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ABSTRACT

We study and compare the efficiencies of stochastic approximation (SA) and sample average approximation
(SAA) for stochastic optimization problems when the decision variables are inside the generating probability
distributions or when importance sampling can be applied (as in the case of simulation optimization with
Monte Carlo samples). We explain how SA is statistically more efficient than SAA in such contexts,
a behavior different from conventional situations where SAA is usually held as the statistically optimal
procedure. We support our claim with a theoretical minimax framework and a weak duality argument. We
also demonstrate our theoretical findings with some simple simulation examples.

1 INTRODUCTION

This paper compares the efficiencies of two commonly used methods in stochastic optimization, namely
stochastic approximation (SA) and sample average approximation (SAA). We are particularly interested
in the situation where one is allowed to control the probability distribution that drives the stochasticity in
the problem. This occurs, for instance, when the decision variable lies inside the distribution, or when we
consider applying importance sampling (IS) to sample the stochasticity. These situations arise quite often
in simulation optimization where the objective function is an expectation that can be evaluated from Monte
Carlo samples under some parametric distribution.

When the distribution driving the stochasticity is fixed, or when the Monte Carlo samples, or data,
are given in advance, SAA is usually held as the statistically optimal procedure. By this we mean the
following asymptotic property. Suppose the objective function is smooth enough and there is a unique
optimal solution that lies in the interior of the feasible region, then, under some mild conditions, both the
estimated optimal solutions of SA and SAA satisfy respective central limit theorems. Under these theorems,
the asymptotic variance of the solution from SAA is at most that of SA, regardless of what stepsize it
takes (when the solution is multi-dimensional, this comparison is based on a matrix inequality between
the covariance matrices of the solutions or an inequality between the variances of the attained objective
values; when the solution is single-dimensional, the meaning of this comparison is obvious).
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In this paper, we explore how the above conclusion should be modified when one has the flexibility to
change the distribution used in driving the stochasticity. Because SA is a sequential scheme that updates
the decision variable and generates Monte Carlo samples “on the fly”, the distribution can be chosen
sequentially based on the current best solution guess. On the other hand, SAA uses the samples at the
beginning to form a deterministic problem. Thus, any flexibility in choosing the distribution only benefits
the initial setup of the problem, which cannot meaningfully take into account any updated information
about the solution. To rigorize the above intuition, we will use a minimax framework and show concretely
that SA always has a better asymptotic variance than SAA, under an idealized setting that allows us to
use a weak duality argument. We focus on the case of single-dimensional decision in this paper, which is
simpler and illustrates our claim transparently. We will also discuss similar implications with finite-sample
bounds, and substantiate our claims with some simple numerical examples.

We close this introduction with a brief literature review. SA is an analog of gradient descent in nonlinear
programming to the stochastic setting, which produces iterates that converge to the root of a stochastic
equation or an optimum of a stochastic optimization problem. When there exists an unbiased gradient
estimator, one could use the Robbins-Monro (R-M) algorithm (Robbins and Monro 1951), which we focus
on in this paper. When such an estimator is unavailable, one could resort to finite-difference schemes, which
give rise to the Kiefer-Wolfowitz (K-W) algorithm (Kiefer and Wolfowitz 1952). Variants of these algorithms
have been substantially studied, including notably the simultaneous perturbation stochastic approximation
(Spall 1992) and Gaussian smoothing (Nesterov and Spokoiny 2017) for efficient biased gradient estimation,
averaging schemes (Polyak and Juditsky 1992; Nemirovski et al. 2009) and scaled-and-shifted schemes
(Broadie et al. 2011) for enhancing algorithmic efficiency, and other recent variants such as the accelerated
SA (Ghadimi and Lan 2013) and the secant-tangent averaged SA (Chau and Fu 2018). More details of
SA can be found in Bottou (2010), Chau and Fu (2015), Ghadimi and Lan (2015). On the other hand,
SAA replaces an expected value objective function with a sample average from Monte Carlo samples.
This formulation then allows the use of deterministic optimization routines for an approximate solution.
Theoretical properties of SAA, including consistency, asymptotic normality and optimality gaps, can be
found in Kleywegt et al. (2002), Mak et al. (1999), and Shapiro and Nemirovski (2005). More details
are in Shapiro (2003), Kim et al. (2015) and the references therein. Due to its simplicity, SAA has been
applied in many fields such as finance (Alexander et al. 2006; Jiang and Fu 2016), vehicle routing (Verweij
et al. 2003) and inventory management (Xu and Zhang 2009). Lastly, our comparison in this paper is
on situations where one can apply IS, which is a common variance reduction technique in simulation via
change-of-measure; general discussion can be found in Asmussen and Glynn (2007), Glasserman (2013).

