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ABSTRACT

We survey recent developments concerning Sequest and Sequem, two simulation-based sequential procedures
for estimating steady-state quantiles. These procedures deliver improved point and confidence-interval (CI)
estimators of a selected steady-state quantile, where the CI approximately satisfies user-specified requirements
on the CI’s coverage probability and its absolute or relative precision. Sequest estimates a nonextreme
quantile (i.e., its order is between 0.05 and 0.95) based on the methods of batching and sectioning. Sequem
estimates extreme quantiles using a combination of batching, sectioning, and the maximum transformation.
Two test problems show both the advantages and the limitations of these procedures. Based on the
lessons learned in designing, justifying, implementing, and stress-testing Sequest and Sequem, we discuss
future challenges in advancing the theory, algorithmic development, software implementation, performance
evaluation, and practical application of improved procedures for steady-state quantile estimation.

1 INTRODUCTION

To evaluate long-run performance or risk for complex systems, steady-state simulations play a fundamental
role in a wide range of application areas (Buzacott and Shanthikumar 1993; Conway 1963; Shortle et al.
2018; Trivedi 2002). On one hand, the steady-state expected value of a selected simulation output equals
the long-run average of a time series of such outputs with probability one (Karlin and Taylor 1975, Theorem
5.5); on the other hand, a steady-state quantile of the selected output can gauge the long-run performance or
risk associated with individual outputs (Glasserman 2004). For example, in a production-system simulation
let Xi be the cycle time of the ith job (i.e., the job’s time in the system), where i≥ 1. In the evaluation of
an existing or proposed system design, an important performance measure may be x0.95, the steady-state
0.95-quantile of the cycle-time distribution (Bekki et al. 2009, 2010) because as i→∞, the limiting
probability is 95% that Xi does not exceed x0.95.

To formalize our discussion, we assume that the simulation output process {Xi : i≥ 1} is stationary with
marginal cumulative distribution function (c.d.f.) F(x)≡ Pr(Xi ≤ x) and probability density function (p.d.f.)
f (x) for all x ∈R, where f (x) is assumed to be continuous on its support. Given p ∈ (0,1), the p-quantile
of the marginal output distribution is xp ≡ F−1(p)≡ inf{x : F(x)≥ p}. If the time series {Xi : i = 1, . . . ,n}
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consists of independent identically distributed (i.i.d.) outputs, then one can compute point and CI estimators
of xp based on a central limit theorem or nonparametric methods (Serfling 1980, §2.3.3 and §2.6.1).

If the simulation is not initialized in steady-state operation or the output process {Xi : i ≥ 1} is
autocorrelated, then the estimation of steady-state quantiles involves substantial challenges. To address
these challenges, several steady-state quantile estimation procedures been developed (Bekki et al. 2009,
2010; Chen and Kelton 2006, 2008; Drees 2003; Heidelberger and Lewis 1984; Iglehart 1976; Jain and
Chlamtac 1985; McNeil and Frey 2000; Raatikainen 1987, 1990; Seila 1982a, 1982b). However, some
existing or proposed estimation procedures for steady-state quantile estimation have significant drawbacks
such as (a) lack of an adequate theoretical foundation; (b) implementation obstacles; (c) lack of effective
guidelines for use in practical applications; (d) need for excessive user intervention; or (e) poor performance
in practice, especially with respect to CI coverage probability, the size of the required sample, or the required
computer resources. Issues (a)–(e) are elaborated in Alexopoulos et al. (2017, p. 22:3) and Alexopoulos
et al. (2018b, §1).

In this paper we review two recent sequential procedures for estimating a steady-state quantile whose
order p is given—namely, Sequest (Alexopoulos et al. 2018b), which is designed for estimating nonextreme
quantiles (i.e., 0.05≤ p≤ 0.95); and Sequem (Alexopoulos et al. 2017), which is designed for estimating
extreme quantiles. Section 2 of this paper provides a high-level overview of Sequest, and Section 3 provides
a similar overview of Sequem. In Section 4 we summarize an experimental performance evaluation of
these procedures in two queueing systems; and we discuss the insights gained and lessons learned in
designing, justifying, implementing, and stress-testing these procedures. Finally in Section 5 we discuss
future challenges in advancing the theory, algorithmic development, software implementation, performance
evaluation, and practical application of improved procedures for steady-state quantile estimation.

