered, we study the special case of K = 2 and analyze the convergence rate
for OCBA+. Note that in the two-design case, the allocation rule in (1) reduces to α1/α2 = σ1/σ2. Later
we will discuss the possibility of extending our result to the original OCBA with K ≥ 3.
Theorem 1 Let Assumption 1 hold, and suppose that K = 2 and µ1 > µ2. If OCBA+ chooses a constant
N0 ≥ 2, then there exists some constant C > 0 such that

PFS(T )≥ C
(T −N0)N0−1 , ∀T ≥ 2N0. (2)

Theorem 1 is somewhat surprising since it is sharply different from the common practice of OCBA
using a constant initial sample size. As an extreme case, for N0 = 2 the PFS converges as slowly as 1/T .
Before proving Theorem 1, we first derive a few intermediate results that will come in handy. The key is to
characterize the distributions of X̄1,N1 and X̄2,N2 conditional on N1. Notice that for OCBA+, N1 and N2 are
influenced by the sequentially updated S1,S2,N1,N2 and a complicated feedback mechanism. Fortunately,
the normal distribution enjoys the following nice property.
Lemma 1 Let X̄n and S2

n be the sample mean and sample variance of n i.i.d. normal random variables,
respectively. Then, for all n≥ 2, X̄n is independent of (S2

2,S
2
3, . . . ,S

2
n).

Proof. For any 2≤ k ≤ n, S2
k is a function of the deviations (X̄k−X1, . . . , X̄k−Xk). Thus, it suffices to

show that
X̄n ⊥ ((X̄2−X1, X̄2−X2), . . . ,(X̄n−X1, . . . , X̄n−Xn)),

where ⊥ denotes independence and the right hand side (RHS) is denoted by Yn. Note that (X̄n,Yn) is a
linear transformation of (X1, . . . ,Xn) and hence are jointly normal, the result follows from

Cov(X̄n, X̄k−X j) = 0, ∀2≤ k ≤ n, j ≤ k, (3)

which can be verified easily through a direct computation.

Lemma 1 generalizes a classical result that X̄n and S2
n are independent for normal distribution. Its

implication for our context is given by the following corollary.
Corollary 2 For OCBA+ with K = 2, (X̄1,N1 , X̄2,N2) | N1 ∼ (Z1,Z2) almost surely, where Z1 and Z2 are
independent N (µ1,σ

2
1 /N1) and N (µ2,σ

2
2 /(T −N1)) random variables, respectively.

Proof. For N0 ≤ k ≤ T −N0, let

Y1,k := (S1,N0 , . . . ,S1,k), Y2,k := (S2,N0 , . . . ,S2,k).

Note that N1 = k if and only if (Y1,k,Y2,T−k) falls into some set Ak(T ). Furthermore, following the proof of
Lemma 1, it can be shown that (X̄1,k, X̄2,T−k)⊥ (Y1,k,Y2,T−k) since (X1,1,X1,2, . . .)⊥ (X2,1,X2,2, . . .). Thus,
for any N0 ≤ k ≤ T −N0,

P(X̄1,N1 ≤ x, X̄2,N2 ≤ y | N1 = k)

=P(X̄1,k ≤ x, X̄2,T−k ≤ y | (Y1,k,Y2,T−k ∈ Ak(T )))

=P(X̄1,k ≤ x, X̄2,T−k ≤ y) .

Since X̄1,k ⊥ X̄2,T−k, the conclusion follows.

Corollary 2 guarantees that for OCBA+, conditional on N1, the joint distribution of the two designs’s
means are still independent normal random variables. In addition to the above results, we also need the
following lemma regarding a tail bound of sample standard deviation.
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Lemma 2 Let S2
n be the variance estimate of n i.i.d. normal samples with variance σ2. Then, for any

0 < x < σ ,

P(Sn ≤ σ − x)≤ exp

−(n−1)
4

[
1−
(

σ − x
σ

)2
]2
 . (4)

Proof. According to Lemma 1 in Laurent and Massart 2000, if X ∼ χ2(n), then

P(X−n≤−2
√

nx)≤ e−x, ∀x > 0,

Since (n−1)Sn/σ2 ∼ χ2(n−1), (4) can be derived by using a change of variable.

