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ABSTRACT

We propose a simulation-based prediction framework which can quantify the prediction uncertainty of system
future response and further guide operational decisions for complex stochastic systems. Specifically, by
exploring the underlying generative process of real-world data streams, we first develop a nonparametric
input model which can capture the important properties, including non-stationarity, skewness, component-
wise and time dependence. It can improve the prediction accuracy, and the posterior predictive distribution
can quantify the prediction uncertainty accounting for both input and stochastic uncertainties. Then, we
propose the simulation-based prediction framework which can efficiently search for the optimal operational
decisions hedging against the prediction uncertainty and minimizing the expected cost occurring in the
planning horizon. The empirical study demonstrates that our approach has promising performance.

1 INTRODUCTION

The proposed simulation-based prediction framework can be applied to many application domains, such
as manufacturing, health care and service. In this paper, we use the bio-pharmaceutical supply chain
management as an illustration example. There are various challenges for biopharma supply chain management
(Ma 2011). First, there exists high uncertainty in supply, production, testing and demand. The quality and
ordering lead time of some key raw materials often have large variation. The production yield and cycle
time have high fluctuation due to contamination and cross-contamination. The demand of clinical products
is hard to predict. Second, the bio-pharmaceutical supply chains tend to be complex since many clinical
and commercial products with totally different demand patterns share the same inventory, production and
testing resources. Third, there is rapid change in the technology and market. The product lifetime is
usually short and new products are frequently launched. At the same time, the internet-connected data
collection devices can result in the availability of rich real-world data streams, such as sensor and barcode
data, which have the potential to provide the current status of supply chains and production processes.

Since the bio-pharmaceutical manufacturing is a life saving industry, it requires a close to 100% service
level. For the complex and dynamic biopharma supply chains with huge uncertainty in supply, testing,
production and demand, coherent and fast decision making in inventory control, testing and production
scheduling are extremely important in order to hedge against the impact of the uncertainties and guarantee
the on-time product delivery. Since it is challenging to analytically assess the random behaviors of complex
stochastic systems, the simulation has become an important tool for the design of supply chains and
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production processes. However, the simulation methodologies developed to guide the dynamic operational
decisions are still open.

To support the dynamic decision making, the simulation can be used to predict the system future
response. To provide the reliable and cost-efficient decisions, it is important to improve the prediction
accuracy of system performance in the planning horizon and correctly quantify the prediction uncertainty.
The stochastic behaviors of outputs depend on the choice of input models, defined as stochastic processes
used to drive simulation experiments. In the many real applications, we often have input processes with
component-wise and time dependence. For example, in the bio-pharmaceutical supply chains, the demands
of different drugs often depend on each other. Also, there exists the time dependence in the demand process
since patients usually take the drug for several cycles. To improve the prediction of system performance,
we need to faithfully capture the important properties of real-world data streams.

Several approaches have been proposed in the simulation literature to capture the dependence. For
example, Cario and Nelson (1998) proposed an Autoregressive-to-Anything (ARTA) Processes to model the
stationary time dependence. Biller and Nelson (2005) fitted ARTA processes with the Johnson translation
system (JST) marginal distributions to the moments of real-world data. Biller and Nelson (2008) extended
ARTA to Vector Autoregressive-to-Anything (VARTA), which can model both the component-wise and
time series dependence. However, the stationary VARTA process can not capture the non-stationarity in
the real-world data streams. In many situations, ignoring the non-stationarity could lead to unfounded
estimation of the system response (Harrod and Kelton 2006).

Various approaches have been proposed to model non-stationary input models with time dependence.
For example, Kuhl and Wilson (2001) introduced a non-homogeneous Poisson Process (NHPP) to model
the non-stationary arrival process. The long-term trend and nested cyclic behavior within small cycle length
are modeled. Gerhardt and Nelson (2009) proposed the non-stationary and non-Poisson (NSNP) arrival
process, and they modeled the non-stationarity by a rate function with pre-specified forms. They further
proposed the non-stationary and nonrenewal (NSNR) arrival process in Nelson and Gerhardt (2011). While
the non-stationarity is captured by these approaches, they mainly focus on arrival processes.

The non-stationary dynamic behaviors of input data are often induced by some latent states or factors.
For example, in bio-pharma supply chain, different drugs could have similar effects on the treatment for
certain diseases, such as flu, which could occur periodically and seasonally. Under different spread status
of diseases, the demands for these drugs have different statistical behaviors. There exist both time and
component-wise dependence among the drug demands. First, the course of treatment usually lasts a certain
period, which introduces the time series dependence of the demands. Second, since the drugs could have
similar effects on the treatment, their demands could be highly correlated with each other.