2 OVERVIEW OF SEQUEST

Sequest exploits the methods of batching and sectioning to estimate xp as follows. From the simulation-
generated time series {X1, . . . ,Xn} of length n= bm, we form b nonoverlapping batches each of size m so that
for j = 1, . . . ,b, the jth batch consists of the subseries {X( j−1)m+1, . . . ,X jm}. We sort the observations in the
jth batch in ascending order to obtain the order statistics X j,(1) ≤ X j,(2) ≤ ·· · ≤ X j,(m) and the conventional
point estimator of xp ,

x̌p( j,m)≡ X j,(dmpe) , (1)

where d·e is the ceiling function. From the jth batch ( j = 1, . . . ,b), both Sequest and Sequem compute the
modified quantile estimator,

x̂p( j,m)≡


X j,(1) if p≤ 0.5/m,

δp,mX j,(dmp+0.5e−1)+(1−δp,m)X j,(dmp+0.5e) if 0.5/m < p < (m−0.5)/m,

X j,(m) if (m−0.5)/m≤ p,

(2)

where
δp,m ≡ dmp+0.5e− (mp+0.5) (3)

(Avramidis and Wilson 1998, Equation (4)). Henceforth we refer to x̂p( j,m) as a batch quantile estimator
(BQE). Similarly from the entire sample {X1, . . . ,Xn}, we compute the order statistics X(1) ≤ ·· · ≤ X(n) and
the modified sectioning-based point estimator of xp ,

x̃p(n)≡


X(1) if p≤ 0.5/n,
δp,nX(dnp+0.5e−1)+(1−δp,n)X(dnp+0.5e) if 0.5/n < p < (n−0.5)/n,
X(n) if (n−0.5)/n≤ p,

(4)
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where δp,n is defined as in (3). Using Equations (2) and (4), we also compute a modified estimator of the
variance of the BQEs,

S̃ 2
x̂p
(b,m)≡ 1

b

b

∑
j=1

[
x̂p( j,m)− x̃p(n)

]2 ; (5)

and based on Equations (4) and (5), we formulate the approximate 100(1−α)% CI for xp ,

x̃p(n)± t1−α/2,b−1S̃x̂p(b,m)
/

b1/2 , (6)

where tu,ν is the u-quantile of Student’s t-distribution with ν degrees of freedom for u ∈ (0,1). Sequest
adjusts the half-length of the CI (6) to compensate for the anomalous effects of correlation and skewness
of the BQEs (2) that are used to compute the CI’s half-length. See Alexopoulos et al. (2018b, §2) for a
discussion of the theoretical, heuristic, and practical considerations leading to our use of the point estimator
(4) and the CI estimator (6) as a starting point in the design of Sequest.

Sequest comprises four stages as summarized below.

Stage S0 initializes all the parameters of Sequest, including the batch size m0 = 128, the batch count b = 64,
several batch-size inflation factors, and the levels of significance used in testing the BQEs for approximate
randomness.

Stage S1 consists of two steps:

• Step [1] encompasses two loops. The first loop starts with 64 batches of size 128 and iteratively
increases the batch size by the inflation factor τwrm = 2 until the BQEs in (2) have a sample standard
deviation exceeding ∆s = 10−10 and an estimated coefficient of variation exceeding ∆c = 10−5 . The
objective of this loop is to determine a tentative batch size that is sufficiently large to contain a
warm-up period in which a deterministic trend is the dominant effect; see Wang and Glynn (2016,
§5.1) for an example of such a transient. Starting from the current batch size, the second loop
iteratively applies the randomness test of von Neumann (1941) to the BQEs using a significance
level (test size) αwrm that decreases gradually from the initial value αwrmi = 0.25 to about αwrmf =
0.001. In particular, the size of the randomness test is iteratively updated using the assignment
αwrm← αwrmi

(
0.6`−1

)
+αwrmf

(
1−0.6`−1

)
, where ` is the iteration counter. Each time the BQEs

fail the randomness test, the batch size is doubled, ` is incremented by 1, and the test is repeated.
• Step [2] executes a more powerful randomness test to determine a batch size that is large enough to

ensure the BQEs are approximately i.i.d. and the sample skewness of the BQEs is approximately an
unbiased estimator of the true skewness of the BQEs. This step starts by resetting the batch size to
m0 and by increasing the batch count to b = 128 so as to increase the power of the randomness test
while keeping the batch size as small as possible. The level of significance αskw of the randomness
test decreases in the same way as in the second loop of step [1], but the batch size increases by the
smaller factor of τskw = 21/2 after each failed test.

