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ABSTRACT

We review static and dynamic optimization formulations for simulation allocation and selection procedures and
revisit several sampling approaches under a single umbrella. We conduct some new simulation experiments to
illustrate where the static optimization approach may be inadequate to capture the dynamic sampling decisions and
show how many existing sampling procedures ignore certain important considerations.

1 INTRODUCTION

Ranking and selection (R&S) is an actively studied field in simulation (see Bechhofer et al. 1995; Chen and Lee
2011; Powell and Ryzhov 2012). The objective is to find the alternative with the largest mean from finite alternatives
with unknown means:

(1y= arg max pi; .

=

The unknown mean of each alternative i, denoted by p;, can be estimated by sampling independently and identically
distributed (i.i.d.) replications X;, £ € Z", i=1,... k. Suppose (Xj ¢,...,X ) follows a joint distribution Q(-;0),
where 6 contains all unknown parameters in the sampling distribution, including the unknown means. The most
common assumption is that the replications of different alternatives are independent, i.e., Q(-;0) = [T, Qi(+; 6)),
where 6; contains all unknown parameters in the (marginal) sampling distribution Q; of the ith alternative. Normal
sampling distribution is often assumed, i.e., X;; ~ N(IJ,',GZZ), i=1,...,k

Applications of R&S include optimizing complex discrete event dynamic systems (DEDS) that are computationally
intensive to simulate (Chen and Lee 2011), and finding the most effective drugs, where the economic cost of each
sample for testing the effectiveness of the drug is expensive (Powell and Ryzhov 2012). In the case where the
normal assumption is not satisfied, batching is often used to make the batched sample means approximately normal.

The problem of interest is how to allocate the simulation replications among the k alternatives to efficiently find
the best alternative. A well-researched paradigm to address this problem is in an indifference zone (IZ) framework
that dates back to Bechhofer (1954) and Rinott (1978). Recent developments can be found in Kim and Nelson
(2001), Frazier (2014), Luo et al. (2015), and Ni et al. (2017). The sampling allocation procedures in the 1Z
framework guarantee a probability of correction selection (PCS) up to a certain level. In the IZ framework, the
guarantee of PCS is primary, whereas the (statistical) efficiency for finding the best is secondary. Due to the need
for guaranteeing a PCS level in the worst-case configuration, the sampling procedures in the IZ framework tend to
allocate more replications than necessary in practice.
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As a result, much of the recent work has focused on sampling allocation procedures whose primary goal is to
enhance the efficiency for finding the best alternative, including optimal computing budget allocation (OCBA) (Chen
et al. 2000; Chen et al. 2006), expected value of information (EVI) (Chick and Inoue 2001; Chick et al. 2010),
knowledge gradient (KG) (Gupta and Miescke 1996; Frazier et al. 2008), and expected improvement (EI) (Jones
et al. 1998; Ryzhov 2016), where the sampling-allocation decision is either formulated as a static optimization or a
one-step optimization problem. Recently, Peng et al. (2016) and Peng et al. (2018b) formulate the decision in R&S
as a dynamic optimization problem, where the optimal solution satisfies the Bellman equation of a stochastic control
problem. In this work, we review static optimization and dynamic optimization approaches in R&S and revisit
several sampling allocation procedures under a single umbrella. We conduct some new simulation experiments to
illustrate where the static optimization approach may be inadequate to capture the dynamic sampling decisions and
show how many existing sampling procedures ignore certain important considerations.

2  STATIC OPTIMIZATION
The early optimal sampling allocation procedures attempt to solve the problem formulated as a static optimization
problem under both frequentist and Bayesian frameworks.