In addition, the input models are often estimated by finite real-world data. For example, since the
product life time in the bio-pharmaceutical industry is usually short and there are limited demand data,
the estimation uncertainty of input models, called the input uncertainty, could be large. Ignoring the input
uncertainty could lead to unsound prediction of system future response. Thus, it is necessary to correctly
quantify the impact from both input and stochastic uncertainties.

In this paper, to improve the prediction accuracy and correctly quantify the prediction uncertainty,
we first propose a nonparametric input model, called the Infinite Markov Switching Vector Autoregressive
(IMS-VAR). A Markov process is used to model the state evolution, which can be interpreted as “global”
time dependence. Under each state, Vector Autoregressive (VAR) is used to model the “local” dependence.
IMS-VAR can capture the rich dynamic behaviors of real-world input data streams, including skewness,
multimodality and dependence, and it can improve the prediction accuracy. Further, the posterior distributions
of the flexible input models can correctly quantify the input uncertainty. The posterior predictive distribution
can quantify the prediction uncertainty induced by both input and stochastic uncertainties.

Then, to quickly find the optimal operational decisions hedging against the prediction uncertainty, we
propose a simulation-based prediction framework to guide the real-time operational decisions for complex
stochastic systems. Since each simulation run could be computationally expensive, motivated by Fu (2006),
we propose a mini-batch gradient descent (GD) method that can efficiently employ the simulation resource
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to search for the optimal operational decisions. The simultaneous perturbation stochastic approximation
(SPSA) proposed by Spall (1998) is used to efficiently estimate the gradient.

The contributions of this paper are summarized as follow.

• The nonparametric IMS-VAR input model can capture the important properties in the real-world
data streams, including non-stationarity, skewness, component-wise and time series dependency. It
can improve the prediction accuracy.

• The posterior distribution of flexible input models is used to quantify the input uncertainty, and
then the posterior predictive distribution can correctly quantify the prediction risk induced by both
input and simulation uncertainties.

• We propose the simulation-based prediction framework that can efficiently employ the simulation
resource to search for the optimal operational decisions. The simulation experiments are driven
by the posterior predictive distribution. Then, the mini-batch gradient descent method is used to
quickly search for the optimal operational decision hedging against the prediction uncertainty.

In the next section, we provide the problem description and briefly introduce the simulation-based
prediction framework. In Section 3, we first present the nonparametric Bayesian IMS-VAR model, and
provide the inference and sampling procedure to generate scenarios of future inputs. Then, built on the
simulation-based probabilistic prediction, a mini-batch stochastic gradient descent approach is introduced
to efficiently and quickly find the optimal decisions. We study the finite sample performance of our
input forecast model and simulation-based prediction framework in Section 4, and conclude this paper in
Section 5.

2 PROBLEM DESCRIPTION AND PROPOSED APPROACH

We use the bio-pharmaceutical supply chain risk management as an illustrative example to describe the
problem of interest. It is challenging to manage the biopharma supply chains because there exists high
uncertainty in supply, testing, production and demand, and the systems need to evolve fast to be competitive.
Thus, to construct a cost-efficient and reliable supply chain, it is critically important to find the real-time
operational decisions hedging against various sources of uncertainty. Here, we want to find the optimal
decisions minimizing the expected overall cost occurring during the planning horizon, including the inventory
holding cost, the backorder cost for unsatisfied demands, and the production cost. Suppose that the current
time period is T , and the planning horizon length is τ . Denote the overall cost occurring in the planning
horizon as ∑

τ
h=1CT+h(XT+h,µµµ), where XT+h represents the demands of d drugs realized in the (T +h)-

th time period, CT+h(XT+h,µµµ) is the cost and µµµ ≡ {µ1, . . . ,µL} denotes the operational decision. For
simplification, suppose that the decision µµµ is fixed during the planning horizon.

The future demand XT+h can be predicted by using the historical data, denoted by X[1:T ] = (X1, . . . ,XT ).
Specifically, the unknown “correct” input model, denoted by Fc, can be estimated by using the historical data
with the posterior distribution p(F |X[1:T ]) quantifying the input uncertainty. Then, given any input model
estimate F , the prediction distribution p(X[T+1:T+τ]|F) quantifies the prediction risk induced by stochastic
uncertainty. Thus, the prediction uncertainty characterized by the posterior predictive distribution,

p(X[T+1:T+τ]|X[1:T ]) =
∫

p(X[T+1:T+τ]|F)p(F |X[1:T ])dF,

can account for both input and stochastic uncertainties. Notice that we do not separately handle input and
stochastic uncertainties because the estimation over underlying input models is mainly for predicting the
future demands based on the information extracted from the historical data.