Stage S2 also consists of two steps:

• Step [3] starts by deleting the first w observations of the sample{X1, . . . ,Xn}, where the data-truncation
point w is the sum of the batch sizes from steps [1] and [2]. The truncated time series is reindexed as
{Yi = Xw+i : i = 1, . . . ,n†}, where n† = n−w = bm and any needed extra observations are generated
by resuming the simulation; then the BQEs {ŷp( j,m)} are updated using the {Yi}. This step consists
of a single loop that iteratively increases the batch size until the sample skewness B̂ŷp(b,m) of the
updated BQEs has a magnitude below the threshold B∗(p)≡ 0.65exp

(
−0.5|p−0.5|2

)
. To avoid

an explosion of the batch size while seeking to reduce the absolute skewness of the BQEs to a
manageable level, we limit the number of iterations of step [3] to u∗ = 40; and on each iteration
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of step [3], the batch size is updated according to the relation

m←
⌈

m ·mid
{

1.05,
[
B̂ŷp(b,m)

/
B∗(p)

]2
,τskw

}⌉
, (7)

where τskw = 21/4 and mid{v1,v2,v3} ≡ v(2) .
• Step [4] increases the batch size by a factor of 4 and decreases the batch count b by a factor of

1/4 in an attempt to improve the coverage of the CI that will be computed in step [6]. This action
neither increases the total sample size nor changes the bias of the sectioning-based point estimator
of xp . However, in general the absolute skewness and correlation of the recomputed BQEs decrease
and the CI half-length increases owing to the increase in m and the decrease in b.

Stage S3 comprises three steps:

• Step [5] computes the warmed-up, sectioning-based point estimator ỹp(n†) of xp that is defined
by the analogue of Equation (4) computed from the {Yi}. This step also computes the correlation
adjustment and the skewness adjustment that will be applied to the CI half-length H in step [6] so
as to compensate for any remaining autocorrelation or skewness of the updated BQEs. Specifically,
we compute the sample lag-one correlation ϕ̂ ŷp(b,m) of the updated BQEs and the associated
correlation adjustment

A←max
{[

1+ ϕ̂ ŷp(b,m)
]/[

1− ϕ̂ ŷp(b,m)
]
, 1
}
.

Moreover from the updated sample skewness B̂ŷp(b,m), we compute the associated skewness-
adjustment parameter, β ← B̂ŷp(b,m)

/(
6
√

b
)

; and we define the skewness-adjustment function,

G(ζ )≡

ζ if |β | ≤ εs ,

[1+6β (ζ −β )]1/3−1
2β

if |β |> εs ,

where εs = 10−3 and for all real u, we take u1/3 ≡ sign(u)|u|1/3 .
• Step [6] obtains Sequest’s 100(1−α)% CI for xp as follows. We compute the half-length of the

correlation- and skewness-adjusted 100(1−α)% CI for the p-quantile xp ,

H←max
{

G(t1−α/2,b−1),G(tα/2,b−1)
}[

AS̃ 2
ŷp
(b,m)

/
b
]1/2

, (8)

to obtain the associated CI,
ỹp(n†) ± H , (9)

which is adjusted for initialization bias as well as correlation and skewness of the BQEs.
• Step [7] executes the sequential run-length control logic as follows: if the half-length (8) of the

current CI (9) satisfies the precision requirement H ≤ H∗, where

H∗ =

{
r∗
∣∣ỹp(n†)

∣∣ , for a user-specified relative precision level r∗ ,
h∗ , for a user-specified absolute precision level h∗ ,

then Sequest terminates; otherwise control returns to step [5] with the final batch count b = 32 and
the updated batch size

m←
⌈

m ·mid
{

1.02,(H/H∗)2,2
}⌉

.

The latter conservative assignment aims at curtailing any potential explosion of sample size and
has its origins in recent sequential procedures for estimating the steady-state mean (Tafazzoli and
Wilson 2011).
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Sequest has been implemented in Java, and the package includes a graphical user interface that enables
the user to do the following: (a) specify the parameters of any test process employed in Alexopoulos et al.
(2017) or Alexopoulos et al. (2018b), and apply the procedure automatically to a sample path generated by
the software in real time; or (b) apply the procedure semiautomatically to a dataset contained in a plain-text
file. In either case, the user has the ability to specify an upper bound on the total sample size. If in case
(b) the dataset is sufficiently large to allow normal termination of Sequest, then the algorithm delivers a CI
for xp that (approximately) satisfies the user-specified requirements on coverage and precision; otherwise,
Sequest terminates with an estimate of the sample size required to continue execution in the current step.

We are currently developing a GitHub repository for three stand-alone versions of the Sequest package
that can run under the Linux, Mac, and Windows operating systems, respectively. An online notice about
the future availability of the software (Alexopoulos et al. 2018a) will be updated with a link to the GitHub
repository upon its completion.