We now present the proof of theorem 1, where the main idea is to look at an “extreme” event E where
design 1 gets “frozen” after initialization (i.e., it will not be simulated after the initial N0 replications),
and X̄1,N0 falls below µ2−η for some η > 0. Note that we only simulate design 1 if S1/N1 > S2/N2.
Thus, event E suggests that S1,N0/N1 < S2,k/N2 for all k = N0, . . . ,T −N0. In that case, X̄2 will converge
to µ2 while X̄1 never gets updated, resulting in a higher chance of false selection. The rest is to bound the
probability of E from below and show that E is not too rare.

Proof of Theorem 1. Choose any η > 0 and ε ∈ (0,σ2). We construct the following events.

E1 := {X̄1,N0 ≤ µ2−η}, E2,ε := {S2,k > σ2− ε,∀k ≥ N0},

E3,ε(T ) :=
{

S1,N0

N0
<

σ2− ε

T −N0

}
, E4(T ) :=

{
X̄2,T−N0 > µ2−

η

2

}
.

By Corollary 2, these events are mutually independent for all T ≥ 2N0. Moreover, if they occur simulta-
neously, then we have a false selection. We lower bound the probability of each event as follows.

1. E1: Since N0 is constant, we have P(E1)>C1 for some C1 > 0.
2. E2,ε : By a union bound,

P(E2,ε)≥ 1−
∞

∑
k=N0

P(S2,k ≤ σ2− ε).

Apply (4) in Lemma 2 to each term in the sum and we have

P(S2,k ≤ σ2− ε)≤ exp

−1
4

[
1−
(

σ2− ε

σ2

)2
]2

(k−1)

≤Cε exp(−γεk),

where γε := 1
4

[
1−
(

σ2−ε

σ2

)2
]2

and Cε := eγε . Thus, for any l ≥ 2,

∞

∑
k=l

P(S2,k ≤ σ2− ε)≤ Cεe−γε l

1− e−γε
, (5)

so there exists L≥ 2 such that
∞

∑
k=L

P(S2,k ≤ σ2− ε)<
1
4
. (6)

If L≤N0, thenP(E2,ε)≥ 3
4 . Otherwise if L>N0, then there exists ε̃ ∈ (0,σ2) such that ∑

L−1
k=N0

P(S2,k <

σ2− ε̃)< 1
4 . Take ε ′ := max{ε, ε̃}, then (6) still holds because its LHS becomes smaller, and we

have P(E2,ε ′)≥ 1− 1
4 −

1
4 = 1

2 .
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3. E3,ε(T ): Take ε to be the ε ′ we just defined. Since (N0−1)S2
1,N0

/σ2
1 ∼ χ2(N0−1),

P(E3,ε(T )) = P
(

χ
2(N0−1)≤ B

(T −N0)2

)
, (7)

where B := (N0−1)N2
0 (σ2−ε)2/σ2

1 . Notice that for i.i.d. N (0,1) random variables Z1, . . . ,Zk and
x > 0,

P(χ2(k)≤ x)≥ P
(
∩k

i=1
{

Z2
i ≤ x/k

})
=
[
P
(
|Z1| ≤

√
x/k
)]k

, (8)

where by inspecting the shape of normal p.d.f., we have

P(|Z1| ≤ t)≥ 1√
2π

e−
t2
2 ·2t ≥ Kt (9)

for some K > 0 and all t small. Apply (8) and (9) to (7) to get

P(E3,ε(T ))≥

K

√
B

(T−N0)2

N0−1

N0−1

≥ C3

(T −N0)N0−1

for some C3 > 0 and all T ≥ 2N0.
4. E4(T ): Since P(E4(T )) ↑ 1 as T ↑ ∞, there exists some C2 > 0 such that for all T ≥ 2N0, we have

P(E4(T ))≥C2.