2.1 Frequentist Framework

One approach to the optimal sampling allocation is to formulate it as the following static optimization problem,
which maximizes the PCS under fixed simulation budget:

max ]P’(X<(>)> , J# (1) ) Zn,—n (1)

Nyl
where n is the total number of simulation replications, »; is the number of replications allocated to alternative i, and
o(n) - Yol Xie
1 n[ °
Solving optimization problem (1) is difficult. To reduce the complexity of solving it, a surrogate problem is to
maximize the large derivations rate of the probability of false selection (PFS) (Glynn and Juneja 2004):

S ¢ < _
oty (1B () >, 5 019)). a0 Fow=1 @
where w; =n;/n, i=1,... k. In the case of normal sampling distributions, optimization problem (2) is equivalent to
max min G i;0), 3
Wi, Wi (1) J( Wiy ) ©)
where )
(H( 1)~ M)

Gj(w<1>,Wj;9)— ]7é<1> :

2(00y /way +07/wj)’
An approximate solution for the optimization above ylelds the following OCBA formula (Chen et al. 2000):

W"(""S’) i (), @)

Gj(S,'

(&)

where &; = f(1) — Hi, i # (1). Notice that there is unknown parameter 6 in optimization problems (1) and (2). A
two-stage procedure can be used to implement the sampling allocation procedures derived in a static optimization
problem under the frequentist framework (see Section 4).
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2.2 Bayesian Framework

Neither optimization problem (1) nor (2) quantifies the uncertainty of parameter 8. To address this problem, a
Bayesian framework is introduced. Suppose 0 follows a prior distribution F(+; ) that reflects our prior knowledge
on the unknown parameter, where { in the prior distribution is called a hyperparameter. Let X, l.(t ) = Xiy-.- ,X,-J[)

and & = {{, X 1<'), e ,ka }, where ¢ is the number of allocated replications. The posterior and predictive distributions
can be calculated using Bayes rule. In the case where the prior distribution is a conjugate prior of the sampling
distribution, the posterior distribution lies in the same parametric family of the prior distribution, i.e., F(-; ;) where
§ is the posterior hyperparameter. Under the conjugate prior, the information set & can be completely determined

by the posterior hyper-parameters, i.e., & = ;. The conjugate prior for the normal distribution N (,ui,Giz) with

(0) (0) )2)

unknown mean and known variance is a normal distribution N(u,; ", (o;

N, (6[")?), where

(f)_(c(f))2 ‘ui(O) +ti)_(i(l) (6(1))2_ 1 _|_i B
M =(0; (6(0))2 o2 |’ i) = (d'(o))2 o? )

and the predictive distribution of Xj,1 is N([Ji(t),diz-l- (o.i(t))z)_ If Gl-<0) — oo, ,ul-(t) = X'l-(t), and the prior is the
uninformative prior in this case. For a normal distribution with unknown variance, there is a normal-gamma
conjugate prior (see DeGroot 2005).

Under the Bayesian framework, the optimal two-stage sampling allocation can be formulated as the following

static optimization problem:

. The posterior distribution of u; is

k
max E[P(X({) > X", j#(1)|&)|&,], st Ym=n ©)
i=1
or its Lagrangian relaxation (Chick and Inoue 2001). In (6), (1) is a measurable function of (ui,..., L) following

a posterior distribution conditional on &, and the simulation replications allocated at the second stage follow a
predictive distribution given information set &,,. Solving optimization (6) is complicated, and requires approximations
to obtain a closed-form solution (Chick and Inoue 2001). Optimization (6) lays out a theoretical foundation for
optimal two-stage sampling allocation. However, it has been widely observed that sequential sampling procedures
that incrementally increase simulation replications at the second stage typically perform better than the two-stage
procedure (see Chen and Lee 2011).

3 DYNAMIC OPTIMIZATION

The dynamic decisions in R&S problem can be formulated as an allocation and selection (A&S) policy (Peng et al.
2016). The allocation policy is a sequence of mappings < (-) = (A;(-),...,A,(:)) that sequentially allocates each
sample to an alternative based on collected information, and the selection policy .#(-) makes a final decision to
select the best alternative after exhausting all simulation replications.

3.1 Optimal A&S Policy

Define &% = {#(&%,); &}, and A;; (&) =1{A,(6",) =i}. The information collection procedure following a
sampling allocation policy in the R&S problem is illustrated by (7) from Peng et al. (2018b) for allocating four
samples among three alternatives. Given prior information &p, collected information set &4 is determined by the
two tables in the figure. The allocation decision represented by the table on the left determines the (bold) observable
elements in the table on the right.

