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ABSTRACT

We consider a single stage stochastic program without recourse with a strictly convex loss function. We
assume a compact decision space and grid it with a finite set of points. In addition, we assume that
the decision maker can generate samples of the stochastic variable independently at each grid point and
form a sample average approximation (SAA) of the stochastic program. Our objective in this paper is to
characterize an asymptotically optimal linear sample allocation rule, given a fixed sampling budget, which
maximizes the decay rate of probability of making false decision.

1 INTRODUCTION

Let ξ be a measurable function that induces the distribution function F(x) := P(ξ ≤ x). Stochastic
programs are canonical models for decision-making under uncertainty, covering a multitude of classic
stochastic optimization problems:

minimize f (x) := E [L(x,ξ )] =
∫

Ξ

L(x,ξ )dF(ξ ), (1)

subject to x ∈X ,

where L(x,ξ ) : X ×Ξ→ IR is a continuously differentiable ‘loss’ function, X ⊂ IR is the set of decision
variables; for brevity we also call the sample values as ξ . In this paper, we assume that L(x,ξ ) is convex
in x and measurable with respect to ξ .

Sample average approximation (SAA) is a classic Monte Carlo method for estimating the stochastic
program (1). Here, the decision maker (DM) grids the decision space X into a finite set of points
D := {x1,x2, ...,xd}, and simulates samples of the loss function L(xi,ξ ) at each of the grid points. Assuming
a total sampling budget of n, the DM generates m(xi) independent and identically distributed (i.i.d) samples
of L(xi,ξ ), denoted as L(xi,ξ

i
j) ∀ 1 ≤ j ≤ m(xi); at each point xi with ∑

d
i=1 m(xi) = n. Then, the SAA

stochastic program is

min
xi∈D

f̂ (xi) :=
1

m(xi)

m(xi)

∑
j=1

L(xi,ξ
i
j). (2)

Modulo regularity conditions on L(·, ·), the strong law of large numbers (SLLN) implies that (2)
converges to the true program in (1) (Shapiro, Dentcheva, and Ruszczyński 2009). It is also known that
the optimizers are consistent and the optimal rate of convergence is O(n−1/2). An important allied question
to these asymptotic results is a quantification of the likelihood that the empirical optimizer diverges from
the true optimizer for a given sampling budget n. We seek such a quantification for two reasons:

• A quantification of this rate gives a clear sense of how ‘good’ the empirical optimizer and empirical
optimal value are, and
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• in the simulation context it provides a guideline on how to allocate a limited sampling/computational
budget across the design points in D.

In this paper, we focus on the latter issue. In general, it is a formidable task to compute the likelihood
for a fixed budget; in full generality, one requires tight concentration bounds in order to make meaningful
predictions about budget allocations. Instead, in this paper we establish a large deviations principle (LDP)
satisfied by the Monte Carlo estimator (2) as the sampling budget tends to infinity. For the definition of
LDP, we refer the readers to section 1.2 of Dembo and Zeitouni (2010).

It is important here to differentiate between the optimally computing budget allocation (OCBA) method
for selecting an optimal system from a finite set of systems (Chen et al. 2000; Glynn and Juneja 2004) and
our approach to SAA problem. In OCBA, there is no topology associated with the finite set of systems
unlike SAA. In addition, OCBA approach only considers probability of selecting suboptimal system due
to random sampling errors, whereas our framework also takes into account the discretization error.

1.1 Our Contributions

Our main objective is the derivation of an optimal allocation of the sampling budget across the design
points such that a canonical LD rate is achieved at the optimizer of (2). In particular, we seek what we
term as ‘linear’ allocation rules where m(x) = αxn, where αx ∈ [0,1] and ∑x∈D αx = 1.

We make the simplifying assumption that the DM can sample independently from each design point
x ∈ D. In effect, this allows an ‘embarrassingly’ parallel implementation of the SAA estimation, where
‘slave’ machines compute f̂ (x) with m(x) samples, and communicate the result to a central ‘master’ machine
that coordinates the budget allocation and aggregates the calculations to compute (2).