3 OVERVIEW OF SEQUEM

The Sequem procedure of Alexopoulos et al. (2017) combines the maximum transformation (Heidelberger
and Lewis 1984) and the method of sectioning to convert the problem of estimating an extreme quantile
xp (so that max{p,1− p} ∈ (0.95,0.995]) into the more tractable problem of estimating a nonextreme
quantile of order q ∈ [0.05,0.95]. We illustrate the maximum transformation when p ∈ (0.95,0.995].
Suppose V1, . . . ,Vc are i.i.d. continuous random variables with c.d.f. FV(v), and we seek to estimate the
p-quantile vp = F−1

V (p). The random variable Y ≡ max{V1, . . . ,Vc} has c.d.f. FY (y) =
[
FV(y)

]c for all
y. It follows that FY (vp) =

[
FV(vp)

]c
= pc ≡ q; hence vp = yq = F−1

Y (q), so estimating vp is equivalent
to estimating yq . Most of the experimentation of Heidelberger and Lewis (1984, Tables I–IV) is based
on setting c so that pc ≈ 0.5. However, this assignment of c often leads to excessive sample sizes when
estimating extreme quantiles by a sequential procedure. For example, when p = 0.99 and q = 0.5, we
have c≈ bln(q)/ ln(p)c= 69; and the impact of such a large value of c will become clear below. When
p ∈ [0.005,0.05), one can apply the analogous minimum transformation detailed in Alexopoulos et al.
(2017, §2).

Heidelberger and Lewis (1984) apply the maximum transformation to a dependent time series {Xi : i =
1, . . . ,n} by (a) partitioning this dataset into L adjacent groups (subseries) each consisting of cm successive
observations so that n = cmL; (b) organizing each subseries into c adjacent batches each of size m; and
(c) conceptually arranging each subseries into a c×m matrix such that the first row of the matrix consists
of the first batch, the second row consists of the second batch, etc. This arrangement is illustrated in
Figure 1 for c = 3, m = 3, and L = 3. If the resulting L matrices of dimension c×m are concatenated
horizontally (i.e., placed side by side) to form a c× (mL) matrix as in Figure 1, then each column of
the c× (mL) matrix consists of observations separated by lag m; hence if m is sufficiently large, then the
entries in each column are approximately i.i.d. with c.d.f. F(x). For `= 1, . . . ,L and i = 1, . . . ,m, we let
Y`,i denote the maximum of the entries in column i within group `; and we let Y`,(1) ≤ ·· · ≤ Y`,(m) denote
the associated order statistics within group `. Finally from each group ` we compute the group quantile
estimator (GQE) Y`,(dmqe) of yq for `= 1, . . . ,L. If we take c = bln(q)/ ln(p)c, where b·c denotes the floor
function so that q ≈ pc , then for sufficiently large m the GQEs are approximately i.i.d. normal unbiased
estimators of yq ≈ xp ; and an approximate CI for xp can be computed from the sample mean and sample
variance of the GQEs. Unfortunately, Heidelberger and Lewis (1984) do not provide a method for setting
m and L; hence their nonsequential procedure requires substantial user intervention in practice, and their
procedure is not readily extended to an automated sequential procedure for estimating extreme quantiles.

Sequem builds on the procedure of Heidelberger and Lewis (1984) in two respects:

• Sequem applies (a) the maximum transformation to estimate a p-quantile for p∈ (0.95,0.995] using
q = 0.9; and (b) the minimum transformation to estimate a p-quantile for p ∈ [0.005,0.05) using
q = 0.1. These assignments for q yield substantially smaller values of c and thus substantially
smaller values of the overall sample size n than are required when using q = 0.5.
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`= 1 `= 2 `= 3

row 1 X1 X2 · · · Xm X3m+1 X3m+2 · · · X4m X6m+1 X6m+2 · · · X7m

row 2 Xm+1 Xm+2 · · · X2m X4m+1 X4m+2 · · · X5m X7m+1 X7m+2 · · · X8m

row 3 X2m+1 X2m+2 · · · X3m X5m+1 X5m+2 · · · X6m X8m+1 X8m+2 · · · X9m

max Y1,1 Y1,2 · · · Y1,m Y2,1 Y2,2 · · · Y2,m Y3,1 Y3,2 · · · Y3,m

Figure 1: Illustration of grouping mechanism with c = 3 and L = 3 groups.

• Sequem applies the sectioning method based on an alternative data layout in which the entire warmed-
up (truncated) time series {Xi : i = 1, . . . ,n† = cmL} is arranged conceptually into a c×(mL) matrix
whose first row consists of the first subseries {Xi : i = 1, . . . ,mL} of length mL, the second row
consists of the second subseries {Xi : i = mL+1, . . . ,2mL} of length mL, etc. For i = 1, . . . ,mL, we
let Ỹi denote the maximum of the observations in column i of the c× (mL) matrix. Figure 2 depicts
this arrangement when c = 3, m = 3, and L = 3. Such an arrangement of the dataset ensures that
each column of the c× (mL) matrix consists of observations separated by lag mL� m so those
observations are nearly i.i.d. The sectioning-based point estimator of xp is computed by sorting
the
{

Ỹi : i = 1, · · · ,mL
}

in ascending order to obtain the order statistics Ỹ(1) ≤ ·· · ≤ Ỹ(mL) so that
we have the p-quantile estimator ỹp(n†) computed from

{
Ỹ(i) : i = 1, . . . , mL

}
using an analogue

of Equation (4) that is defined explicitly in Alexopoulos et al. (2017, Equation (15)).