The remainder of this paper is as follows. Section 2 compares SA and SAA when applying IS and
presents our main asymptotic results. Section 3 discusses the implications in finite-time analysis. Section
4 presents two simulation examples. Section 5 concludes the paper.

2 ASYMPTOTIC COMPARISONS

Our discussion focuses on the stochastic optimization problem

min
θ∈Θ

f (θ) = Eθ [F(θ ,X)], (1)

where Θ ⊂ ℜ is a feasible region, and F(θ ,X) is the performance function. Note that we focus on a
single-dimensional decision space here for ease of discussion. The expectation Eθ [·] is under a distribution
P(θ , ·) that generates the random variable X. Generally, we allow the decision variable θ to affect both
the performance function and the distribution; the next subsections will focus on specific cases.

We assume that an unbiased gradient estimator is available (whose form varies in different cases).
Moreover, we assume that there exists a unique optimal solution θ

∗ ∈Θ for (1) that is in the interior of Θ,
f is twice continuously differentiable at θ

∗, and the gradient estimator has finite variance. This allows us
to obtain central limit theorems for the estimated solutions for both SA and SAA (Asmussen and Glynn
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2007, Chapters 3 and 8), as we will describe in more detail. Furthermore, for reason that will become
obvious, we assume f ′′(θ ∗) = 1 for simplicity.

In the subsequent discussion, we assume that the Monte Carlo simulation or data acquisition is the
dominant cost and ignore the effort from the optimization routine in SAA. As will be explained, we will use
the asymptotic variance from the central limit theorems as a measurement of the statistical performance.

2.1 θ in the Performance Function Only

We first look at the case where θ appears only in F , the performance function, but not in the distribution.
So, we can use P(·) to denote the distribution of X . Suppose that F(θ ,X) is differentiable in θ , and
G(θ ,X) is the derivative. Suppose also that an interchange of derivative and expectation is allowed, so
that E[G(θ ,X)] = f ′(θ).

To use SA, we will use the unbiased gradient estimator G(θ ,X) and apply the R-M algorithm by
generating a sequence of iterates {θk} via the recursion

θ k+1 = ΠΘ (θ k−akG(θ k,Xk)) , (2)

where ΠΘ is the projection of θ into the feasible region Θ if θ /∈Θ, and ak is an appropriate stepsize, e.g.,
a/k for some constant a > 0.

Under the assumptions above, we have a central limit theorem that
√

k(θ k−θ
∗)⇒N(0,σ2). When the

stepsize ak is chosen optimally, i.e., when it is set to a/k where a = 1/ f ′′(θ ∗), or when the Polyak-Ruppert
averaging is used, then σ2 =Var(G(θ ∗,X))/ f ′′(θ ∗)2 =Var(G(θ ∗,X)) (as we assume f ′′(θ ∗) = 1). This
σ2 cannot be improved using iteration of the form (2).