To hedge against both stochastic and input uncertainties, we present a data-driven stochastic optimization.
Given any decision µµµ , a predictive distribution of the overall cost is

p

(
τ

∑
h=1

CT+h(XT+h,µµµ)

∣∣∣∣∣X[1:T ]

)
=
∫

p

(
τ

∑
h=1

CT+h(XT+h,µµµ)

∣∣∣∣∣F
)

p(F |X[1:T ])dF.
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Then, the objective is to find the optimal operational decision minimizing the expected cost occurring in
the planning horizon,

minimize
µµµ∈ΩΩΩ

E

(
τ

∑
h=1

CT+h(XT+h,µµµ)

∣∣∣∣∣X[1:T ]

)
where ΩΩΩ is a continuous and convex feasible region. Notice that differing with existing empirical stochastic
optimization (which takes the input model estimate as the true one), robust optimization, and distributionally
robust optimization, our approach can lead to decisions equally hedging against both input and stochastic
uncertainties.

Since the bio-pharma supply chains could be complex with numerous uncertainty and there is no closed
form expected future cost, simulation is used to predict the future system response. In this paper, we
propose a simulation-based prediction framework which can quantify the overall prediction uncertainty
for the future system response, and further provide the stochastic gradient based optimization approach
that can efficiently employ the simulation resource to search for the optimal decisions hedging against
the prediction uncertainty induced by both stochastic and input uncertainties. Specifically, we propose a
non-parametric Bayesian approach that can capture the important properties of the real-world data streams.
The posterior distribution of flexible input models, p(F |X[1:T ]), can correctly quantify the input uncertainty.
The scenarios of X[T+1:T+τ] generated from the posterior predictive distribution p(X[T+1:T+τ]|X[1:T ]) can
quantify the prediction risk induced by both input and stochastic uncertainties, and they are used to drive
the simulation experiments in the prediction framework. Then, the mini-batch stochastic gradient descent
approach is used to efficiently and quickly search for the optimal real-time operational decision, denoted
by µµµ?, minimizing the expected future cost.

3 A SIMULATION-BASED PREDICTION FRAMEWORK

In order to provide the cost-efficient and reliable operational decisions, we need to improve the future input
forecasting and correctly quantify the prediction uncertainty. In many situations, the dynamic behaviors
of input models are induced by some latent factors or states. For example, in bio-pharmaceutical supply
chains, the product demands depend on states, such as the spread level of diseases. The demands under
different states could have different dynamic behaviors, and the spread level also evolves with time. Thus,
to improve the prediction accuracy, it is necessary to model the stochastic processes of latent states and
also the dynamic behaviors of input data under each state.

Building on the univariate wind energy forecasting model in Xie et al. (2018), in Section 3.1, we first
present a nonparametric Infinite Markov Switching Vector Autoregressive (IMS-VAR) model to capture
the important properties in the real-world data streams, including non-stationarity, dependence, skewness
and multi-modality. Given the historical data X[1:T ], we provide the Bayesian inference and a sampling
procedure to generate the posterior samples of input model. Then, in Section 3.2, we introduce the
simulation-based prediction framework. We generate the future scenarios for X[T+1:T+τ] from the posterior
predictive distribution p(X[T+1:T+τ]|X[1:T ]) to drive the simulation experiments. After that, we develop the
mini-batch gradient descent method that can efficiently employ the tight computational resource to search
for the optimal operational decision µµµ?.

3.1 A Nonparametric IMS-VAR Input Model and Input Uncertainty Quantification

Let st be the latent state at time period t. Since there could be infinite potential state values and the current
state typically depends on the previous one, we use an infinite hidden Markov model (IHMM) to model
the state transition process. At each state, the dynamic behaviors of {Xt} is modeled by VAR time series
with order p. Thus, given the historical data X[1:t] and input model F , the probabilistic prediction density
function of Xt+1 is

f (Xt+1|X[1:t],F) =
+∞

∑
i=1

p(st+1 = i|X[1:t])h(Xt+1|θθθ st+1 ,X[1:t],st+1 = i)
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=
+∞

∑
i=1

+∞

∑
j=1

p(st+1 = i|st = j)p(st = j|X[1:t])h(Xt+1|θθθ st+1 ,X[1:t],st+1 = i)

=
+∞

∑
i=1

+∞

∑
j=1

pi j p(st = j|X[1:t])h(Xt+1|θθθ st+1 ,X[1:t],st+1 = i)

where the VAR time series, denoted by h(·), is specified by parameters θθθ i at state i and pi j is the transition
probability from state i to j. The flexible nonparametric IMS-VAR input model can capture the rich properties
in the real-world data streams, including non-stationarity, multi-modality, skewness, component-wise and
time series dependence.