We summarize briefly the four major stages composing Sequem. A detailed description and a flowchart
of Sequem are given in Alexopoulos et al. (2017, §2).

Stage S0 initializes the parameters of Sequem, including c = bln(q)/ ln(p)c; the batch size m0 = 256; the
batch count b = 64; the sample size n = bm = 16,384; the group count L = 64; various batch-size inflation
factors; and the sizes of the randomness tests that are applied to the BQEs used in Stage S1.

Stage S1 consists of two steps and does not employ the maximum transformation technique, working
instead with the BQEs defined by Equation (2) as in Sequest. This is done mainly to avoid potentially
excessive sample sizes in determining the length w of the warm-up period.

• Step [1] contains two loops that involve testing the BQEs for randomness. Paralleling the loops in
step [1] of Sequest, these loops are designed to yield a batch size large enough to contain the main
deterministic and stochastic transients that might affect the BQEs.

• Step [2] contains a loop that works similarly to its counterpart in Sequest by iteratively applying a
higher-power randomness test to the BQEs, where the loop’s starting batch size is m = m0 and the
batch count is reset to b = min{cL,256}. This loop is designed to yield a batch size large enough
to contain any remaining transients that might affect the BQEs or GQEs.

Stage S2 contains two steps:

• Step [3] starts by deleting the first w observations in the original dataset, where w is the sum
of the batch sizes determined in steps [1] and [2]. We initialize the maximum transformation
method by collecting enough additional data to form L groups of size cm, starting with the batch
size m = m0 = 256. This grouping is retained in steps [3]–[5]. Henceforth for simplicity we let
{Xi : i = 1, . . . ,n† = cmL} denote the warmed-up (truncated) dataset. The remainder of this step
consists of a single loop that iteratively increases the batch size until the estimated absolute skewness
of the GQEs falls below the fixed threshold B∗(p)≡ 0.60. To avoid excessive batch sizes, this loop
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`= 1 `= 2 `= 3

row 1 X1 X2 · · · Xm Xm+1 Xm+2 · · · X2m X2m+1 X2m+2 · · · X3m

row 2 X3m+1 X3m+2 · · · X4m X4m+1 X4m+2 · · · X5m X5m+1 X5m+2 · · · X6m

row 3 X6m+1 X6m+2 · · · X7m X7m+1 X7m+2 · · · X8m X8m+1 X8m+2 · · · X9m

max Ỹ1 Ỹ2 · · · Ỹm Ỹm+1 Ỹm+2 · · · Ỹ2m Ỹ2m+1 Ỹ2m+2 · · · Ỹ3m

Figure 2: Illustration of the sectioning mechanism for the derivation of the final point estimator of xp with
c = 3 and L = 3 groups.

is limited to 50 iterations, has a temporary upper bound n∗ = 30×108 on the total sample size, and
increases the batch size by a factor similar to Equation (7) on successive iterations of the loop.

• Step [4] functions similarly to the corresponding step of Sequest by halving the number of groups
L and doubling the batch size m.

Stage S3 includes three steps:

• Step [5] computes the CI half-length adjustments designed to compensate for any remaining
autocorrelation and skewness of the GQEs as in the corresponding step of Sequest.

• Step [6] involves (a) conceptually rearranging the truncated dataset as shown in Figure 2 to compute
the sectioning-based point estimator of xp; and (b) computing the CI estimator ỹp(n†)±H of xp
whose half-length H incorporates the correlation and skewness adjustments from step [5].

• Step [7] is a direct analogue of step [7] of Sequest that executes the sequential run-length control
logic.

4 EXPERIMENTAL RESULTS

This section contains experimental results for two test processes. The first test process consists of the total
queue-waiting time (prior to service) for customers in a system comprised of two M/M/1 queues in tandem. In
this case we consider values of p∈ {0.30,0.50,0.70,0.90,0.95,0.995}. The second test process consists of
times in system for an M/G/1 queue with service times that are a mixture of two gamma distributions, In this
process we augment the set of values of p to {0.05,0.10,0.15,0.20,0.25,0.30,0.50,0.70,0.90,0.95,0.995}
in order to study the potential effect of the bimodality of the marginal p.d.f. on the variability of the
sample size near the two modes. For each problem we considered two levels of relative precision: r∗ =∞
(no precision requirement) and r∗ = 0.02; the latter value was chosen to evaluate the effectiveness of the
sequential mechanism on step [7] of both Sequest and Sequem when relatively little additional sampling is
required beyond the sample size required under no precision requirement. All experiments were performed
on a Windows 7 desktop computer equipped with an Intel Core i7-3770 CPU and 16 GB of RAM.