Now let x̂n := argminxi∈D f̂ (xi) , x̂ := argminxi∈D f (xi) , and x∗ := argminx∈X f (x). As noted before,
the Monte Carlo empirical objective converges to the population objective as n→∞ for any linear allocation
rule, and consequently one expects that x̂n→ x̂ almost surely (a.s.) as n→∞. Since the objective is assumed
to be continuously differentiable, it follows that f (x̂n)→ f (x̂) a.s. as n→ ∞. With this information, we
establish the canonical LD rate function satisfied by the optimal value of (2) as a function of some linear
allocation rule and in the limit of a large sampling budget. This result follows from the Gärtner-Ellis
theorem, and does not involve any analytical subtleties in light of our assumptions. However, the rate
function has not appeared in the literature before, and might be of interest more generally. The proof
proceeds in two steps. We first characterize the LD rate of the likelihood of mis-ordering the SAA empirical
estimates at any two points in the decision space D. Next, we use this result to establish our main result
on the LD rate on the likelihood that the objective value f (x̂n) at the SAA optimizer x̂n in (2) is at least
ε > 0 worse than the true value f (x∗), in the large budget limit.

We next provide structural results on the LD rate function, in particular demonstrating that it is
strictly concave in the allocation rule α := (αx, x ∈D). Consequently, there exists a unique optimal linear
allocation rule. This result, of course, presumes that the master machine has complete information about
the statistics of the expected loss function - in particular, we assume the existence of a cumulant generating
function. In practice, this is not an implementable policy, since the DM only has access to a Monte
Carlo simulator. We next design two recursive algorithms that optimize the LD rate function as samples
accumulate. The first algorithm parallels Algorithm 2 in Hunter and Pasupathy (2013) and is applicable
when a closed form expression for the rate function for the mis-ordering likelihood is available. When
such an expression is available the problem is really one of ranking and selection (R&S). In general SAA
problems, closed-forms are not easy to compute and this too must be estimated. Our second algorithm
is an ‘expectation-maximization’ style recursive algorithm. We illustrate these algorithms with numerical
simulation results.

The remainder of the paper is organized as follows. We begin in Section 3 by proving the LDP satisfied
by the SAA estimator. In Section 4 we derive structural properties of the LD rate function as function
of the linear allocation rule, and exhibit the variational optimization problem to find the optimal linear
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allocation rule. We then derive a recursive algorithm for computing the optimal allocation rule on a sample
path (and fixed sampling budget), and illustrate the algorithm, on three different example problems. We
end with comments on several future directions for this paper.

2 NOTATIONS AND PRELIMINARIES

We assume there exists a probability sample space (Ω,Ξ,P), and define ξ with respect to this space. The
indicator function of a set is represented by I{·} and b·c denotes the greatest integer function. We define a
‘regret’ function

[ f (x̂n)− f (x∗)] = [ f (x̂n)− f (x̂)]+ [ f (x̂)− f (x∗)] , (3)

where the first term on the right hand side is the Sampling Error and the latter term the Discretization
Error. We make a few assumptions to guarantee the existence of the LD rate function. We assume that
the loss function L(·, ·) satisfies
Assumption 1 L(x,ξ ) is not a point mass at f (x) for all x ∈X and for some continuously differentiable
function f .
Assumption 2 The cumulant generating function (CGF) of L(·,ξ ) is well defined and finite for all x ∈X ,
that is

Λ(x,θ) := logE
[
eθL(x,ξ )

]
< ∞ ∀θ ∈ R, ∀x ∈X .

When the loss function L(·,ξ ) is bounded above by ξ and the CGF of ξ is well defined and finite, the
above assumption is trivially satisfied.
Assumption 3 Let Hx(Λ) := {θ : Λ(x,θ) < ∞}∀ x ∈X be such that the origin belongs to the interior
of Hx(Λ). Furthermore, we also assume that Λ(x,θ) is steep, that is limn→∞

∣∣∣ ∂Λ(x,θ)
∂θ

∣∣∣
θ=θn

= ∞, for any

sequence θn in the interior of Hx(Λ), which converges to a boundary point of Hx(Λ) ∀ x ∈X .

3 LARGE DEVIATIONS FOR SAA

In this section we establish an LDP satisfied by the regret function. Let x,y ∈ D and consider the Monte
Carlo estimates f̂ (x) and f̂ (y). Our first result establishes a LD rate function for the likelihood that f̂ (x)
and f̂ (y) are mis-ordered in the large budget limit.
Lemma 1 Fix γ > 0 and x,y ∈ D. Then, under Assumptions 1, 2 and 3,

lim
n→∞

1
n

logP( f̂ (y)− f̂ (x)≥ γ) =−I(γ,αx,αy)I{ f (y)− f (x)<γ},

where I(γ,αx,αy) := supt∈R

(
tγ−αyΛ

(
y, t

αy

)
−αxΛ

(
x,− t

αx

))
.