Following Xie et al. (2018), in order to support the inference and implementation, a hierarchical Dirichlet
process (HDP) is used to represent IHMM; see the introduction on HDP in Teh et al. (2006). A global
Dirichlet Process (DP) is used to model the prior distribution of latent state, denoted by G0 ∼DP(α,Gθθθ ),
where α is the concentration parameter and Gθθθ represents the prior distribution for parameters θθθ . Let
G0 = ∑

+∞

`=1 π`δθθθ `
, where π` is the probability staying in state ` which has the dynamic behaviors of {Xt}

characterized by VAR with parameters θθθ `, and δθθθ `
denotes a Dirac function at θθθ `. Thus, our prior belief

on πππ has a stick-breaking representation, πππ ∼ Stick(α). Then, since the possible state values are shared
by variables st with t = 1,2, . . ., a set of state-conditional DP, Gi|G0,η ∼ DP(η ,G0), is used to model
the prior transition probabilities from current state i to the next state, denoted by pppi, where η denotes the
concentration parameter. Thus, the IMS-VAR model can be represented as

Xt = φφφ(st)X̃t +εεε t

εεε t ∼N (0,Σ(st))

θθθ st ≡ {φφφ(st),Σ(st)} ∼ Gθθθ

st |st−1,{pppi}+∞

i=1 ∼ pppst−1

pppi|πππ ∼ DP(η ,πππ)

πππ ∼ Stick(α)

(1)

where X̃t = [1,X>t−1, . . . ,X>t−p]
> is a vector with length k = 1+d p, and θθθ st is the VAR parameters under

the state st with φφφ(st) denoting a d× k coefficient matrix and Σ(st) denoting a d×d covariance matrix.
The Bayesian posterior inference for IMS-VAR input model in (1) is similar to that of IMS-AR proposed

in Xie et al. (2018). Specifically, given the historical data X[1:T ], there are M active states, defined as those
states visited by X[1:T ]. Let Ti = {t : st = i} be all the time periods when the state is i, let ccc = (c1, . . . ,cM)
denote the counter vector with ci recording the number of visits to state i, and let NNN denote the transition
matrix with Ni j recording the number of transitions from state i to state j for i, j = 1, . . . ,M.

The conditional posterior for st is

p(st = i|X[1:T ],πππ,st−1,st+1,θθθ i)

=C0× p(st = i|πππ,st−1)p(st+1|πππ,st = i)p(Xt |st = i,θθθ i,X[1:t−1])

=

C0×
ηπi+Nst−1 ,i

η+cst−1

ηπst+1+Ni,st+1
η+ci

fi(Xt |θθθ i), 1 < t < T

C0×
ηπi+Nst−1 ,i

η+cst−1
fi(Xt |θθθ i), t = T

(2)

and p(s1 = 1) = 1, where fi(Xt |θθθ i) =
1

(2π)d/2Σ(i)1/2 exp
[
−1

2

(
Xt −φφφ(i)X̃t

)>
Σ(i)−1

(
Xt −φφφ(i)X̃t

)]
and C0 is

a normalizing constant shared by all st = i to guarantee that ∑
M+1
i=1 p(st = i|X[1:T ],πππ,st−1,st+1,θθθ i) = 1.

Given the prior πππ ∼ Stick(α), the conditional posterior for πππ is derived by following (Teh, Jordan,
Beal, and Blei 2006),

πππ|s[1:T ] ∼ Dirichlet(c1, . . . ,cM,α), (3)
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where s[1:T ] = (s1, . . . ,sT ).
Let XXX [Ti] denote a ci×d matrix of XXX t with t ∈ Ti, and X̃̃X̃X(i) denote the corresponding ci× k regressors

matrix having each row to be X̃XX t with t ∈ Ti. For the parameters θθθ i of the VAR model i, suppose the prior
has the form of a normal inverted Wishart,

vec(φφφ(i))|Σ(i) ∼ N (vec(µΦ),VΦ⊗Σ(i))
Sigma(i) ∼ Inv-Wishart(v,Ψ).

The posterior can be derived following by Banbura et al. (2010),

vec(φφφ(i))|X[1:T ],Σ(i)∼N (vec(D),A−1⊗Σ(i))

Σ(i)∼ Inv-Wishart(v+ ci,C)
(4)

where A= X̃̃X̃X>(i)X̃̃X̃X(i)+V−1
Φ

, D= (XXX>[Ti]
X̃̃X̃X +µΦV−1

Φ
)A−1, C =Ψ+(XXX [Ti]−X̃̃X̃X(i)D>)>(XXX [Ti]−X̃̃X̃X(i)D>)+(D−

µΦ)V−1
Φ

(D−µΦ)
>.