All the experimental results tabulated below are based on 1000 independent replications of each test
process. In each table the entries in bold represent the relevant performance measures for Sequem. In
each table, columns 2 through 4 respectively list the following: the nearly exact value of each quantile
under study; the corresponding average value of the final point estimator ỹp(n†) of xp averaged over all
1000 replications, where n† = n−w is the final truncated sample size; and Avg.

∣∣ỹp(n†)− xp
∣∣ denotes the

average of the point estimator’s absolute bias computed over all 1000 replications. For nominal 95% CIs,
columns 5 and 6 respectively contain the average half-length H and average relative precision, where the
latter is the average CI half-length expressed as a percentage of the magnitude of the average CI midpoint,
that is, 100×H

/∣∣Avg. ỹp(n†)
∣∣%; and column 7 contains the estimated CI coverage probability. The last

two columns list the respective final batch size and sample size. The disparity between the batch sizes used
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by Sequest and Sequem reflects the impact of the parameter c = bln(0.9)/ ln(p)c. Since each data group
consists of cm consecutive observations, this disparity grows as p increases.

4.1 An M/M/1/M/1 Queue-Waiting-Time Process

The first test process consists of the total queue-waiting time for a customer in a tandem system composed
of two M/M/1 queues. This system has arrival rate λ = 1 at the first queue and service rate ω = 1.25
at each server. This system was initialized in the empty-and-idle state. In steady-state each server has a
utilization of ρ = 0.8, and the expected value of a customer’s total queue-waiting time is equal to 6.4. The
steady-state c.d.f. F(x) of a customer’s total waiting time is

F(x) =
[λ +2(1−ρ)ω +λω(1−ρ)x ]e−ω(1−ρ)x−2ω(1−ρ)2−2λ (1−ρ)−λ

λ −2ω
for x≥ 0

(Karpelevitch and Kreinen 1992, Theorem 2). We computed the nearly exact value of xp for each selected
value of p by inverting a piecewise-linear approximation to F(x) for x ∈ [0,75] based on increments of
size ∆x = 10−3 .

Table 1 summarizes the experimental results for this test process. The results for p≥ 0.95 appeared in
Alexopoulos et al. (2017, §3.2). With no precision requirement and p ∈ [0.3,0.95], Sequest’s performance
was good because the estimated CI coverage probabilities were close to the nominal 95% level, the point
estimates ỹp(n†) exhibited low average absolute bias (ranging between 0.041 and 0.183), and the average
sample sizes were judged to be reasonable. Unfortunately, Sequest’s performance deteriorated substantially
for p > 0.95: the estimated CI coverage probabilities dropped from the near-nominal value of 94.7% for
p = 0.95 to the substandard value of 87.6% for p = 0.99 and the unacceptable value of 81.1% for p = 0.995.
On the other hand, Sequem’s performance was consistently good for p≥ 0.95. With a relative precision
level of 2%, both procedures performed equally well, requiring roughly equal average sample sizes to
deliver CIs whose average levels of coverage and relative precision conformed closely to their respective
nominal levels.

4.2 An M/G/1 Time-in-System Process

The second example involves an M/G/1 queueing system with mean interarrival time 10 and i.i.d. service
times whose distribution is a mixture of two gamma distributions: (a) with probability 0.8, the service time
has a three-parameter gamma distribution with location parameter γ1 = 2, shape parameter α1 = 2, and
scale parameter β1 = 2 so the associated p.d.f. has mode 4 and mean 6; and (b) with probability 0.2 the
service time has a three-parameter gamma distribution with location parameter γ2 = 12, shape parameter
α2 = 4, and scale parameter β2 = 1 so the associated p.d.f. has mode 15 and mean 16. Since the mean
service time is equal to 0.8(6)+ 0.2(16) = 8, the traffic intensity is ρ = 0.8. The simulation-generated
response of interest Xi (i≥ 1) is the total time in the system (including service time) for the ith departing
customer. The Pollaczek-Khinchin formula yields the steady-state mean time in the system of 29.8. This
system was initialized in the empty-and-idle state.

Figure 3 depicts a histogram of 108 observations of time in the system after deleting the first 100,000
observations. Figure 3 leads to the conclusion that the steady-state p.d.f. f (x) of the {Xi} has two modes
near 5 and 15 and an antimode near 11.