On the other hand, to use SAA, we generate i.i.d. copies X1, . . . ,Xk from P(·) and solve

min
θ∈Θ

{
fk(θ) =

1
k

k

∑
i=1

F(θ ,Xi)

}
(3)

by applying a deterministic optimization routine. Suppose this routine generates an exact solution θk
for the sample problem. Then, under the same assumptions as above, we have a central limit theorem
that
√

k(θ k− θ
∗)⇒ N(0,σ2), where σ2 = Var(G(θ ∗,X))/ f ′′(θ ∗)2 = Var(G(θ ∗,X)). Note that this σ2

is the same as the optimal σ2 obtained in SA. In this sense, SAA always achieves the optimal statistical
performance compared to all SA schemes in the form (2), and is thus viewed as the superior procedure
statistically. This is particularly the case when the samples X1, . . . ,Xk are given in advance, which occurs
when they constitute a real data set for instance.

In simulation-based contexts, however, one can plausibly change the distribution P(·) in generating
X and apply IS in any part of the algorithms. Suppose P(·) lies in a class of distributions, denoted
{P(α, ·) : α ∈ Γ}, and in particular say P(·) = P(α0, ·). For convenience, we abuse notations to use P
also as the density or the mass function of X. At each iteration k of SA, we can choose some P(αk, ·) to
generate the new Xk. To retain unbiasedness, the gradient estimator at iteration k becomes

G(θ k,Xk)
P(α0,Xk)

P(αk,Xk)
.

Suppose we can optimize the choice of αk at each step. In other words, let α∗(θ) ∈ Γ denote the optimal
IS parameter given θ in terms of variance, i.e.,

α
∗(θ) = argmin

α∈Γ

Varα

(
G(θ ,X)

P(α0,X)

P(α,X)

)
(4)

where Varα(·) denotes the variance under P(α, ·), and we pick αk = α∗(θ k) at iteration k to obtain an
unbiased gradient

G(θ k,Xk)
P(α0,Xk)

P(α∗(θ k),Xk)
. (5)
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For convenience, we call this scheme SA-IS. A central limit theorem for θ k obtained from SA-IS holds as
before, with an asymptotic variance given by

Varα∗(θ ∗)

(
G(θ ∗,X)

P(α0,X)

P(α∗(θ ∗),X)

)
.

This is equivalent to

min
α∈Γ

Varα

(
G(θ ∗,X)

P(α0,X)

P(α,X)

)
.

Since θ
∗ is generally unknown in advance, we take a worst-case view and use the minimax criterion that

is in line with decision theory. In particular, the worst-case asymptotic variance for SA-IS among all
possibilities of θ

∗ is

max
θ ∗∈Θ

min
α∈Γ

Varα

(
G(θ ∗,X)

P(α0,X)

P(α,X)

)
. (6)

On the other hand, if we want to apply IS in SAA, we must apply it at the beginning when we form the
sample problem (unless we expand the SAA method to allow for iterations). Say we use the distribution
P(α1, ·) to generate X1, . . . ,Xk. Then the SAA formulation becomes

min
θ∈Θ

1
k

k

∑
i=1

F(θ ,Xi)
P(α0,Xi)

P(α1,Xi)
. (7)

A central limit theorem again holds for the obtained solution θ k, with an asymptotic variance

Varα1

(
G(θ ∗,X)

P(α0,X)

P(α1,X)

)
.

Note that again we do not know the value θ ∗. Suppose we want to optimize the worst-case asymptotic
variance, we will find α1 that solves

min
α1∈Γ

max
θ ∗∈Θ

Varα1

(
G(θ ∗,X)

P(α0,X)

P(α1,X)

)
. (8)

Expression (8) is the best worst-case asymptotic variance for SAA, assuming α1 can be picked suitably.
For convenience, we call this scheme SAA-IS.

Comparing (6) and (8), the worst-case asymptotic variances of SAA-IS and SA-IS respectively, we
see that (6) is at most (8), by using a standard weak duality (e.g., Boyd and Vandenberghe (2004)) that
interchanges the max and the min. We summarize this as:
Theorem 1. Suppose that the decision variable θ only appears in the performance function in (1), and all
assumptions discussed above hold. SA-IS that uses (5) as the gradient, and SAA-IS that uses formulation
(7), each has an asymptotic variance of the estimated optimal solution given by (6) and (8), respectively.
The worst-case asymptotic variance for SA-IS is at most that of SAA-IS, that is,

max
θ ∗∈Θ

min
α∈Γ

Varα

(
G(θ ∗,X)

P(α0,X)

P(α,X)

)
≤min

α∈Γ
max
θ ∗∈Θ

Varα

(
G(θ ∗,X)

P(α0,X)

P(α,X)

)
.