Proof. Let Yn := n
(

f̂ (y)− f̂ (x)
)
, and observe that for any t ∈ R

E[etYn ] = E

[
exp

(
t
bαync

∑
i=1

L(y,ξ y
i )

αy
− t
bαxnc

∑
j=1

L(x,ξ x
j )

αx

)]

= E
[

exp
(

t
L(y,ξ )

αy

)]bαync
E
[

exp
(
−t

L(x,ξ )
αx

)]bαxnc
,

where the last equality follows from the fact that we sample independently at every design point. Next,
using the fact that limn→∞bαinc/n = αi observe that

lim
n→∞

1
n

logE
[
etYn
]
= αy logE

[
exp
(

t
L(y,ξ )

αy

)]
+αx logE

[
exp
(
−t

L(x,ξ )
αx

)]
=: ϕ(t,αx,αy) ∀t ∈ R.
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By Assumption 2 , ϕ(t,αx,αy) < ∞ ∀t ∈ R. Together with Assumption 3 it follows that the Gärtner–
Ellis Theorem holds (Dembo and Zeitouni 2010), and the lemma is proved with good rate function
I(z,αx,αy) := supt∈R (tz−ϕ(t,αx,αy)). Since I(z,αx,αy) is strictly convex in z and attains the minimum
value 0 precisely at f (y)− f (x), Therefore, infz∈[γ,∞) I(z,αx,αy) = I(γ,αx,αy)I{ f (y)− f (x)<γ}.

The next two lemmas are crucial for establishing the main result of this section.
Lemma 2 Fix k ∈ N and let {an

i } ⊂ R be arbitrary sequences for 1≤ i≤ k. Then

liminf
n→∞

max{an
1,a

n
2, . . . ,a

n
k} ≥max{liminf

n→∞
an

1, liminf
n→∞

an
2, . . . , liminf

n→∞
an

k}.

Proof. First observe that for any i∈{1,2, . . . ,k}max{an
1,a

n
2, . . . ,a

n
k}≥ an

i . Therefore, liminfn→∞ max{an
1,a

n
2,

. . . ,an
k} ≥ liminfn→∞ an

i . Since this holds for any i ∈ {1,2, . . . ,k}, the lemma follows.

Lemma 3 Let {an
i } ⊂ R for i = 1,2 be arbitrary sequences. Then,

liminf
n→∞

(an
1 +an

2)≥ liminf
n→∞

an
1 + liminf

n→∞
an

2.

Proof. The proof follows from the definition of liminf and infimum inequality.

We now turn to main result, which establishes an LDP for the regret (3).
Theorem 1 Fix ε > 0. Under Assumptions 1, 2 and 3 the regret (3) satisfies

lim
n→∞

1
n

logP( f (x̂n)− f (x∗)≥ ε) =−J(ε),

where J(ε) := minx∈Q(δ ) ∑y∈D I(αx,αy)I{ f (y)< f (x)}, I(αx,αy) := supt∈R

(
−αyΛ(y, t

αy
)−αxΛ(x,− t

αx
)
)

,
and Q(δ ) := {x ∈ D : f (x)> f (x∗)+ ε}.

Proof. Recall that our objective is to characterize the rate of decay of the likelihood of the rare event,

{ f (x̂n)− f (x∗)> ε}. (4)

Observe that

P( f (x̂n)− f (x∗)> ε) = P( f (x̂n)− f (x̂)+ f (x̂)− f (x∗)> ε)

= P( f (x̂n)− f (x̂)> δ )) ,

where δ := ε−( f (x̂)− f (x∗)), and f (x̂)− f (x∗) is the non-random discretization error. From the definition
of Q(δ ) set observe that the event { f (x̂n)− f (x̂)> δ )} is equivalent to {x̂n ∈ Q(δ )}. Now, using the
definition of x̂n, observe the equivalence

{x̂n ∈ Q(δ )}=
⋃

x∈Q(δ )

⋂
y∈D

{
f̂ (x)≤ f̂ (y)

}
.