With the conditional posterior distributions for input model parameters in (2), (3) and (4), following
by the Gibbs sampling procedure provided in Xie et al. (2018), we can generate B posterior samples of
input models F(b) ∼ p(F |X[1:T ]) for b = 1, . . . ,B to quantify the input model estimation uncertainty. At
each F(b), we can generate scenarios of future inputs X[T+1:T+τ].

3.2 A Simulation-Based Prediction Framework for Dynamic Risk Management

In this section, we propose a simulation-based prediction framework to guide the operational decision
which can hedge against the prediction risk induced by both input and stochastic uncertainties. Considering
the different computational cost required to generate the posterior samples of input model and draw the
random variates from each input model estimate, the proposed data-driven stochastic optimization approach
combines the sample average approximation (SAA) and the stochastic gradient descent (SGD) method to
efficiently find the optimal operational decision.

Denote the expected cost in the planning horizon with

g(µµµ)≡ E

(
τ

∑
h=1

CT+h(XT+h,µµµ)

∣∣∣∣∣X[1:T ]

)
=
∫

F
E

(
τ

∑
h=1

CT+h(XT+h,µµµ)

∣∣∣∣∣X[1:T ],F

)
p(F |X[1:T ])dF.

Following the Bayesian inference and Gibbs sampling procedure in Section 3.1, we can generate the posterior
samples, F(b) for b = 1, . . . ,B, quantifying the input uncertainty. Comparing with drawing a sample path
of X[T+1:T+τ] from F(b), it is computationally more expensive to generate each posterior sample of input
model. Thus, according to Jian and Henderson (2015), SAA can be employed to approximate the expected
cost in the planning horizon. Given B posterior samples of input model, the optimization problem is
approximated as

min
µµµ

ḡ(µµµ)≡ 1
B

B

∑
b=1

E

(
τ

∑
h=1

CT+h(XT+h,µµµ)

∣∣∣∣∣X[1:T ],F
(b)

)
.

where E
(

∑
τ
h=1CT+h(XT+h,µµµ)|X[1:T ],F(b)

)
is the expected cost at F(b). As B goes to infinity, the objective

ḡ(µµµ) converges to g(µµµ) under some regularity conditions.
Since the feasible region is continuous, according to Chau and Fu (2015), we consider a stochastic

gradient descent based approach to quickly search for the optimal solution. At any decision µµµ , the gradient
of ḡ(µµµ) is

∇ḡ(µµµ) =
1
B

B

∑
b=1

∇E

(
τ

∑
h=1

CT+h(XT+h,µµµ)

∣∣∣∣∣X[1:T ],F
(b)

)
.
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The gradient provides the direction to iteratively search for the optimal solution. Denote the decision
obtained in the n-th iteration as µµµn. According to Bottou (2010), the gradient descent update is,

µµµ
n = µµµ

n−1−ηn∇ḡ(µµµn−1) (5)

where ηn is the step size in the n-th update. According to Chee and Toulis (2017), the step size ηn could
be constant or decrease over n. We use a constant step size in the empirical study.

Since there is no closed form expected cost in general and each simulation run could be computationally
expensive, we estimate the gradient by simultaneous perturbation stochastic approximation (SPSA) intro-
duced in Spall (1998). Only two simulation runs are needed to estimate the gradient, which is especially
suitable for complex systems with high-dimensional decision space. Specifically, at the n-th iteration, given
any posterior sample F(b), a sample path of the future inputs X(F(b))≡X[T+1:T+τ] can be generated from the
distribution p(X[T+1:T+τ]|F(b),X[1:T ]). Two simulation runs at decisions (µµµn−1 + cnδδδ n) and (µµµn−1− cnδδδ n)

are used to estimate the gradient ∇E
(

∑
τ
h=1CT+h(XT+h,µµµ

n−1)
∣∣X[1:T ],F(b)

)
with the `-th component for

`= 1, . . . ,L

∂̂E
(

∑
τ
h=1CT+h(XT+h,µµµ

n−1)
∣∣X[1:T ],F(b)

)
∂ µ`

=
y(X(F(b)),µµµn−1 + cnδδδ n)− y(X(F(b)),µµµn−1− cnδδδ n)

2cnδn,`
(6)

where the response y(X(F(b)),µµµ)≡ ∑
τ
h=1CT+h(XT+h,µµµ) is obtained from the simulation output, δδδ n is an

L-dimensional random vector with δn,` representing the `-th element, cn decays over n. Following Spall
(1998), in the empirical study, each component δn,` follows a Bernoulli ±1 distribution with probability
of 1/2 and we select cn = 1/n1/6. In addition, to reduce the gradient estimation variance, the common
random number is applied at the two simulation runs in the gradient estimate in (6) (Kleinman et al. 1999).