This result shows that SA can outperform SAA when the distribution can be changed. This presumes,
however, that the parameter in SA can be tuned optimally, for example by Polyak-Ruppert averaging and
by solving (4) at each θ k. The result can be intuited by the adaptivity of IS at each step of SA, whereas
IS can only be applied a priori in SAA. The adaptivity allows efficient digestion of information about θ

∗,
which in turn leads to a better worst-case performance of SA.
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2.2 θ in the Distribution Only

In this subsection, we assume that the decision variable θ is only in the distribution of X. Thus, we can
write the performance function as F(X). Suppose that we have an unbiased gradient estimator G(θ ,X)
obtained by, e.g., the likelihood ratio or the score function method (Glynn 1990; Reiman and Weiss 1989;
Fu 2006), so that G(θ ,X) = F(X)s(θ ,X) for some score function s(θ ,X).

We consider SA and the R-M algorithm. The standard way is to generate Xk, at iteration k and given
the current iterate θ k, under the distribution P(θ k, ·). The asymptotic variance of the estimated optimal
solution is given by Varθ ∗ (G(θ ∗,X)), and thus the worst-case asymptotic variance is

max
θ ∗∈Θ

Varθ ∗ (G(θ ∗,X)) . (9)

For SAA, we have to first pick a particular choice of θ to generate X1, . . . ,Xk to form the sample
problem. This necessitates the use of IS. Suppose we pick θ 1. This gives

min
θ∈Θ

1
k

k

∑
i=1

F(Xi)
P(θ ,Xi)

P(θ1,Xi)
, (10)

and the asymptotic variance of the obtained optimal solution is

Varθ 1

(
G(θ ∗,X)

P(θ ∗,X)

P(θ 1,X)

)
.

The best worst-case asymptotic variance is given by

min
θ∈Θ

max
θ
∗∈Θ

Varθ

(
G(θ ∗,X)

P(θ ∗,X)

P(θ ,X)

)
. (11)

Under this setting, it is unclear whether the worst-case asymptotic variance (9) or (11) is better. In
other words, if the decision variable is inside the distribution, then SAA may no longer be statistically
superior to SA (this reasoning precludes the use of more general IS). For a rough comparison, let us focus
on the second moment, i.e., we compare

max
θ ∗∈Θ

Eθ ∗
[
G(θ ∗,X)2] (12)

and

min
θ∈Θ

max
θ
∗∈Θ

Eθ

[(
G(θ ∗,X)

P(θ ∗,X)

P(θ ,X)

)2
]
. (13)

We re-express (13) under the same probability measure as (12), and obtain

min
θ∈Θ

max
θ
∗∈Θ

Eθ
∗

[
G(θ ∗,X)2 P(θ ∗,X)

P(θ ,X)

]
. (14)

We approximate (14) by choosing a proper θ to make (12) and (14) comparable, as in the following
proposition that is straightforward to verify:
Proposition 1. Suppose that the decision variable θ only appears in the distribution in (1). If we choose
the sampling distribution in SAA as P(θ 1,X), where θ 1 gives rise to the worst-case likelihood ratio

max
θ ∗∈Θ

P(θ ∗,X)

P(θ1,X)
≤ K,

for some constant K > 0, then the asymptotic second moment of SAA is at most that of SA (without using
IS), up to a constant factor K, i.e.,

max
θ
∗∈Θ

Eθ
∗

[
G(θ ∗,X)2 P(θ ∗,X)

P(θ 1,X)

]
≤ K max

θ
∗∈Θ

Eθ
∗
[
G(θ ∗,X)2] .
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Next, we consider the use of IS in SA. To make the discussion more general, suppose P(θ , ·) lies in a
bigger class of distributions, denoted {P(θ ,α, ·) : θ ∈Θ,α ∈ Γ}, where in particular P(θ , ·) = P(θ ,α0, ·).
Thus, at every iteration k, we can choose some P(θ̃ k, α̃k, ·) to generate the variable Xk. To retain unbiasedness,
the gradient estimator is

G(θ k,Xk)
P(θ k,α0,X)

P(θ̃ k, α̃k,X)
.