Letting E(T ) := E1∩E2,ε ′(T )∩E3,ε ′(T )∩E4(T ), the above lower bounds imply that

PFS(T ) = P(X̄1,N1 < X̄2,N2)

≥ P(X̄1,N1 < X̄2,N2 | E(T ))P(E(T ))

≥ 1 ·C1 ·
1
2
· C3

(T −N0)N0−1 ·C2 ≥
C

(T −N0)N0−1

for some C > 0 and all T ≥ 2N0. This completes the proof.

From Theorem 1’s proof, we see that OCBA+ with a constant N0 has a polynomial convergence rate
because P(E3,ε(T )) decreases only polynomially fast as T → ∞, which is essentially due to (9), i.e., as
t→ 0, P(|Z1| ≤ t) converges to 0 only at a linear rate. It may be possible to extend the same idea to OCBA
when K ≥ 3, where we need to construct a similar but more complicated event on which design b gets
“frozen” after initialization. Specifically, we may consider when X̄b,N0 < mini∈I µi−η for some η > 0,
and Sb,N0 is arbitrarily small as T increases. However, the main difficulty here is that E3,ε(T ) may not be
so easily characterized and the independence suggested by Lemma 1 might not be as useful.

4.2 Constant N0 in OCBAR

We have seen in Section 4.1 that a constant N0 will slow down OCBA and OCBA+’s convergence rate to
polynomial. In this section, we show for OCBAR that randomization does not help get around this issue.
Similarly, we focus on a two-design case and later discuss how to extend to K ≥ 3.
Theorem 3 Let Assumption 1 hold, and suppose that K = 2 and µ1 > µ2. If OCBAR chooses a constant
N0 ≥ 2, then

− lim
T→∞

1
T

logPFS(T ) = 0.
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Proof. We follow the same idea as in Theorem 1’s proof, which is to construct an event on which design
1 gets “frozen” after initialization. Choose η > 0,ε > 0, and consider the following event.

A := {X̄1,N0 < µ2−2η ,S1,N0 ≤ ε},

which occurs with a positive probability. Let lt denote the tth design sampled/simulated after initialization,
where t = 1,2, . . . ,T −2N0. Note that

PFS(T )≥ P({X̄2,T ≥ µ2−η}∩{lt = 2,∀t = 1, . . . ,T −2N0} | A)P(A).

We then have

P({X̄2,T ≥ µ2−η}∩{lt = 2,∀t = 2, . . . ,T −2N0} | A)
≥P(lt = 2,∀t = 1, . . . ,T | A)︸ ︷︷ ︸

P1(T )

−P(X̄2,T < µ2−η | A)︸ ︷︷ ︸
P2(T )

.

Write P1(T ) as P(lt = 2,∀t | A) for short. Notice that

P(lt = 2,∀t | A) =P(lt = 2,∀t | S1,N0 ≤ ε)

=
P({lt = 2,∀t}∩{S1,N0 ≤ ε})

P(S1,N0 ≤ ε)

=

∫
ε

0 P(lt = 2,∀t | S1,N0 = x) fS1,N0
(x)dx

P(S1,N0 ≤ ε)
, (10)

where f1,N0 denotes the p.d.f. of S1,N0 . In addition, by the definition of Algorithm 3,

P(lt = 2,∀t | S1,N0 = x) = E

[
T−1

∏
t=N0

S2,t

S2,t + x

]
,

which implies that for all x ∈ [0,ε],

P(lt = 2,∀t | S1,N0 = x)≥ E

[
T−1

∏
t=N0

S2,t

S2,t + ε

]
. (11)

Plug (11) into (10) and we have

P(lt = 2,∀t | A)≥ E

[
T−1

∏
t=N0

S2,t

S2,t + ε

]
,

and it follows by Jensen’s inequality that

lim
T→∞

1
T

logP(lt = 2,∀t | A)≥ lim
T→∞

1
T

logE

[
T−1

∏
t=N0

S2,t

S2,t + ε

]

≥ lim
T→∞

1
T

T−1

∑
t=N0

E
[

log
(

S2,t

S2,t + ε

)]
. (12)

Furthermore, we have the following claim.
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Claim 1
lim
t→∞

E
[

log
(

S2,t

S2,t + ε

)]
= log

(
σ2

σ2 + ε

)
, ∀ε > 0.