Thus, we can efficiently employ the computational resource and speed up the operational decision
making. Suppose that the total budget is R simulation runs. If the gradient in (5) is estimated by using all B
posterior samples of input models, only N = bR/2Bc decision updates can be performed, which could lead
to a large optimality gap. According to Ruder (2016), we consider a mini-batch gradient descent method
where each update uses only part of B posterior samples of input models to estimate the expectation and
gradient. Specifically, in each iteration, we randomly select a batch of B0 ≤ B samples from F(1), . . . ,F(B).
Denote the index set of selected B0 samples as S, and use these samples to estimate the gradient,

∇̂ḡ(µµµn−1) =
1

B0
∑
b∈S

∇̂E

(
τ

∑
h=1

CT+h(XT+h,µµµ
n−1)

∣∣∣∣∣X[1:T ],F
(b)

)
(7)

where the gradient estimate ∇̂E can be obtained by applying (6). In the mini-batch gradient descent method
with batch size B0, there are N = bR/2B0c updates. There is a trade-off. With large B0, the estimate of the
gradient is more accurate in each update and less updates can be performed.

Then, by replacing ∇ḡ(µµµ) in (5) with the estimated gradient ∇̂ḡ(µµµ) in (7), the update at the n-th
iteration can be performed,

µµµ
n = µµµ

n−1−ηn∇̂ḡ(µµµn−1). (8)

Notice that the updated decision µµµn could be outside the feasible setΩΩΩ. In such situation, according to Calamai
and Moré (1987), the solution can be projected back to ΩΩΩ by µµµn = Π(µµµn), where Π(µµµ) = argmin

zzz∈ΩΩΩ

||zzz−µµµ||.

Algorithm 1 describes the detailed procedure to find the optimal decision based on mini-batch SGD,
where the gradient is estimated by simulation accounting for both input and stochastic uncertainties. The
algorithm starts with initialization of a feasible solution and select the appropriate step sizes. During each
iteration, B0 posterior samples of input models are randomly drawn from F(1), . . . ,F(B) without replacement.
At each F(b) of selected input models, a sample path of X[T+1:T+τ] is generated, and use it to drive two
simulation runs at decisions (µµµn−1 + cnδδδ n) and (µµµn−1− cnδδδ n). Then, the gradient component can be
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estimated by following (6). By taking average of the gradient at all B0 selected input model samples
according to (7), we get the estimated gradient to update the decision by applying (8), and project it to
ΩΩΩ if necessary. Repeat this procedure until reaching to the simulation budget R and record the optimal
solution µ̂µµ

?.

Algorithm 1: Procedure to Find the Optimal Operational Decision

1 Randomly initialize a feasible solution µµµ0, select the batch size B0, a sequence of step sizes
{η1, . . . ,ηN} and {c1, . . . ,cN}, where the number of iterations N = bR/2B0c.

2 for n = 1, . . . ,N do
3 Randomly select a mini-batch with size B0 from the B posterior samples of input models,

denote the set of indices as SB.
4 Randomly generate a permutation vector δδδ n.
5 for b ∈ SB do
6 Generate a sample path of input variates X[T+1:T+τ] by using F(b), denoted by X(F(b)).
7 Run simulations at decisions (µµµn−1 + cnδδδ n) and (µµµn−1− cnδδδ n) driven by X(F(b)). Record

the outputs y(X(F(b)),µµµn−1 + cnδδδ n) and y(X(F(b)),µµµn−1− cnδδδ n).
8 for j = 1, . . . ,L do

9 Estimate the gradient component
∂E(∑

τ
h=1 CT+h(XT+h,µµµ

n−1)|X[1:T ],F(b))
∂ µ j

according to (6).

10 end
11 end
12 Estimate the gradient ∇̂ḡ(µµµ) by applying (7).
13 Update the decision according to (8), get µµµn, and project it to ΩΩΩ if necessary.
14 end
15 Let µ̂µµ

?
= µµµN and record it as the final solution.

4 EMPIRICAL STUDY

In this section, we provide the empirical study to evaluate the finite sample performance of the proposed
simulation-based prediction framework. In Section 4.1, we first simulate the clinical demands according to
the physical process described in Chen et al. (2012), and use the simulated data to compare the prediction
performance of IMS-VAR with the commonly used Autogressive (AR) model. Then, in Section 4.2,
we study the performance of the simulation based prediction framework by using a bio-pharmaceutical
production scheduling example.