Given a θ , denote (θ̃
∗
(θ), α̃∗(θ)) as the minimizer of the variance of the associated unbiased gradient

estimator, i.e., (
θ̃
∗
(θ), α̃∗(θ)

)
= argmin

θ 1∈Θ,α1∈Γ

Varθ 1,α1

(
G(θ ,X)

P(θ ,α0,X)

P(θ 1,α1,X)

)
where Varθ 1,α1(·) denotes the variance under P(θ 1,α1, ·). We choose (θ̃ k, α̃k) = (θ̃

∗
(θ k), α̃

∗(θ k)), so that
the gradient estimator becomes

G(θ k,X)
P(θ k,α0,Xk)

P(θ̃ ∗(θ k), α̃
∗(θ k),Xk)

, (15)

where Xk is generated from P(θ̃ ∗(θ k), α̃
∗(θ k), ·). This gives an asymptotic variance

Var
θ̃
∗
(θ ∗),α̃∗(θ ∗)

(
G(θ ∗,X)

P(θ ∗,α0,X)

P(θ̃ ∗(θ ∗), α̃∗(θ ∗),X)

)
,

which is equivalent to

min
θ∈Θ,α∈Γ

Varθ ,α

(
G(θ ∗,X)

P(θ ∗,α0,X)

P(θ ,α,X)

)
.

So the worst-case asymptotic variance is given by

max
θ ∗∈Θ

min
θ∈Θ,α∈Γ

Varθ ,α

(
G(θ ∗,X)

P(θ ∗,α0,X)

P(θ ,α,X)

)
. (16)

On the other hand, the SAA problem within the same IS class has the form

min
θ∈Θ

1
k

k

∑
i=1

F(Xi)
P(θ ,α0,Xi)

P(θ 1,α1,Xi)
, (17)

where X1, . . . ,Xk are generated from P(θ 1,α1, ·), and the best worst-case asymptotic variance is given by

min
θ∈Θ,α∈Γ

max
θ
∗∈Θ

Varθ ,α

(
G(θ ∗,X)

P(θ ∗,α0,X)

P(θ ,α,X)

)
. (18)

Comparing (16) and (18), we see that, similar to Theorem 1, SA-IS is preferable. We summarize the
result as follows:
Theorem 2. Suppose that the decision variable θ only appears in the distribution in (1). SA-IS using a
gradient estimator (15) and SAA-IS using formulation (17) have worst-case asymptotic variances of the
respective estimated optimal solutions given by (16) and (18). The worst-case asymptotic variance of SA-IS
is at most that of SAA-IS, i.e.,

max
θ ∗∈Θ

min
θ∈Θ,α∈Γ

Varθ ,α

(
G(θ ∗,X)

P(θ ∗,α0,X)

P(θ ,α,X)

)
≤ min

θ∈Θ,α∈Γ

max
θ
∗∈Θ

Varθ ,α

(
G(θ ∗,X)

P(θ ∗,α0,X)

P(θ ,α,X)

)
. (19)
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Like Theorem 1, the above conclusion assumes that the parameters in SA-IS can be optimally tuned.
Note that even when the α parameter is absent, i.e., there is only the freedom to choose the decision
variable θ , SA-IS is still better under this setting. This, in particular, indicates that the “standard way” to
generate Xk in SA discussed at the beginning of this subsection is suboptimal. This is summarized as:
Corollary 1. Suppose that the decision variable θ only appears in the distribution in (1), and we are
restricted to the class of distributions {P(θ , ·) : θ ∈Θ} to generate X. SA-IS using a gradient estimator

