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35042 Rennes, FRANCE

ABSTRACT

We develop simulation estimators of risk measures associated with the distribution of the hitting time to a
rarely visited set of states of a regenerative process. In various settings, the distribution of the hitting time
divided by its expectation converges weakly to an exponential as the rare set becomes rarer. This motivates
approximating the hitting-time distribution by an exponential whose mean is the expected hitting time. As
the mean is unknown, we estimate it via simulation. We then obtain estimators of a quantile and conditional
tail expectation of the hitting time by computing these values for the exponential approximation calibrated
with the estimated mean. Similarly, the distribution of the sum of lengths of cycles before the one hitting
the rare set is often well-approximated by an exponential, and we analogously exploit this to estimate the
two risk measures of the hitting time. Numerical results demonstrate the effectiveness of our estimators.

1 INTRODUCTION

Many stochastic processes possess a regenerative structure, and such a process “probabilistically restarts”
at an increasing sequence of regeneration times; e.g., see Shedler (1993) and Kalashnikov (1994). Suppose
the process rarely visits some set A of states, and we are interested in estimating (performance or risk)
measures associated with the distribution of the hitting time T to A . For example, in a stable GI/G/1
queue, the set A may correspond to a large number of customers in the system (e.g., buffer overflow), so
A is rarely hit. In a highly reliable Markovian system consisting of a collection of components that fail
and get repaired, system failures occur when certain combinations of components are down; in this case,
the set A corresponds to the failed states, which are rarely visited.

Under various assumptions and asymptotic regimes, as visits to A become rarer, the distribution of
the ratio of the hitting time T to A divided by its expectation µ converges weakly to an exponential; see
Chapter 3 of Kalashnikov (1997). These results generalize a classical result by Rényi (Proposition 1.1.2
of Kalashnikov 1997), which establishes that as p→ 0, the product of p times the sum of a geometrically
distributed number (with parameter p) of independent and identically distributed (i.i.d.) nonnegative random
variables with finite mean converges weakly to an exponential. For our regenerative setting, the weak
convergence motivates approximating the distribution F of T by an exponential with mean µ . As µ is
unknown, we estimate it via simulation to calibrate the approximation. We then obtain estimators of the
q-quantile (for a fixed 0 < q < 1) and the conditional tail expectation (CTE) of T by computing these
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values for the calibrated exponential approximation, where the CTE is the conditional expectation of T
given that it exceeds its q-quantile. (In Glynn et al. 2017 we provide a theoretical comparison of different
estimators of the mean µ of T .)

We also extend the idea by exploiting similar exponential approximations to the distribution G of
the sum S of the lengths of the cycles before the one in which the rare set A is hit. The exponential
approximation depends on the unknown mean η of S, and we use simulation to estimate η , which provides
us with an estimator for G. We further simulate to estimate the distribution H of the time V to hit A in
the cycle in which A is visited. We can then express the hitting time T to A as the sum of S and V . The
regenerative property guarantees that S∼ G and V ∼ H are independent, so the distribution F of T is the
convolution of G and H. Taking the convolution of our simulation estimators of G and H thus leads to an
estimator of F , and we then compute the q-quantile and CTE of the estimated F . We present numerical
results showing the effectiveness of our methods.

The rest of the paper unfolds as follows. Section 2 describes the problem mathematically and develops
the notation. Section 3 explains the asymptotic regimes under which hitting the set A is a rare event, and
discusses the weak convergence of T/µ and S/η to exponentials. Section 4 (resp., 5) exploits the resulting
exponential approximation to T (resp., S) to develop our estimators of the q-quantile and the CTE of the
hitting time. We give numerical results in Section 6, and concluding remarks appear in Section 7.

2 PROBLEM DESCRIPTION AND NOTATION

Consider a continuous-time stochastic process X = [X(t) : t ≥ 0] evolving on a state space S . We assume
that X is (classically) regenerative, with 0 = Γ0 < Γ1 < Γ2 < · · · as the sequence of regeneration times of
X , so the process “probabilistically restarts” at each Γi; see p. 19 of Kalashnikov (1994). For example, an
irreducible continuous-time Markov chain (CTMC) on a finite state space is regenerative, with successive
hits to a fixed state forming a sequence of regeneration times.

For A ⊂S a subset of states (e.g., “failed states”), define T = inf{t ≥ 0 : X(t) ∈A } as the hitting
time (or first passage time) to A . Let F be the cumulative distribution function (CDF) of T . For fixed
0 < q < 1, our goal is to estimate the q-quantile

ξ = F−1(q)≡ inf{t : F(t)≥ q} (1)

of F and the conditional tail expectation (CTE)

γ = E[T | T > ξ ]. (2)

In the finance context, where F instead denotes the CDF of the loss in a portfolio of investments (e.g.,
Section 2.2 of McNeil et al. 2005 and Hong et al. 2014), a quantile is often called a value-at-risk (VaR),
and the CTE is also known as the expected shortfall or the conditional value-at-risk (CVaR).