X1 Xa1 X3 A11(&)=0 Axi(&)=1 A3:1({)=0
X12 Xo2 Xa2 Ap(&f) =1 Axpa(&) =0 A32(8) =0 %
Xi3 X3 X33 A13(83) =1 A3(65) =0 A33(&5)=0
X4 X4 Xsg A1a(8) =0 Axa(85) =0 Az4(8%) =1
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The sampling decision and information flow have an interactive relationship shown by (8) from Peng et al. (2018b).

C() - b@fl = {AI(CO) = 2;(5)1} > s > 69@40 = {AI(CO) = 2,...,A4(éa3a) = 3;@04} (8)

The sampling decision and the information set are nested in each other as ¢ evolves. However, Theorem 1 in Peng
et al. (2018b) shows that the sampling allocation policy would not affect the Bayesian structure under a canonical
assumption in R&S, i.e., the replications (XM7 .. ,Xk’g), (e Z™, are independent, while dependence between different
alternatives in sampling distribution Q is allowed. From Peng et al. (2018b), the optimal A&S policy (<7,",.7*)
satisfies the following Bellman equation:

Val) = Val6ii) i)+ ©)
where V,,(6,;1) = E[1{i = (1) }|&,], and

SH(8,) = arg .makan(é”n;i),

=1,

and for 0 <t <n,
Vi(&) = Vt(éot;i”i:AfH(éi)’ (10)

where V;(&;i) = E[Vi11(&, Xi141)|&], and

AL (&) = arg max Vi(&:i) -

i=1,...,

Although R&S shares many similarities with the multi-armed bandit (MAB) problem (Auer 2003), they also have
following differences:

6)) In standard MAB problems, the rewards are collected at all steps, whereas in R&S, the reward is collected
at the end.

(i1) In standard MAB problems, the reward for pulling one arm only depends on the state of that arm, whereas
in R&S, the reward for selecting one alternative depends on the states of k alternatives.

The optimal selection policy can be rewritten as

S (én) = arg max P(pi —p; >0, j#ilé) -

The commonly assumed selection policy that picks the alternative with the largest posterior mean would not be
necessarily the optimal selection policy, which is illustrated by a simple example from Peng et al. (2016). In Figure
1, assume U, Up, and u3 are three independently distributed Bernoulli random variables. where the probabilities
given are the posterior probabilities. Since E[u;] = —1/4, E[u,] = E[uz] = 0, and Var(i;) = 71, Var(p) =4,

1/2/ 2.5 7 2 1/7 1
15 15) M3

12N, %2 2\

Figure 1: Illustration of the selection policy with three independent Bernoulli distributed random variables.
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Var(us) = 1, although u; has the smallest mean, it has the largest variance. By simple calculation, we have the
following:

1 1
Plp > posp > pa) = 55 Pt > pu, po > pia) = P3>3 > po) = -
Therefore, the first alternative has the largest probability of being the best. The intuition is that if the first alternative
takes the larger value in its value space, then it is the largest regardless of the realizations of the other two. A

certain induced correlation affects the optimal selection policy (Peng et al. 2016).

3.2 Dynamic Allocation Policies

We revisit two well-known sampling allocation procedures, KG and EI, that solve one-step optimizations. The
sampling allocation policy in KG is
q

Ar1(8) = arg max, E {E {max ([Ji(tH),m;x/.L](-t))
J7F1

i=l,...,

527Xi,z,-+1}

.

Both KG and EI are consistent, because every alternative will be sampled infinitely often as the simulation budget
grows to infinity. However, the asymptotic sampling ratios of KG and EI do not achieve the asymptotically optimal
sampling ratio defined by (3) or the OCBA sampling ratio that is an approximate solution of (3). From Ryzhov
(2016), under the normal sampling distribution with known variance, the asymptotic sampling ratio of KG is

and the sampling allocation policy in EI is

=1,

Z[«‘r] (&) =arg max E [max (#imaxu<’),0>
=1k it

ij=1,....k, as., (11)

where &/ = |p; —max;; li;

,i=1,...,k, and the asymptotic sampling ratio of EI is

Jlim " ]25,-27 i, ] ,  a.s.
l}iigoni/n<l> =0, i#(l), as. (13)