Therefore, it straightforwardly follows that

max
x∈Q(δ )

P

(⋂
y∈D

{
f̂ (x)≤ f̂ (y)

})
≤ P( f (x̂n)− f (x∗)> ε)≤ ∑

x∈Q(δ )

P

(⋂
y∈D

{
f̂ (x)≤ f̂ (y)

})
. (5)
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Now, since the set Q(δ ) is finite, Lemma 1.2.15 of Dembo and Zeitouni (2010) implies

limsup
n→∞

1
n

logP( f (x̂n)− f (x∗)> ε)≤ limsup
n→∞

1
n

log ∑
x∈Q(δ )

P

(⋂
y∈D

{
f̂ (x)≤ f̂ (y)

})

= max
x∈Q(δ )

limsup
n→∞

1
n

logP

(⋂
y∈D

{
f̂ (x)≤ f̂ (y)

})

≤ max
x∈Q(δ )

∑
y∈D

limsup
n→∞

1
n

logP
(

f̂ (x)≤ f̂ (y)
)
, (6)

where the last inequality follows from the fact that sampling is independent at each of the design points.
Next, for the lower bound, the monotonicity of the logarithm function and the sampling independence
implies

liminf
n→∞

1
n

logP( f (x̂n)− f (x∗)> ε)≥ liminf
n→∞

1
n

log max
x∈Q(δ )

P

(⋂
y∈D

{
f̂ (x)≤ f̂ (y)

})

≥ max
x∈Q(δ )

∑
y∈D

liminf
n→∞

1
n

logP
(

f̂ (x)≤ f̂ (y)
)
, (7)

where the final inequality follows from Lemmas 2 and 3. Finally, the theorem follows from an application
of Lemma 1 to (6) and (7).

Some comments are in order for this result. First, observe that the fact that we assume a finite grid
D⊂X implies that the LD rate function is well-defined. Furthermore, it can be anticipated that the rate
function can be established even with a countable grid. Second, the set Q(δ ) is critical for establishing the
limit. This is the set of design points in the grid D that are ε worse than the optimal design point x∗ ∈X .
Thus, the rate function J(ε) identifies the dominant point on the boundary of the set Q(δ ) that x̂n is most
likely to diverge away from x∗. The form of J(ε) indicates that it is a composition of the closest point in
Q(δ ) to each design point in D that is most likely to cause a mis-ordering.

4 OPTIMAL LINEAR ALLOCATION RULE

In this section, we identify an (asymptotically) optimal linear allocation rule that optimizes the rate function
in Theorem 1. Note that this optimization is post hoc in the sense that the rate function is identified for an
arbitrary allocation. The optimal allocation maximizes the rate at which the log likelihood of misordering
the empirical optimizer approaches zero. First, we show that the rate function obtained in Theorem 1 is
strictly concave and thus has a unique maximizer. Let J(αx,αy, t) :=

(
αyΛ

(
y, t

αy

)
+αxΛ

(
x,− t

αx

))
for

brevity.

Lemma 4 I(αx,αy) = supt∈R

(
−αyΛ

(
y, t

αy

)
−αxΛ

(
x,− t

αx

))
, is strictly concave ∀{αx,αy} ∈ [0,1]× [0,1].

Proof. Observe that proving I(αx,αy) is concave in αx and αy is equivalent to proving

inf
t∈R

(
αyΛ

(
y,

t
αy

)
+αxΛ

(
x,− t

αx

))
= inf

t∈R
J(αx,αy, t)

1878



Jaiswal, Honnappa, and Pasupathy

is convex ∀ αx,αy ∈ [0,1]× [0,1]. First, we demonstrate that αyΛ

(
y, t

αy

)
is convex in t and αy. Using the

definition of Λ(·, t) we have

∂ 2

∂α2
y

αyΛ

(
y,

t
αy

)
=

t2

α3
y


E
[
exp
(

t L(y,ξ )
αy

)
L(y,ξ )2

]
E
[
exp
(

t L(y,ξ )
αy

)] −
E
[
exp
(

t L(y,ξ )
αy

)
L(y,ξ )

]2

E
[
exp
(

t L(y,ξ )
αy

)]2

> 0. (8)