G(θ k,X)
P(θ k,Xk)

P(θ̃ ∗(θ k),Xk)
,

where

θ̃
∗
(θ) = argmin

θ 1∈Θ

Varθ 1

(
G(θ ,X)

P(θ ,X)

P(θ 1,X)

)
,

has a worst-case asymptotic variance of the estimated optimal solution given by

max
θ ∗∈Θ

min
θ∈Θ

Varθ ,α

(
G(θ ∗,X)

P(θ ∗,X)

P(θ ,X)

)
.

This quantity is at most the asymptotic variance of the standard SA that is given by (9), and also the
worst-case asymptotic variance of SAA-IS formulated in (10) that is given by (11).

2.3 θ in Both the Performance and the Distribution

The above discussion largely holds when the decision variable θ is in both the performance function and
the distribution. In this case, we assume an unbiased gradient estimator G(θ ,X) can be derived via a
combination of the pathwise differentiation and the likelihood ratio / score function method, i.e.,

G(θ ,X) = G̃(θ ,X)+F(θ ,X)s(θ ,X), (20)

where G̃(θ ,X) is the pathwise differentiation of F(θ ,X). We suppose that P(θ , ·) is in the class{P(θ ,α, ·) :
θ ∈Θ,α ∈ Γ}, where in particular P(θ , ·) = P(θ ,α0, ·), as in Section 2.2. Then, using the notations there,
we can derive SA-IS with a gradient estimator the same as (15) and SAA-IS using formulation

min
θ∈Θ

1
k

k

∑
i=1

F(θ ,Xi)
P(θ ,α0,Xi)

P(θ 1,α1,Xi)
. (21)

We have the following result that is similar to Theorems 1 and 2:
Theorem 3. Suppose that the parameter of interest θ appears in both the performance function and the
distribution. SA-IS with gradient estimator given by (20) and SAA-IS formulation given by (21) have
respective worst-case asymptotic variances of the estimated optimal solutions satisfying (16) and (18).
Moreover, (19) holds.
Remark 1. The estimator (20) can be extended to the case of discontinuous performance functions by
using the generalized likelihood ratio method of Peng et al. (2018).

3 FINITE-TIME COMPARISON

This section discusses the finite-time performances of SAA-IS and SA-IS. Here we consider only the case
that θ is in the performance function, and there exists an unbiased gradient estimator G(θ ,X) obtainable
from pathwise differentiation.

We consider the R-M algorithm (2) in the SA context. Specifically, let ak = a/k, where a is a proper
constant. We assume that f (θ) is strongly convex, i.e., there is a constant c > 0 such that

f (θ)≥ f (θ ′)+(θ −θ
′) f ′(θ ′)+

1
2

c(θ −θ
′)2, ∀θ ,θ ′ ∈Θ.
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Then, Nemirovski et al. (2009) gives the following upper bound for the optimality gap of the obtained
solution θk in terms of L2-distance:

E
[
(θk−θ

∗)2]≤ max
{

a2M2/(2ca−1),(θ1−θ ∗)2
}

k
, (22)

where M is a positive number such that

E
[
G(θ ,X)2]≤M2, ∀θ ∈Θ. (23)

For SAA given by (3), we assume that F is Lipschitz continuous, i.e., there exists a positive constant
C such that ∣∣F(θ ,X)−F(θ ′,X)

∣∣≤C, for all θ ,θ ′ ∈Θ, and for all X.