In (11), the asymptotic sampling ratios of the best alternative and the second-best alternative have symmetric roles,
whereas either the asymptotically optimal sampling ratio or OCBA typically allocates more replications to the best
alternative. Thus, KG “shortchanges” the best alternative asymptotically. For EI, the ratio (12) is identical to (4)
in the OCBA formulas but (13), which prescribes that the proportion of replications allocated to the non-optimal
alternatives vanish asymptotically, differs from (5) in the OCBA formula. In terms of PCS, the asymptotic sampling
ratio of EI is even worse than equal allocation (EA). Specifically, the PFS of EA converges at a rate e~ ", ¢ > 0,
whereas the PFS of EI converges at e °"), where o(n) denotes lower order than n. This point is dramatically
illustrated by numerical examples in Peng and Fu (2017). An asymptotically optimal myopic allocation policy
(AOMAP) in Peng and Fu (2017), a variant of EI, has been proved to sequentially achieve the sampling ratio of
OCBA. Another variant of EI in Chen and Ryzhov (2017) sequentially achieves the asymptotically optimal sampling
ratio in (3).

Recently, Peng et al. (2018b) propose a dynamic sampling procedure derived in an approximate dynamic
programming (ADP) paradigm. The idea of ADP is to find a suitable value function approximation (VFA) for
Bellman equations (9) and (10). A simple treatment is to fix the selection policy to select the alternative with the
largest posterior mean, and look one step ahead for allocating the next replication. Then, VFA becomes an integral
of the standard normal density over a region encompassed by k — 1 hyperplanes. In the case with three alternatives,
the region is the shaded area in Figure 2 from Peng et al. (2018b). Since the standard normal density decays at an
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exponential rate with respect to the distance from the origin, the VFA can be further simplified as the integral over
the area of the largest inscribed ball encompassed by the hyperplanes, i.e., the circle in Figure 2 for the case of
three alternatives. Owing to symmetry, maximizing the integral over the inscribed ball is equivalent to maximizing
the size of the circle, which yields an analytical form for its solution.

2

wx = 'ug))/ _”fi;t A

N\

U221 +uxpn = Hg;l _“8;1

Figure 2: Area of integration for approximation is the circle, which captures the dominant values of
integrand exp(—(z3 +23)/2).

With the approximations described above, an approximately optimal allocation policy (AOAP) in Peng et al.
(2018b) is given by
Ar1(&r) = arg max V(i) (14)
i=

where

n 0\ 0 _ 0}
10, “j ) min (“(Uz —Hy )
, mi
0\ (50D L0 (0N L (50
(off,) + (") (off,) + (")
where (1); =max;—;_x ui(t). Notice that AOAP has an analytical form that reflects a similar (posterior) mean-variance
tradeoff as the OCBA formula. Not only is AOAP consistent but it also sequentially achieves the asymptotically
optimal sampling ratio in (3). AOAP is based on a single-feature VFA. More features can be introduced to better
approximate the true value function, e.g., Peng et al. (2018b) provide a two-feature VFA that includes both the
information of (posterior) mean-variance and the information of induced correlations to avoid non-monotonicity of

PCS in a certain low-confidence scenario (Peng et al. 2015), which usually occurs when the computing budget is
low.

XA/,(éat;j)imin , o J#F (D,
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3.3 Rollout Policy

The A&S policy can also be viewed as a special partially observable Markov decision process (POMDP) with the
state variable following a fixed distribution rather than a Markov process. We introduce a rollout policy that can
be well integrated with the existing sampling procedures (Bertsekas and Castanon 1999). Given a base A&S policy
(T, ST), e.g., AOAP as the sampling allocation policy and selecting the largest posterior mean as the selection
policy, we can obtain a value function:

V(i) = ER{L(ET) = (D}Hé Xyl 4],
where &7 is the information flow generated by . from step ¢+ 1 to step n. A rollout policy is

A,H((E}) —arg max, V7 (&51),
which is guaranteed to be at least as good as the base policy m. In general, it is difficult to have an analytical
form of V*(&;;i). From Peng et al. (2018b), for discrete sampling distribution, the size of the state space grows
exponentially with the numbers of alternatives and possible outcomes, and grows polynomially with the number
of allocated replications. Thus, numerical calculation would be computationally infeasible for a problem with a
moderate sizes of alternatives, outcomes, and replications.