Observe that the expression on the right hand side of (8) is the variance of L(y,ξ ), with respect to the
‘twisted’ distribution,

exp
(

t L(y,ξ )
αy

)
dF(ξ )

E
[
exp
(

t L(y,ξ )
αy

)] ,

and the overall expression is strictly positive since t2/α3
y > 0. It follows that αyΛ

(
y, t

αy

)
is strictly convex

in αy. Similarly, observe that αxΛ

(
x,− t

αx

)
is strictly convex in αx. Consequently, it is straightforward

to see that the Hessian of J(αx,αy, t) ∀t ∈R is positive definite. Therefore, J(αx,αy, t) is strictly convex
∀ αx,αy ∈ [0,1]× [0,1]. We also know that the cumulant generating function is convex in t in general, but
it is strictly convex due to Assumption 1. Since the sum of two strictly convex function is strictly convex,
J(αx,αy, t) is strictly convex ∀t ∈ R.

Next, observe that for any η > 0, there exists a t ∈ R, such that for a given αx,αy ∈ [0,1]× [0,1],

J(αx,αy, t)≤−I(αx,αy)+η .

We now follow the arguments in Sec. 3.2.5 of Boyd and Vandenberghe (2004). For any β ∈ [0,1] and
α

j
x ,α

j
y ∈ [0,1]× [0,1], j = 1,2,

−I(βα
1
x +(1−β )α2

x ,βα
1
y +(1−β )α1

y ) = inf
t∈R

J(βα
1
x +(1−β )α2

x ,βα
1
y +(1−β )α1

y , t)

≤ J(βα
1
x +(1−β )α2

x ,βα
1
y +(1−β )α1

y ,β t1 +(1−β )t2)

< βJ(α1
x ,α

1
y , t1)+(1−β )J(α2

x ,α
2
y , t2)

≤−β I(α1
x ,α

1
y )− (1−β )I(α2

x ,α
2
y )+η ,

where penultimate inequality follows from Jensen’s inequality. Since η is arbitrary, it follows that I(αx,αy)
is strictly concave.

Lemma 5 minx∈Q(δ ) ∑y∈D I(αx,αy)I{ f (y)< f (x)} is strictly concave in {α1,α2, . . .αd} ∈ [0,1]d .

Proof. From Lemma 4 and the fact that the minimum of strictly concave functions preserves strict
concavity, the proposition follows.

Theorem 2 The following constraint maximization problem is strictly concave,

max
{α1,α2,...αd}

min
x∈Q(δ )

∑
y∈D

I(αx,αy)I{ f (y)< f (x)}, (9)

such that
d

∑
i=1

αi = 1, αi ∈ [0,1]∀i ∈ {1,2, . . . ,d}.

Proof. The proof immediately follows from Lemma 5.

Hence, the optimal allocation strategy is the solution of (9). Next, we illustrate this optimization for
specific cases.
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Example 1: Normal Distribution

Assume that L(x,ξ )∼N ( f (x),σ2(x)), and observe that

I(αx,αy) = sup
t∈R

(
−αyΛ

(
y,

t
αy

)
−αxΛ

(
x,− t

αx

))
=

1
2
( f (x)− f (y))2

(
σ2(y)

αy
+

σ2(x)
αx

)−1

. (10)

Therefore, using Theorem 1, the LDP for a given ε > 0 is

lim
n→∞

1
n

logP( f (x̂n)− f (x∗)> ε) =− min
x∈Q(δ )

∑
y∈D

1
2
( f (x)− f (y))2

(
σ2(y)

αy
+

σ2(x)
αx

)−1

I{ f (x)> f (y)},

where Q(δ ) is as defined in Theorem 1.

Example 2: Binomial Distribution

Assume that L(x,ξ )∼ Bin( f (x)
m ,m), where m is the number of binomial trials. Observe that

I(αx,αy) = sup
t∈R

(
−αyΛ(y,

t
αy

)−αxΛ(x,− t
αx

)

)
= m

(
−αy log

(
1− f (y)

m
+

f (y)
m

e
t∗
αy

)
−αx log

(
1− f (x)

m
+

f (x)
m

e−
t∗
αx

))
, (11)

where t∗ = log
(

f (x)(m− f (y))
f (y)(m− f (x))

)[
1

αx
+ 1

αy

]−1
.Therefore using Theorem 1, the LDP for a given ε > 0 is

lim
n→∞

1
n

logP(ω ∈Ω : f (x̂n)− f (x∗)> ε) =− min
x∈Q(δ )

∑
y∈D

m

(
−αy log

(
1− f (y)

m
+

f (y)
m

e
t∗
αy

)

−αx log
(

1− f (x)
m

+
f (x)
m

e−
t∗
αx

))
I{ f (x)> f (y)},

where Q(δ ) is as defined in Theorem 1.