4.1 IMS-VAR for Predicting the Future Clinical Demand

Here, we study the prediction performance of IMS-VAR by using the clinical demands in bio-pharmaceutical
supply chains. The demand data are simulated according to the physical process described in Chen et al.
(2012). The patients’ arrivals follow a non-stationary Poisson process, and the arrival rate varies over time.
Suppose that there are three levels of arrival rate, λ = 5,10,50. The level switches following a Markov
process with the transition probability

P =

0.9 0.1 0
0.1 0.8 0.1
0 0.1 0.9

 .
The logic of this simulation is shown in Figure 1(a). Each arrived patient is randomly assigned to

one of d = 3 clinical test drugs with probability 0.2,0.3,0.5. The test has a probability p1 = 0.9 to be
successful at each time period and the treatment is over. Otherwise, the patient has a probability p2 = 0.5
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to drop out the treatment. If the patient continues the treatment, the same clinical drug will be used to
treat the patient in the next time period. The dosage of drugs consumed in each treatment follows the
normal distribution, N (1,0.1). The clinical demands can be simulated to obtain the historical data X[1:T ].
Figure 1.b shows a representative clinical demand data for three drugs in T = 100 time periods. There
exist the non-stationarity, component-wise and time series dependence in the demands of different drugs.

(a) Clinical Demand Simulation Flowchart (b) The Representative Demand Sample Paths for Three
Clinical Products

Figure 1: Clinical Trial Demands Simulation Flowchart and Demand Data.

Given the historical data X[1:T ], we compare the prediction performance of Bayesian IMS-VAR with
the commonly used AR model. For the IMS-VAR, we let the order p = 1. We use flat priors with
hyper-parameters α = 1,η = 1, µΦ is a d× k matrix with all elements as 0, VΦ is a k× k diagonal matrix
with diagonal terms as 100, ν = 1 and Ψ is d×d identity matrix. To evaluate the prediction performance
of Bayesian IMS-VAR, we compare the predictive distribution p(X[T+1:T+τ]|X[1:T ]) with the prediction
distribution p(X[T+1:T+τ]|Fc,X[1:T ]) when the underlying true input model is known or the sample paths
of X[1:T+τ] are directly generated from the “physical” simulation system in Figure 1(a). For the commonly
used AR approach, we construct a separate AR model for each drug and the model selection is based on
the AIC criteria, where the input model estimation uncertainty is ignored. Let F̂ denote the estimated AR
model. Then, the predictive distribution obtained from this approach is p(X[T+1:T+τ]|F̂ ,X[1:T ]). According
to Harrison et al. (2015), to evaluate the performance of the h step-ahead forecasting, we record the average
KS distance over the d components,

DT (h)≡
1
d

d

∑
j=1

sup
x∈ℜ

(|Fc
h, j(x)−F p

h, j(x)|)

for each h = 1, . . . ,τ , where Fc
h, j(x) is the c.d.f of the marginal p(XT+h, j|Fc,X[1:T ]), and F p

h, j(x) is the c.d.f
of p(XT+h, j|X[1:T ]) for Bayesian IMS-VAR or p(XT+h, j|F̂ ,X[1:T ]) for AR, where XT+h, j denotes the j-th
component of XT+h for j = 1, . . . ,d.

There is no closed form predictive distribution obtained from IMS-VAR. To assess the performance
of predictive distribution, we generate 1000 sample paths of X[T+1:T+τ] at each posterior sample of the

input model F(b) and the corresponding state s(b)T for b = 1,2, . . . ,B. Here, we let B = 100. The samples
of XT+h generated at all B posterior samples of input models are used to calculate the KS distance. The
results of DT (h) for T = 50,100,500 and h = 1,2,3 are recorded in Table 1, which are based on 100
macro-replications. The Bayesian IMS-VAR gives smaller and more robust prediction than AR, especially
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when h = 3. Both IMS-VAR and AR improve their prediction performance as the amount of historical
data T increases.

Table 1: KS Distance of the Predictive Distribution, DT (h) (inside the brackets are standard deviations).