Monte Carlo simulation could be a computationally feasible choice. We can generate a large number of sample
paths (particles), and use particle filtering to iteratively update the posterior measure (Doucet 2001). R&S only
requires a special case of particle filtering where the particles do not mutate to update the posterior distribution as
follows:

M M
|gt Z _> F |éat+1 Z r+1
j=1 /:

()

where M is the number of particles, 6;

1)

is the jth particle for 6; at step ¢, and 1,(-) is the delta-measure with mass

, j= 1,...,M, are resampled from 91'(,]')

0 (%i:6))

22/1:1 qi (Xi,t;ei(;)) ’

on x. The particles Gl-E f , j=1,...,M, with weights

W,’Ji jil,...,M,

where ¢;(-) is the density for the sampling distribution of the ith alternative, i = 1,... k.

We can also use the parallel rollout policy (Chang et al. 2004). Suppose I1={mx;,...,7;} is a set of base A&S
policies, e.g., KG, EI, OCBA, and AOAP as base sampling allocation policies. Then, we can obtain the following
value function:

V&) = max V().

which in turn leads to the following parallel rollout policy:

Ars1(&) = arg max, vI(&:i) .

i=1,...,

The parallel rollout policy is guaranteed to be at least as good as the best base policy in II.

4 SIMULATION EXPERIMENTS

‘We provide numerical evidence that the static optimization formulation is inadequate to capture the dynamic decisions
in R&S by showing that even with perfect information on the value of the parameters, neither optimal large deviations
(OLD) that uses the sampling ratio given by (3) necessarily achieves a good performance nor does the static optimal
sampling allocation (SOP) given by (1). Then, we show that many existing sampling allocation procedures do not
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Figure 3: 10 alternatives with i; = 10—i,0;, =6, i = 1,...,10; PCS estimated by 10° macro-experiments.

capture well induced correlations.

Example 1. 10 alternatives following independent normal sampling distributions: X;, ~ N (10 —i,6%), ¢ € 77,
i=1,... k. The total simulation budget is 500. We compare four different sampling allocation polices: OLD, which
allocates replications according to sampling ratio in (3) given the true parameters; sequential OLD (SOLD), which
uses 100 initial replications equally allocated to 10 alternatives to estimate means and variances and then allocates
the rest of the replications one by one using a “most starving” rule that minimizes the gap between the number of
allocated replication to each alternative and the number of replications prescribed by (3) with unknown parameters
sequentially updated (Chen and Lee 2011); two-stage OLD (TOLD), which has the same first stage with SOLD and
then uses the sampling ratio determined by (3) to allocate the rest of the replications in one shot; and, finally, EA.
The optimization in (3) can be solved efficiently by a one-dimensional nonlinear convex optimization procedure
(Peng et al. 2013).

From Figure 3, we can see that OLD is even worse than EA before the simulation budget reaches 400, and it only
catches up with TOLD when the simulation budget reaches 500. SOLD has the best performance throughout. The
observations above indicate that the asymptotic optimal sampling ratio per se does not achieve a good performance
when the simulation budget is not large enough, whereas sequentially implementing it in a proper way could lead
to a superior performance.

Example 2. 3 alternatives, where the first alternative is deterministic with u; =0, and X; ; ~ N(—0.4, 32), L e ZT,
i=2,3. Then, PCS in (1) becomes

P(H" <0x{" <0l6) = (2:;) @ (2:) :

where ®(-) is the distribution function of the standard normal distribution. By symmetry, we know that the SOP
in (1) is n; =0 and ny = n3 = n/2. From Figure 4, we can see that SOP is better than EA, which wastes 1/3 of
replications on the deterministic alternative, whereas it is worse than TOLD before the simulation budget reaches
about 350; SOLD performs best throughout. Similar numerical observations that SOP and OCBA with perfect
information do not perform as well as a sequential OCBA can be found in Chen et al. (2006).