Then, by Theorem 1 in Shapiro and Nemirovski (2005), the obtained SAA solution θk satisfies

Pr{|θk−θ
∗|> ε} ≤C1Dexp

(
−C2ε2k

M2D2

)
,

where M is as defined in (23), D is the diameter of Θ, and C1 and C2 are positive constants. Thus, a rather
crude bound for the optimality gap measured by L2-distance can be obtained as

E
[
(θk−θ

∗)2] =
∫

∞

0
Pr
{
(θk−θ

∗)2 > δ
}

dδ

≤ C1D
∫

∞

0
exp
(
− C2δk

M2D2

)
dδ

=
C1M2D3

C2k
. (24)

Note that the optimality gap bounds for both SA and SAA, namely (22) and (24), are both O(k−1).
When we apply IS using the class of distributions {P(α,X) : α ∈ Γ}, where P(·) = P(α0, ·), introduced

in Section 2.1, we attempt to find an optimal IS parameter α∗(θ) that satisfies (4) and use the gradient (5).
Thus, in the above analysis, M can be replaced by a better constant M∗ ≤M such that

Eα∗(θ)

[(
G(θ ,X)

P(α0,X)

P(α∗(θ),X)

)2
]
≤M2

∗ , ∀θ ∈Θ

or equivalently

max
θ∈Θ

min
α∈Γ

Eα

[(
G(θ ,X)

P(α0,X)

P(α,X)

)2
]
≤M2

∗ . (25)

In SAA, applying IS can also change the constant M in the bound to a better constant M∗ ≤M, but in
the form

min
α∈Γ

max
θ∈Θ

Eα

[(
G(θ ,X)

P(α0,X)

P(α,X)

)2
]
≤M∗2 (26)

since we must apply the IS and choose an α at the beginning. As in the asymptotic analysis in Section 2,
the new constant for SA-IS in (25) is better than that for SA-SAA in (26).

1869



Lam, Jiang, and Fu

4 SIMULATION EXAMPLES

In this section, we provide two simulation examples as illustration. In the first example, the decision
variable θ is not in the distribution function. Let X ∼N (µ,σ2). Consider the optimization problem

min
θ∈Θ

E
[(

X2 +θ −C
)2
]
, (27)

where C is a constant. Specifically, let Θ = [−3,1], µ = 1, σ = 1, and C = 1. The true optimal solution
is θ ∗ = C−E[X2] = −1. We compare SA, SAA, SA-IS, and SAA-IS with different sample sizes. We
use the root mean square error (RMSE) of the estimated optimal solution to measure the performance of
each approach (which is a similar criterion as the variance asymptotically), where the RMSE is estimated
from 50 replications. To compare SA and SAA methods fairly, we generate one sample at each iteration
in SA and SA-IS, so the total number of Monte Carlo samples are the same in SA and SAA methods.
We use the stepsize constant a = 0.4 in SA and SA-IS. In SA-IS, we choose the optimal θ̃ ∗(θk) at each
step by minimizing the corresponding variance via numerical integration and optimization. In SAA-IS, we
uniformly discretize Θ and find the IS parameter that gives the smallest RMSE under the given sample size
(note that this assumes knowledge of the optimal solution θ ∗, which is impossible in practice and gives an
edge to SAA, but this helps illustrate our conclusions). The results are shown in Table 1. We see that SAA
performs better than SA across the settings. Better performances are detected generally when IS is applied
to both methods (but for SAA-IS, the performances are sometimes slightly worse, possibly due to statistical
noises in estimating the RMSE). Importantly, when IS is applied, SA-IS appears superior to both SAA
and SAA-IS, which is consistent with our theoretical results in Section 2.1. In particular, the RMSE point
estimates of SA-IS are generally lower than SAA-IS, though the differences are not statistically significant.
However, as described above, we have assumed extra knowledge in implementing SAA-IS, and we foresee
the differences will be more obvious when using SAA-IS without any a priori information.