For i≥ 1, let τi = Γi−Γi−1, and the process [X(Γi−1+s) : 0≤ s< τi] is called the ith (regenerative) cycle
of X , which has length τi. As X is regenerative, (τi, [X(Γi−1 + s) : 0≤ s < τi]), i≥ 1, is a sequence of i.i.d.
pairs of cycle lengths and cycles. Let τ be a generic copy of τi. For i≥ 1, let Ti = inf{t ≥ 0 : X(Γi−1+t)∈A }
be the time elapsing after Γi−1 until the next hit to A . For x,y∈ℜ, let x∧y=min(x,y) and x∨y=max(x,y).
Let I (·) be the indicator function, which takes value 1 (resp., 0) when its argument is true (resp., false).
The regenerative property implies that (τi,Ti∧τi,I (Ti < τi)), i≥ 1, form an i.i.d. sequence of triples. Let
N(0) = 0, and for j ≥ 1, let N( j) = inf{i > N( j−1) : Ti < τi} be the index i of the cycle corresponding to
the jth cycle in which A is hit. For j ≥ 1, let M( j) = N( j)−N( j−1)−1, which is the number of cycles
that do not hit A between cycles N( j−1) and N( j). We can then express the hitting time to A as

T =
M(1)

∑
i=1

τi +TM(1)+1, (3)

where M(1) may depend on τ1,τ2, . . . ,τM(1) and TM(1)+1.
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As in Section 7.3 of Kalashnikov (1997), we next give a stochastically equivalent representation of T
in (3) in terms of independent random variables. Let W be a random variable having CDF GW with

GW (x) = P(τ ≤ x | τ < T ), (4)

so the CDF of W is the conditional CDF of τ given τ < T . Let V be a random variable with CDF H, where

H(y) = P(T ≤ y | T < τ); (5)

i.e., the distribution of V is the conditional distribution of T given T < τ . Let M be a geometric random
variable with P(M = k) = p(1− p)k for each k ≥ 0, where

p = P(T < τ). (6)

Let W1,W2, . . . be i.i.d. copies of W , which are independent of V and M, where V and M are also independent.
Define S = ∑

M
i=1Wi. Let G be the CDF of S, and let η = E[S]. The regenerative property of X ensures that

T D
= S+V, with S∼ G independent of V ∼ H, (7)

where D
= denotes equality in distribution.

Define µ = E[T ], which is the expected hitting time to the set A . As is well known (e.g., see Goyal
et al. 1992 and Glynn et al. 2017), the regenerative structure of X allows us to express µ as a ratio

µ =
E[T ∧ τ]

p
≡ ζ

p
(8)

with p from (6), and both the numerator and denominator in (8) are expectations of cycle-based quantities.

3 ASYMPTOTIC REGIMES

To develop estimators of the q-quantile ξ = F−1(q) of the CDF F of T D
= ∑

M
i=1Wi +V and the CTE γ , we

consider some approximations that require p in (6) to be small. For a theoretical framework to accommodate
this, we parameterize the problem by introducing a rarity parameter ε > 0 and examine the behavior of
F ≡ Fε as ε → 0, where we assume that

p≡ pε → 0 as ε → 0. (9)

We now provide examples in which such parameterizations arise. In the first example the rarity comes
from a receding set A ≡Aε of failed states, with step-wise probability distributions independent of the
parameterization. In the second example, it is the opposite: the transitions of the discrete-event system
depend on the parameterization, but the set A of failed states does not.
Example 1 For a stable GI/G/1 queue with first-in, first-out discipline, let X(t) denote the number of
customers in the system at time t ≥ 0, where the first customer arrives at time t = 0 to an empty system.
The process X with the state space S = {0,1,2, . . .} is regenerative with the beginnings of busy periods
as regeneration times; e.g., see p. 16 of Kalashnikov (1994). We are interested in the distribution of the
time when X first hits a high level bε ≡ d1/εe, where the interarrival- and service-time distributions do not
vary with ε . Thus, we let the set A ≡Aε = {bε ,bε +1,bε +2, . . .}, and T ≡ Tε = inf{t ≥ 0 : X(t) ∈Aε}
is the first time that the queue length hits bε −1. Theorem 1 of Sadowsky (1991) shows that (9) holds.
Example 2 Consider a highly reliable Markovian system (HRMS), as studied in Shahabuddin (1994),
Nicola et al. (2001), and Rubino and Tuffin (2009). The system consists of a finite set of components,
each of which has exponentially distributed lifetimes and repair times. The components may be of different
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types, which may require different classes of repairmen. The system is failed when certain combinations
of components are failed. At time t = 0, all components are operational. We can model the evolution
of the system as a CTMC X = [X(t) : t ≥ 0] on a finite state space S , where each state in S specifies
the number of failed components of each type, along with any necessary information about the queueing
of failed components for each repairman class. Thus, X is regenerative, with hits to the state with all
components operational as regeneration times. Assume that the system is highly reliable in the sense that
the components’ failure rates are much smaller than their repair rates. We then parameterize component
failure rates as positive powers of the rarity parameter ε , and assume that repair rates and the set A of
failed states do not change as ε → 0. Under appropriate assumptions (see Shahabuddin 1994), we have
that (9) holds. In this setting, µε = Eε [Tε ] is often called the mean time to failure (MTTF).