Example 3. SOLD achieves a good performance in many classic R&S problems, because the (posterior) mean-
variance tradeoff happens to lead to a desirable A&S policy in certain scenarios. However, this is not always
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Figure 4: Three alternatives with t; =0, up = u3 = —0.4, and 61 =0, 0, = 03 = 3; PCS estimated by
10° macro-experiments.

the case. Recently, Shin et al. (2017) report the poor finite-time performance of sequentially implementing the
asymptotically optimal sampling ratio for selecting the best quantile under some particular distributions. In addition,
the (posterior) mean-variance tradeoff could lead to misleading results in a certain low-confidence scenario that is
qualitatively described by three characteristics: the differences between the means of competing designs are small,
the variances are large, and the simulation budget is small.

For this example, there are three alternatives with y; = 0.001, u, = u3 =0, and o7 = V2, 00 = o3 = 1, which
falls into the low-confidence scenario with a total simulation budget of 60. We test seven sampling allocation
policies: OCBA implemented sequentially by the “most starving” rule (Chen and Lee 2011); sequential EVI with
0-1 loss function (Chick et al. 2010); KG with uninformative prior (Frazier et al. 2008); PTV, for which the
number of allocated replications to each alternative is proportional to its sample variance, implemented sequentially
by the “most starving” rule; EA sequentially from the first to the last alternative in a cyclical manner; SOLD; EI
with uninformative prior (Jones et al. 1998); AOAP in (14) with uninformative prior. In the first-stage, 30 initial
replications are equally allocated to three alternatives to estimate unknown parameters or construct the uninformative
prior, and the remaining 30 replications are allocated according to different sampling allocation procedures.

From Figure 5, we can see that for all but EA, PCS decreases with the number of allocated replications up
through a simulation budget of 45. SOLD has the worst performance, and the trajectories of OCBA and EVI are
indistinguishable. From the trajectory of EA, we can see that each time a replication is allocated to the first (best)
alternative, PCS decreases, and when a replication is allocated to the second or third alternative, PCS increases.
The decreasing of PCS is caused by ignoring the induced correlations (Peng et al. 2015). This problem has been
addressed by a gradient-based myopic allocation policy (G-MAP) that takes account of the induced correlations in
Peng et al. (2018a) under a Bayesian framework, as well as an offline learning scheme under the ADP paradigm
in Peng et al. (2018b). Under the A&S umbrella, the final value function increases with respect to the number of
simulation replications if the optimal selection is used, by noticing that

E{ (1) = (D} = E[E {7 (&ri1) = (1)} 1]

=E Lg%k[@[l{i = <1>}|<5‘;+1]} =E {E Lgft{kE[l{i = (1)} &nr1] |£”

> | mox BE[(i= D)6,0116]] =B | max BIG= (0}16]] =E1{7"(6) = )]
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Figure 5: Three alternatives with t; = 0.001, u, = u3 =0, and 6] = v/2, 6, = 63 = 1; PCS estimated by
10® macro-experiments.

where the inequality is due to the Jensen’s inequality, and the equalities can be obtained by the definition of the
optimal selection policy and the property of law of total expectation.

5 CONCLUSION

We reviewed several static optimization and dynamic optimization formulations for R&S. Under the umbrella of
an A&S policy, we revisit several sampling allocation procedures. KG and EI do not have desirable asymptotic
sampling ratios, whereas AOAP derived in an ADP paradigm (Peng et al. 2018b) achieves the asymptotically
optimal sampling ratio. Simulation results demonstrate that the static optimization formulation is inadequate to
capture dynamic sampling allocation decisions, and many existing sampling allocation procedures do not capture
well certain induced correlations.

Under the A&S umbrella, we introduce a rollout policy that can be well integrated with existing sampling
procedures with a performance improvement guarantee. Future research may leverage some artificial intelligence
tools, e.g., neural networks, to better approximate the value function in the Bellman equations (9) and (10) using
offline training. Many R&S related problems such as subset selection (Chen et al. 2008), feasibility determination
(Xie and Frazier 2013), minimizing expected opportunity cost (Gao et al. 2017), and targeting and selection (Ryzhov
2018), where the only difference lies in the final reward in the Bellman equation (9), could be treated under a single
umbrella.
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