Table 2 summarizes the performance of Sequest and Sequem for this M/G/1 queueing system. As
in the M/M/1/M/1 queueing system, we see that with no precision requirement Sequest’s performance is
good for p ∈ [0.05,0.95]; but there is noticeable degradation in CI coverage for the extreme quantile x0.995 .
On the other hand, with no precision requirement Sequem outperforms Sequest when p ∈ [0.95,0.995],
requiring significantly smaller sample sizes than Sequest while delivering CIs that consistently exhibit close
conformance to the nominal coverage probability. Finally with the relative precision requirement r∗ = 0.02,
both Sequest and Sequem exhibited comparably good performance.

An examination of the entries of Table 2 also reveals a noticeable variation in the average sample sizes
required to estimate quantiles of low order (0.05≤ p≤ 0.30) with no precision requirement. The following
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Table 1: Performance of Sequest- and Sequem-delivered point and 95% CI estimators of the p-quantile xp

of the M/M/1/M/1 queue-waiting-time process described in Section 4.1 based on 1000 replications. The
outcomes from Sequem are in bold typeface.

No CI Precision Requirement

p xp Avg. ỹp(n†) Avg.
∣∣Bias

[
ỹp(n†)

]∣∣ H Avg. CI Rel.
Prec. (%) CI Cover. (%) m n

0.300 2.748 2.746 0.041 0.111 4.057 96.4 10,571 338,750
0.500 5.079 5.078 0.063 0.172 3.391 96.5 11,505 368,704
0.700 8.126 8.122 0.088 0.240 2.961 96.4 15,734 504,095
0.900 13.931 13.912 0.138 0.347 2.493 95.4 35,988 1,152,326
0.950 17.349 17.313 0.183 0.430 2.481 94.7 59,728 1,912,034

17.313 0.304 0.833 4.812 95.0 10,176 652,442
0.990 24.928 24.589 0.501 0.703 2.858 87.6 201,486 6,448,335

24.889 0.324 0.816 3.280 94.9 11,561 3,701,075
0.995 28.096 27.499 0.771 0.864 3.142 81.1 329,066 10,530,896

28.080 0.329 0.834 2.969 94.8 10,748 7,224,510
CI Relative Precision = 2%

p xp Avg. ỹp(n†) Avg.
∣∣Bias

[
ỹp(n†)

]∣∣ H Avg. CI Rel.
Prec. (%) CI Cover. (%) m n

0.300 2.748 2.747 0.019 0.049 1.793 96.7 38,778 1,241,390
0.500 5.079 5.076 0.034 0.091 1.787 95.2 30,275 969,348
0.700 8.126 8.124 0.053 0.144 1.771 96.0 31,373 1,004,546
0.900 13.931 13.924 0.088 0.237 1.703 96.2 50,537 1,617,912
0.950 17.349 17.343 0.108 0.286 1.649 96.5 76,926 2,462,381

17.343 0.123 0.312 1.799 95.1 33,705 2,158,319
0.990 24.928 24.916 0.142 0.374 1.503 96.0 250,911 8,029,952

24.927 0.176 0.436 1.747 94.3 23,411 7,493,148
0.995 28.096 28.081 0.155 0.413 1.472 94.8 414,067 13,250,919

28.099 0.191 0.482 1.717 94.3 18,943 12,731,353

Figure 3: Histogram of 100M response times from the M/G/1 model.

discussion aims at a plausible explanation of this phenomenon. In the absence of a precision requirement,
the final value of the batch size m is determined mainly by step [3] of Sequest, wherein m is iteratively
increased based on Equation (7) until the sample skewness B̂ŷp(b,m) of the BQEs

{
ŷp( j,m) : j = 1, . . . ,b

}
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Table 2: Performance of Sequest- and Sequem-delivered point and 95% CI estimators of the p-quantile xp

of the M/G/1 time-in-system process described in Section 4.2 based on 1000 replications. The outcomes
from Sequem are in bold typeface.