5 SEQUENTIAL OPTIMIZATION

The optimization problem (9) is solved by the master machine, and the sampling budget is assigned to
the slave machines. Observe that (9) assumes that the master machine has complete knowledge of the
true cumulant generating function of the (stochastic) loss function. In practice, of course, this is unknown
and the master machine must rely on empirical estimates of the objective from the slave machines. An
appropriate approach to solving the optimization problem would be to perform a sequential optimization
as sample estimates accumulate. With a large, but finite budget the sequential optimum should be close to
the optimizer of (9).

We demonstrate the computation in two different scenarios. First, we assume that the (rate) function
J(αx,αy, t) can be analytically optimized over t. In this case, the objective in (9) is simpler to estimate and
optimize. Note that these instances are direct analogues in the SAA context of the ranking and selection
(R&S) problems studied in Glynn and Juneja (2004), Hunter and Pasupathy (2013), and Glynn and Juneja
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(2018). To deal with these types of problems, we present Algorithm 1 below, that parallels Hunter and
Pasupathy (2013) Algorithm 2.

Second, in many applications of SAA, the optimization of J(·, ·, t) must be carried out numerically since
closed forms are not available. These instances are far more complicated than the straightforward R&S
analogues considered above, as the geometry of the loss function now plays a prominent role. Algorithm 2
below exploits an expectation-maximization (EM) type iterative structure to recursively compute the optimal
allocation efficiently.

Of course, in either scenario, the rate functions and objectives must be estimated by Monte Carlo
sampling at the slave machines. Let Ĵ(αx,αy, t) := αyΛ̂

(
y, t

αy

)
+ αxΛ̂

(
x,− t

αx

)
, where Λ̂

(
x, t

αx

)
:=

(bnαxc)−1
∑
bnαxc
i=1 exp

(
t

αx
L(x,ξ x

i )
)

is the natural empirical estimator of the log moment generating function.

We also define the set Q̂(δ ) = {x ∈ D : f̂ (x) > f̂ (x∗)+ ε}, for a given ε > 0. In the remainder of this
section, we assume a fixed ε > 0. Let α̂x(n) represent the estimated allocation at location x ∈D with total
sampling budget n. We define the optimality gap of the estimator as

OG(n) := ∑
x∈D
|α̂(n)

x −αx|,

where αx is the ‘true’ optimal linear allocation obtained by solving (9).

5.1 Optimization with Closed-forms

Consider situations where the ‘inner’ optimization supt∈R J(αx,αy, t) x,y ∈ D can be completed in closed
form analytically. For instance, in Examples 1 and 2 above closed forms were derived for cases where
the loss functions at each of the design points are Gaussian and binomially distributed (respectively). Let
Î(·, ·) represent the Monte Carlo estimate of this closed form, which will require estimation of the mean
and (possibly) the variance. Algorithm 1 proceeds iteratively by estimating the optimal allocation while
accumulating more and more samples at each iteration. This method parallels Algorithm 2 in Hunter and
Pasupathy (2013).

Table 1: Algorithm 1.

Step 0 Initialize pilot sample n(0)x = N0 at each x ∈ D.
For each k ≥ 0 :

Step 1 Generate n(k)x i.i.d. samples at each x ∈ D.
Compute Î(αx,αy) ∀ x,y ∈ D, f̂ (x) ∀x ∈ D and Q̂(δ ) using all ∑

k
i=0 n(i)x samples.

Step 2 Compute (α
(k+1)
x , x ∈ D) = argmax

{αx,x∈D}
min

{x∈Q̂(δ )}
∑y∈D Î(αx,αy)I{ f̂ (x)> f̂ (y)}.

Generate Tj ∀ j = {1,2, . . .N}, where Tj has empirical distribution with probability
α
(k+1)
x on support x ∈ D. Set n(k+1)

x = ∑
N
j=1 I{Tj=x} ∀x ∈ D.