Table 1: Comparing RMSE of SA, SA-IS, SAA, and SAA-IS in the first example, based on 50 simulation
replications. The corresponding standard errors are provided in parentheses.

n 100 200 500 1000 2000 5000 10000 20000

SA 0.28 0.18 0.14 0.091 0.065 0.048 0.035 0.028
(0.05) (0.03) (0.02) (0.02) (0.01) (0.007) (0.004) (0.004)

SA-IS 0.22 0.14 0.10 0.063 0.050 0.032 0.021 0.015
(0.02) (0.01) (0.009) (0.007) (0.005) (0.003) (0.002) (0.001)

SAA 0.21 0.15 0.11 0.077 0.059 0.035 0.026 0.017
(0.03) (0.02) (0.01) (0.01) (0.009) (0.006) (0.004) (0.003)

SAA-IS 0.21 0.16 0.11 0.065 0.051 0.032 0.024 0.016
(0.03) (0.02) (0.01) (0.01) (0.008) (0.004) (0.004) (0.003)

Next, we consider the second example where the decision variable θ is in both the distribution function
and the performance function. Let X ∼N ((θ −1)2,σ2), and we consider the same objective function as
in (27), but Θ = [−2,2]. We consider two cases: (i) σ = 1, C = 1; (ii) σ = 2, C =−2. The true optimal
solutions are θ ∗ = 0.6085 and θ ∗ = 0.5169, respectively. In SA and SA-IS, we choose the stepsize constant
a = 0.5 for Case (i) and a = 0.7 for Case (ii). As in the first example, we choose the optimal θ̃ ∗(θk) at
each step via numerical integration and optimization in SA-IS. For SAA, note that, as discussed in Section
2.2, it cannot be applied directly here and necessitates the use of IS at the beginning. For this, we consider
two choices of the IS parameter. First is to pick 0 as an arbitrary choice (we label it as “SAA-IS0”).
Second, we uniformly discretize Θ and find the IS parameter that gives the smallest RMSE, like in the first
example. The comparisons among SA, SA-IS, SAA-IS0, and SAA-IS are shown in Figure 1. We see that
an arbitrary choice of IS parameter for SAA does not perform as well as SA; this can be by chance and
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another choice may give better results, but there is no general guarantee. Applying IS on both methods
generally improves performances (but, like in the first example, the performances of SAA-IS are worse
than SAA-IS0 sometimes, which could be due to estimation noises for the RMSE). SA-IS appears superior
to both SAA-IS0 and SAA-IS in this example, consistent with the findings in Sections 2.2 and 2.3.
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Figure 1: Comparing RMSE among SA, SA-IS, SAA-IS0, and SAA-IS in the second example. Left panel:
σ = 1, C = 1. Right panel: σ = 2, C =−2.

Lastly, we give further details on how we find the IS parameters in SAA-IS. The procedure is similar
for both examples, and here we discuss only the second one. We discretize Θ = [−2,2] into 81 points
θ = −2,−1.95,−1.90, . . . ,1.90,1.95,2, and estimate the RMSE on each of these. Here we replicate 40
times to estimate the RMSE. From these values (shown in Figure 2), we select the IS parameters θ ∗b = 0.7
for Case (i) and θ ∗b = 1.35 for Case (ii), respectively, with the smallest RMSEs.
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Figure 2: RMSE under different IS parameters in SAA with sample size 5000.

5 CONCLUSION AND DISCUSSION

We have compared the use of SA and SAA for stochastic optimization problems, particularly in the
situations where the decision variable is in the distribution generating the stochasticity or when IS can be
applied. In an idealized setting where the IS parameter can be chosen optimally, we show that SA performs
better than SAA in terms of asymptotic variance. This modifies the conventional conclusion that SAA
is statistically optimal when no IS can be applied. The derivation of our theoretical comparison uses a
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worst-case framework over all possibilities of the unknown optimal solution, and a mininax weak duality
argument. We further discuss similar observations in the finite-time analysis where the improvement in
gradient estimation depicted in the performance bound in SA is bigger than in SAA. Finally, we present
simulation examples to substantiate our theoretical findings. In future research, we will consider multi-
dimensional decision variables, which are considerably more challenging, as the criterion for choosing the
optimal IS is less clear. We will also investigate practical methods to tune IS schemes in suitable contexts
that can show significant improvements in the efficiencies of the stochastic optimization algorithms, and
apply the methods to realistic examples.
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