No CI Precision Requirement

p xp Avg. ỹp(n†) Avg.
∣∣Bias

[
ỹp(n†)

]∣∣ H Avg. CI Rel.
Prec. (%) CI Cover. (%) m n

0.005 4.121 4.122 0.021 0.056 1.430 96.1 5,430 174,061
0.100 5.564 5.563 0.029 0.085 1.527 97.1 8,324 266,702
0.150 7.128 7.130 0.040 0.120 1.689 96.9 10,808 346,192
0.200 8.957 8.961 0.061 0.176 1.960 96.3 11,626 372,391
0.250 11.141 11.150 0.141 0.399 3.577 96.8 4,519 144,944
0.300 13.547 13.538 0.152 0.420 3.100 95.7 3,684 118,250
0.500 21.894 21.906 0.170 0.484 2.210 96.8 10,288 329,598
0.700 35.312 35.320 0.303 0.829 2.346 96.2 12,871 412,293
0.800 45.905 45.937 0.404 1.058 2.303 95.2 16,522 529,148
0.900 64.000 64.032 0.506 1.367 2.135 96.7 28,147 901,183
0.950 82.069 82.152 0.629 1.657 2.016 95.7 48,665 1,557,796

82.095 1.275 3.680 4.483 96.3 7,920 507,779
0.990 124.009 123.478 1.459 2.708 2.193 93.4 176,894 5,661,127

124.140 1.531 3.997 3.220 94.5 8,744 2,808,851
0.995 142.088 140.703 2.414 3.308 2.351 89.5 308,685 9,787,453

142.274 1.659 4.204 2.955 95.1 8,299 5,578,501
CI Relative Precision = 2%

p xp Avg. ỹp(n†) Avg.
∣∣Bias

[
ỹp(n†)

]∣∣ H Avg. CI Rel.
Prec. (%) CI Cover. (%) m n

0.050 4.121 4.122 0.021 0.056 1.361 95.5 5,544 177,707
0.100 5.564 5.563 0.029 0.080 1.437 97.1 8,607 275,741
0.150 7.128 7.131 0.039 0.108 1.517 96.4 11,576 370,766
0.200 8.957 8.963 0.055 0.145 1.622 96.0 13,603 435,641
0.250 11.141 11.147 0.076 0.197 1.768 95.5 13,692 438,505
0.300 13.547 13.553 0.094 0.244 1.801 95.7 9,064 290,394
0.500 21.894 21.902 0.144 0.374 1.707 96.1 13,629 436,517
0.700 35.312 35.327 0.235 0.606 1.715 95.8 18,273 585,152
0.800 45.905 45.922 0.306 0.784 1.708 96.0 22,965 735,337
0.900 64.000 64.034 0.409 1.068 1.669 96.2 35,474 1,135,669
0.950 82.069 82.149 0.521 1.328 1.617 95.4 57,691 1,846,626

82.173 0.581 1.476 1.796 94.9 24,263 1,553,720
0.990 124.009 124.283 0.715 1.833 1.475 95.7 198,070 6,338,767

124.283 0.884 2.180 1.754 94.0 17,334 5,547,929
0.995 142.088 142.308 0.775 1.993 1.401 95.7 349,806 11,194,297

142.361 1.005 2.456 1.725 95.1 14,215 9,553,620

falls below the threshold B∗(p) in magnitude. Let Sk
[

ŷp(1,m)
]

denote the true skewness of ŷp(1,m). Here
we analyze heuristically the dependence of Sk

[
ŷp(1,m)

]
on the value of p for a given process {Xi : i≥ 1}.

Based on an analogous result derived in Alexopoulos et al. 2018b for the case which the {Xi} are i.i.d.,
we postulate the following asymptotic relation:

Sk
[

ŷp(1,m)
]
∼ N(p)

[D(p)]3/2m1/2

{
2(1−2p)

[p(1− p)]1/2 −
3 f ′(xp)[p(1− p)]1/2

[ f (xp)]2

}
as m→∞, (10)

where the functions N(p) and D(p) are ultimately determined by the stochastic dependency structure of
the {Xi : i≥ 1}. Equation (10) provides some heuristic insight into how Sk

[
ŷp(1,m)

]
is determined by p,

f (xp), f ′(xp), and the stochastic dependency structure of the process {Xi}. We concluded that in general
when Sequest is applied without a precision requirement, there could be significant variation in the required
sample size and in the resulting relative or absolute precision of the delivered CI as those statistics depend
on the selected values of p. We also believe that even when Sequest is applied with a precision requirement,
the foregoing analysis can provide some insight into the variation of the sample sizes required by Sequest
across different values of p.
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5 CONCLUSIONS

In this article we reviewed the recent Sequest and Sequem sequential procedures designed for estimating
nonextreme and extreme steady-state quantiles xp, respectively. We also used two numerical examples
to evaluate the performance of these methods over an extended range of values of the order p. The
experimental results were aligned with the extensive experimentation in Alexopoulos et al. (2017, 2018b):
both methods yielded point and CI estimates with near-nominal coverage probabilities within their domain
of applicability with substantially lower average sample sizes than existing methods. Our future work on
steady-state quantile estimation will focus on (i) development of a unified method for delivering point and
CI estimators of xp having uniformly good performance for all p ∈ [0.005,0.995]; and (ii) implementation
of the method in robust public-domain software for both real-time and off-line use.
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