Proof of Claim 1. This can be shown using the Dominated Convergence Theorem.

Apply Claim 1 to (12) to get

R1(ε) :=− lim
T→∞

1
T

logP1(T )≤ log
(

σ2 + ε

σ2

)
. (13)

On the other hand, P2(T ) involves a tail event and by the independence of {X̄2,T < µ2−η} and A,

R2 :=− lim
T→∞

1
T

logP2(T ) =− lim
T→∞

1
T

logP(X̄2,T < µ2−η) =
η2

2σ2
2
. (14)

We can find ε̃ > 0 such that R1(ε̃)< R2, so for ε = ε̃ there exists Tε̃ ∈ Z+ such that P1(T )−P2(T )> 0 for
all T ≥ Tε̃ . Taking ε = ε̃ and combining all these together,

limsup
T→∞

− 1
T

logPFS(T )≤− lim
T≥Tε

T→∞

1
T

log{[P1(T )−P2(T )]P(A)}= log
(

σ2 + ε

σ2

)
.

Take the limit on the RHS as ε ↓ 0 and the conclusion follows.

Theorem 3 implies a sub-exponential convergence rate. It is promising to extend the proof technique to
K ≥ 3: we only need to study an event where (i) all suboptimal designs have arbitrarily small initial variance
estimates and are “frozen” after initialization; (ii) one suboptimal design has an initial mean estimate that
is higher than µ1 +2η for some η > 0; (iii) the best design’s final estimate is lower than µ1 +η . The final
step is to check if such an event is still only sub-exponentially rare.

Theorems 1 and 3 both suggest that it may be sensible to avoid using a constant initial sample size N0 when
designing algorithms for fixed budget R&S, since it will likely result in a sub-exponential PFS convergence
rate. Setting all the maths aside, an intuitive explanation is as follows. After initialization, there is always
a nonzero probability that some designs’ mean and variance get severely underestimated/overestimated.
If an algorithm highly depends on those estimates, then it may be “tricked” into undersampling or even
“freezing” some designs, forbidding a timely correction of their estimation error. The problem with a
constant N0 is that it will result in a constant probability of being “tricked”. However, if we force the
initial sample size N0 to grow proportionally with T , then the probability of such an event will decrease
exponentially fast as T → ∞.

4.3 Exponential Convergence Rate of OCBA+ and OCBAR

With a linearly increasing N0, we show that the PFS converges exponentially fast for OCBA+ and OCBAR.
Our PFS bound, though crude, fills the long-standing void of finite-sample guarantee for OCBA. The key
idea is that N0 ≤ Ni ≤ T for each design i, so if for all r = N0, . . . ,T , the X̄i,r’s are close enough to their
true values, then a correct selection can be guaranteed regardless of the exact value of Ni. Considering the
complement of this event yields an exponential upper bound on the PFS.
Theorem 4 Let Assumption 1 hold and suppose µ1 > µ2 ≥ ·· · ≥ µK . Then, for OCBA+ and OCBAR
(with N0 = bα0T/Kc), there exists some positive constants C1, . . . ,CK (independent of T ) such that

PFS(T )≤C1 exp
(
−δ 2α0T

8σ2
1 K

)
+

K

∑
i=2

Ci exp
(
− δ̄ 2

i α0T
2σ2

i K

)
, ∀T ≥ KN0, (15)

where δ := µ1−µ2 and δ̄i = µ2−µi +
δ

2 for i = 2, . . . ,K.
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Proof. Note that if the event

E :=
T⋂

r=N0

{{
X̄1,r ≥ µ1−

δ

2

}⋂{⋂
i 6=1

{
X̄i,r ≤ µi + δ̄i

}}}
occurs, then we have a correct selection. Apply a Gaussian tail bound and we have