Step 3 Repeat Steps 1 and 2 , until sampling budget exhausts.

Observe that the algorithm runs until the sampling budget is exhausted with no guarantees on convergence
to the true optimal allocation rule. Consistency results from Hunter and Pasupathy (2013) and Glynn and
Juneja (2004) imply that with a large, but finite budget the allocation obtained at the end of the procedure
should closely match the optimal linear allocation rule.We now illustrate the algorithm by running through
a couple of examples.

Gaussian Loss: For simplicity we assume that the variances σ2(x) ∀x ∈D are known, and the mean
value at each of the design points is estimated using the natural estimator.

The choice of δ determines the error tolerance, and affects the allocation budget. Figure 1(a) depicts a
case where δ is much smaller than the resolution of the grid. In this case, both the true allocation and the
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estimated allocation place much of the sampling effort near the optimizer. On the other hand, when δ is of
the order of the grid resolution, Figure 1(b) demonstrates that both the true and the estimated allocations
expend substantial sampling efforts near the “boundary” of the sets Q(δ ) and Q̂(δ ) respectively. Figure 2
illustrates that in both the cases, optimality gap appears to converge, but with large variance.

(a) δ = 0.05 (b) δ = 1.0

Figure 1: Approximate and true allocations with Gaussian distributed loss functions. Total
sampling budget n = 4600, |D|= 46 and averaged over 50 sample paths.

(a) δ = 0.05 (b) δ = 1.0

Figure 2: Sample quantile of Optimality Gap for Gaussian distributed loss functions for 50
Sample paths. Total sampling budget n = 4600, |D|= 46.

Binomial Loss: Next, in the case of the binomially distributed loss function, it suffices to compute
the objective value f̂ (x) using the natural, plug-in estimator for (11). Our observations here parallel the
Gaussian case.

5.2 Optimization without Closed-forms

It is rare to place explicit distributional assumptions on the loss function at different design points in the grid,
and typical stochastic programming models assume regularity conditions on the loss function L(·, ·) and
stochasticity conditions on ξ . The distributional conditions are then consequences of these two ingredients.
In general, then, it is highly unlikely that there exists a closed form for the optimization supt∈R J(·, ·, t),
and the optimization must be carried out numerically on a Monte Carlo estimate Ĵ(·, ·, t).
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As noted before, Algorithm 1 has no guarantees on convergence within a fixed number of iterations,
since it is only running till the sampling budget is exhausted. On the other hand, there are many applications
of SAA where it is useful to run the algorithm till convergence. For instance, in data-driven applications,
it may be possible to obtain n samples repeatedly from a simulator, or by bootstrap sampling of a given
dataset. To handle such situations we propose a second iterative algorithm that is expectation-maximization
(EM) like, and proceeds in two iterative steps. In step one, for a fixed linear allocation rule (αx, x ∈ D),
we compute Ĵ(αx,αy, t) for every x,y ∈ D and identify the optimal t(x,y). In step two, we compute an
allocation using the objective in 9 albeit with I(αx,αy, t(x,y)) from step one. These two steps are iterated
till there is no improvement in the allocation in step two. The following display summarizes the algorithm.

Table 2: Algorithm 2.

Step 0 Fix (α
(0)
x , x ∈ D), where α

(0)
x ∈ [0,1] and ∑x α

(0)
x = 1.

For each k ≥ 0:
Step 1 Generate Tj ∀ j = {1,2, . . .n}, where Tj has empirical distribution with probability

α
(k)
x on support x ∈ D. Set n(k)x = ∑

n
j=1 I{Tj=x} ∀x ∈ D.

Generate n(k)x i.i.d. random samples at each x ∈ D.
Compute t(k)(x,y) = argsupt∈R Ĵ(α(k)

x ,α
(k)
y , t) for all x,y ∈ D, and

Compute f̂ (x) for all x ∈ D and Q̂(δ ) using all ∑
k
i=0 n(i)x samples.

Step 2 Compute (α
(k+1)
x , x ∈ D) ∈ argmax

{αx, x∈D}
min

x∈Q̂(δ )
∑y∈D Î(αx,αy, t(k)(x,y))I{ f̂ (x)> f̂ (y)}.

Step 3 Repeat Step 1 and 2, until (α(k)
x , x ∈ D) converges.