KS Statistics h = 1 h = 2 h = 3

T = 50
IMS-VAR 0.308 (0.032) 0.327 (0.034) 0.362 (0.039)

AR 0.345 (0.036) 0.383 (0.040) 0.438 (0.045)

T = 100
IMS-VAR 0.249 (0.027) 0.268 (0.028) 0.302 (0.031)

AR 0.288 (0.030) 0.325 (0.033) 0.366 (0.038)

T = 500
IMS-VAR 0.171 (0.018) 0.196 (0.021) 0.226 (0.024)

AR 0.230 (0.025) 0.254 (0.027) 0.293 (0.031)

4.2 Simulation-based Prediction Framework for Production Scheduling

In this section, we evaluate the performance of the proposed simulation-based prediction framework by using
a production scheduling problem. Suppose that the system produces d = 3 drugs to meet the clinical demands
described in Section 4.1. The decision µµµ ≡ {µ1,µ2,µ3} with L = d = 3, denotes the daily production for
the 3 drugs. The inventory for each drug is kept to meet the patients’ demands. The overall cost includes
the backorder, inventory, and production costs. The backorder cost is denoted by cccb = 20,15,10 with cb, j
representing the backorder cost for each unit of drug j for j = 1, . . . ,d. The inventory cost per unit, denoted
by ci = 1, is the same for all three drugs. The production cost per unit is cp = 1 for all three drugs. We
want to find the optimal production decision µµµ? to minimize the expected total cost,

minimize
µµµ

E
[
∑

τ
h=1
(
cb, j ∑

d
j=1 bT+h, j + ci ∑

d
j=1 IT+h, j + cp ∑

d
j=1 µ j

)]
subject to bt, j = (Xt, j−µ j− It−1, j)

+

It, j = (It−1, j +µ j−Xt, j)
+

µ j ≥ 0 ∀ j = 1, . . . ,d

where Xt, j is the random demand for drug j on day t, It, j is the inventory of drug j on day t, bt, j is the
amount of backorder drug.

At the current time period, suppose the inventory for each drug IT, j is 0. Given the historical demands
X[1:T ] with T = 50,100,500, we first generate B= 100 posterior samples of IMS-VAR input models according
to the sampling procedure in Section 3.1. Then, we apply Algorithm 1 to find the optimal solution. The
simulation budget is R = 10000 in term of the number of simulation runs. We use different batch size B0.
When B0 = 100, we use all the B posterior samples of input model to estimate the gradient. When B0 = 1,
we randomly select one among the B samples. Thus, for B0 = 1,10,100, we have N = bR/2B0c updates
respectively. The initial solution is set to be µµµ0 = {1,1,1}. The empirical study indicates that the selection
of the initial solution does not have the significant impact on the performance. In the n-th iteration, if µµµn

is outside of the feasible region, we project µµµn to the feasible region, µn
j = max(0,µn

j ) for j = 1, . . . ,L.
Denote the optimal solution obtained by IMS-VAR as µ̂µµ

?
I . For the AR model, the input model estimate F̂

is used in the stochastic gradient procedure, and we perform N = R updates. In each update, we predict the
future demands by using p(X[T+1:T+τ]|F̂ ,X[1:T ]). Denote the optimal solution obtained by the AR based
prediction as µ̂µµ

?
A. In the empirical study, the step size for the stochastic gradient is chosen as ηn = 0.01.

To study the performance of µ̂µµ
?
I and µ̂µµ

?
A, we compare the difference between the expected costs

EI = E
(
∑

τ
h=1CT+h(XT+h, µ̂µµ

?
I )
)

and EA = E
(
∑

τ
h=1CT+h(XT+h, µ̂µµ

?
A)
)

with the expectation over Fc. Both
expected costs are estimated by using 105 scenarios from Fc. We record the mean and standard error
for the difference ∆E = EI−EA in Table 2, which are based on the results from 100 macro-replications.
The Bayesian IMS-VAR based simulation prediction framework can lead to the optimal decision with
significantly smaller expected cost than the AR when B0 = 1,10. When B0 = 100, since there are limited
updates in Algorithm 1, the performance of IMS-VAR does not show clear advantage.
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Table 2: Mean ± Standard Error of ∆E.

T = 50 T = 100 T = 500
B0 = 1 −40.9±13.4 −35.6±4.7 −33.8±6.0

B0 = 10 −49.2±9.3 −48.0±7.7 −43.9±6.2
B0 = 100 −14.7±12.5 −10.9±8.6 −6.4±7.5

5 CONCLUSION

In this paper, we propose a simulation-based prediction framework to guide operational decision making.
By exploring the underlying generative process, the nonparametric IMS-VAR input model can capture the
important properties in the real-world data streams, including non-stationary, skewness, component-wise
and time series dependence. The posterior distribution of flexible input model can correctly quantify the
input uncertainty. Then, the posterior predictive distribution is used to characterize the prediction uncertainty
accounting for both input and stochastic uncertainties. After that, the mini-batch stochastic gradient descent
method can efficiently employ the simulation resources to search for the optimal operational decision.
The empirical study of the bio-pharmaceutical supply chain management demonstrates that the proposed
framework can improve the prediction accuracy of system future response, and lead to the cost-efficient
and reliable operational decisions hedging against the prediction uncertainty.
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