PFS(T )≤ P(E c)≤
T

∑
r=N0

[
P
(

X̄1,r < µ1−
δ

2

)
+

K

∑
i=2

P
(
X̄i,r > µi + δ̄i

)]

≤
∞

∑
r=N0

P
(

X̄1,r < µ1−
δ

2

)
+

K

∑
i=2

∞

∑
r=N0

P
(
X̄i,r > µi + δ̄i

)
≤

∞

∑
r=N0

exp
(
− δ 2r

8δ 2
1

)
+

K

∑
i=2

∞

∑
r=N0

exp
(
− δ̄ 2

i r
2σ2

i

)
.

The conclusion follows from evaluating the geometric sums.

Theorem 4 applies to a wide range of algorithms that starts by simulating each design bα0T/Kc times.
In particular, the original OCBA with N0 = bα0T/Kc will also achieve an exponential convergence rate.
In Section 5, we use numerical experiments to demonstrate the benefits of OCBA+ and OCBAR’s fully
sequential feature by comparing them with OCBA with a linearly growing N0.

5 NUMERICAL RESULTS

We compare the performance of OCBA+, OCBAR, OCBA, and a revised OCBA with N0 = bα0Tc, which
we call “OCBA2”. The problem parameters are listed as follows, where “Slippage Configuration” refers
to the least favorable configuration where all the suboptimal designs have the same mean.

1. Ten designs A: µ = [1,1.1,1.2, . . . ,1.8,5],σ = [5,5, . . . ,5,20].
2. Ten designs B: µ = [1,1.1,1.2, . . . ,1.8,5],σ = [20,20, . . . ,20,5].
3. Equal variances: µ = [1,2, . . . ,10],σi = 10,∀i = 1,2 . . . ,10.
4. Increasing variances: µ = [1,2, . . . ,10],σ = [6,7,8, . . . ,15].
5. Slippage Configuration A: µ = [1,1,1,1,2],σ = [2,2,2,2,10].
6. Slippage Configuration B: µ = [1,1,1,1,2],σ = [10,10,10,10,2].

The algorithm parameters are α0 = 0.2 for OCBA+, OCBAR and OCBA2, N0 = 10 for OCBA, and ∆ = 20
for OCBA and OCBA2. We would like to see how fast the PCS converges to 1 when T ranges from 200
to 4,000 (with an increment of 200). All four algorithms are run for 10,000 independent replications to
estimate the PCS using common random numbers, i.e., they share the same Xir’s for all i = 1, . . . ,K and
r = 1,2, . . .. The PCS curves are gathered in Figure 1. We have the following observations.

1. In all six cases, it can be seen that OCBA+, OCBAR and OCBA2 all attain higher PCS than OCBA
under every fixed T . In particular, in the first instance, OCBA takes as much as four times the
budget of OCBAR to achieve a 0.95 PCS.

2. In Figure 1 (a), (b), (e) and (f), OCBA clearly suffers from a slower convergence rate compared
with our algorithms.

3. The advantage of our algorithms is less obvious in Figure 1 (c) and (d), where no design’s variance
is significantly higher/lower than the others’.

4. Based on observations 2 and 3, we may conclude that OCBA+ and OCBAR are more likely to
achieve a large improvement if the designs have a wide range of variances. Also, which of these
two performs better appears to be problem-specific.
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5. Finally, OCBA+ and OCBAR almost always outperform OCBA2, but the improvement is much
smaller compared with that over OCBA. This suggests that (i) a constant N0 is the main bottleneck
of OCBA; (ii) a fully sequential allocation strategy can facilitate theoretical analysis as well as
further boost the performance.
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(a) Ten designs A.
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(b) Ten designs B.
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(c) Equal variances.
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(d) Increasing variances.
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(e) Slippage Configuration A.
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(f) Slippage Configuration B.

Figure 1: Comparison of PCS for different algorithms.
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