Note that we assume that the sampling budget n is fixed, and allow the algorithm to produce n samples
on each iteration. It is possible to couple the iterative scheme to the sampling budget by fixing the number
of iterations a priori to K = bn ∗ γc, where γ ∈ [0,1] is fixed. At the kth iteration, ∑

k
i=0 α

(i)
x K samples

is generated at sample point x ∈ D. In this case, the algorithm terminates once K iterations have been
completed.

Mean-squared Error Consider a squared error loss, widely used in empirical risk minimization of
machine learning models, where L(x,ξ ) := (x− ξ )2. For simplicity, we assume that the design space is
one dimensional and that ξ is Gaussian.

Observe that the estimated allocation is quite close to the true allocation, even in this case (see Figure 3).
Significant budget allocations are once again made in the vicinity of the boundary of Q(δ ). Figure 4 on the
other hand, amply demonstrates that while the estimators are consistent with a large budget “on average”
as demonstrated by the 50th percentile lines, there is significant variance in the optimality gap even at large
sample values as shown by the spread between the 90th and 10th percentiles.

6 CONCLUSIONS AND FUTURE DIRECTIONS

We study the problem of optimally allocating a sampling budget in order to compute a sample average
approximation (SAA) of the solution of a single-stage stochastic program. Under a fixed finite discretization
of the design space (or ‘grid’), we first establish a large deviations principle satisfied by the regret, defined
as f (x̂n)− f (x∗), where f (·) is the true objective, x̂n is the SAA estimate of the optimizer and x∗ the true
optimizer. Next, we identify a constraint maximization problem, whose solution identifies an optimal linear
allocation rule that maximizes the decay rate of the likelihood of identifying an incorrect optimal design
point, in the limit of a large sampling budget. Finally, we designed two different algorithms to sequentially
implement this optimization.

The developments in this paper lead to multiple important and open problems, relevant to both simulation
optimization and machine learning more broadly. First, our current treatment of the regret effectively assumes
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(a) δ = 1.0 (b) δ = 2.0

Figure 3: Approximate and true allocations for squared loss with Gaussian random samples.
Sample at each iteration n = 460, |D|= 46 and averaged over 30 sample paths.

(a) δ = 1.0 (b) δ = 2.0

Figure 4: Sample quantile of Optimality Gap for squared loss functions with Gaussian random
samples for 30 Sample paths. |D|= 46.

that the grid is fixed. An important question is how the grid size affects the large deviations rate function.
In particular, it can be easily seen that when the grid has the cardinality of the continuum, the rate function
does not exist. On the other hand, there is definite benefit in scaling the grid size with the sampling budget.
How should this be done to obtain a large deviations principle in the limit?

Second, while results in Glynn and Juneja (2004) and Hunter and Pasupathy (2013) can be straight-
forwardly adapted to establish consistency of the sequentially estimated allocation rule, the efficiency of
the estimator is unknown. In particular, we conjecture that the rate function estimators used are highly
inefficient. This follows from the fact that we use the canonical estimator for the cumulant generating
function, and it is conjectured that the latter estimators are heavy-tailed (Glynn and Juneja 2011). On the
other hand, we are really only interested in the accuracy of the estimated objective in the vicinity of the
true optimizer, and not the global accuracy. Closer to the optimizer, and in the large sampling budget limit,
we conjecture that it is possible to use fewer moments to accurately estimate the rate function, leading to
substantial improvements in efficiency.

Third, note that the algorithms designed here are not dimension free, and we conjecture that even with
strictly convex objective functions f they will not scale well. We postulate that it is possible to combine (9)
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with multiple stochastic gradient descent (SGD) crawlers starting at each of the grid-points, and letting
these iterate a fixed number of times, to make the allocation optimization algorithm dimension-free.

Fourth, ‘gridding’ the design space has significant algorithmic advantages since it allows our present
algorithms to be implemented in a ‘divide and conquer’ manner, whereby slave machines sample and
estimate moments of the loss function at each design point, and communicate this to the master machine
for optimization. On the other hand, estimates at a given design point must be close to those at other
design points in its neighborhood. With a fine grid, the amount of communication overhead required to
implement a fully parallel computation is likely significant. We speculate that it should be possible to design
a completely decentralized optimization scheme to determine the optimal allocation just by performing
local message passing. Such a scheme would yield substantial reductions in communication overhead.
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