Because we now actually are considering a family of models indexed by the rarity parameter ε > 0,
we should thus write T = Tε , W =Wε , M = Mε , V =Vε , p = pε , F = Fε , G = Gε , GW = GW,ε , H = Hε ,
P = Pε , E = Eε , µ = µε , etc. However, we often omit the subscript ε to simplify notation.

Under a variety of different sets of assumptions under which (9) is true, the scaled hitting time Tε/µε

converges weakly to an exponential: for each x≥ 0,

Pε(Tε/µε ≤ x)→ 1− e−x as ε → 0, (10)

where we recall that µε = Eε [Tε ]. To handle settings as in Example 1 of the GI/G/1 queue with receding
sets Aε , we can apply Theorem 3.4.1 of Kalashnikov (1997), which provides conditions to ensure (10)
holds for a Harris-recurrent Markov chain, where the set Aε varies with ε so that (9) remains valid. For the
HRMS in Example 2, the system dynamics (transition probabilities and holding-time distributions) change
with ε , which requires a “triangular array” formulation; Theorem 3.2.5 of Kalashnikov (1997) gives general
conditions (not only for HRMSs) guaranteeing the validity of (10) when pε , GW,ε , and Hε are allowed to
depend on ε (see also Nakayama and Shahabuddin 2004 for the specific HRMS context).

It is often the case that when (10) is true, we further have that the sum Sε = ∑
Mε

i=1Wε,i satisfies

Pε(Sε/ηε ≤ y)→ 1− e−y as ε → 0 (11)

for each y≥ 0, where we recall that ηε = Eε [Sε ]. For example, if we assume that V =Vε ≡ 0 in (7), the
conditions in Theorem 3.2.5 of Kalashnikov (1997) also ensure that (11) holds.

Throughout the rest of the paper, we apply non-simulation approximations based on the asymptotic
results in (10) and (11), and then calibrate the approximations by estimating the unknown parameters µε

and ηε via simulation. To distinguish the estimators and approximations for the different methods, we
adopt the following notational convention. For an unknown quantity α , such as a CDF or parameter, we
let α̃ denote a non-simulation approximation to α . Also, we let α̂ denote an estimator of α constructed
from simulation-generated data.

4 APPROXIMATING THE CDF F OF T BY AN EXPONENTIAL

The limiting result (10) suggests that for small ε (which we now drop to simplify the notation),

F(t) = P(T ≤ t) = P(T/µ ≤ t/µ)≈ 1− e−t/µ ≡ F̃exp(t) (12)

for each t ≥ 0, where we recall that µ = E[T ]. We will next use the approximation F̃exp to F to obtain
approximations to the q-quantile ξ = F−1(q) in (1) for a fixed 0 < q < 1 and the CTE γ in (2).

The exponential approximation in (12) motivates approximating ξ by

ξ̃exp = F̃−1
exp (q) =−µ ln(1−q). (13)

For the CTE, if T has exactly CDF F̃exp, then its CTE is

γ̃exp = ξ̃exp +µ = µ[1− ln(1−q)] (14)
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by the memoryless property of F̃exp. But in (12), (13), and (14), the parameter µ is unknown, so we next
calibrate our approximations by estimating µ via simulation.

4.1 Simulation Estimator of µ

As we saw in (8), the expected hitting time can be represented as a ratio µ = ζ/p. Because the asymptotic
result (10) needs (9) to hold, the denominator p = P(T < τ) is a rare-event probability, so we will estimate
it with importance sampling (IS); see Chapters V and VI of Asmussen and Glynn (2007) for an overview of
this variance-reduction technique. But Shahabuddin et al. (1988) note that the numerator ζ = E[T ∧τ] can
often be more efficiently handled by crude simulation (i.e., without IS), so we will independently estimate
ζ and p. Shahabuddin et al. (1988) call this approach measure-specific importance sampling, which we
implement as follows.

To estimate the numerator ζ = E[T ∧ τ] in (8), we generate Ti∧ τi, i = 1,2, . . . ,s, as s i.i.d. copies of
T ∧τ sampled using crude simulation. Generating each Ti∧τi entails simulating a cycle until either it ends
or A is hit, whichever occurs first. An estimator of ζ is then

ζ̂ ≡ 1
s

s

∑
i=1

Ti∧ τi. (15)

Independently of the simulation runs employed to construct ζ̂ in (15), we use IS to estimate the
denominator p = P(T < τ) in (8) as follows. Applying a change of measure, write

p = E[I (T < τ)] = E ′[I (T < τ)L], (16)

where E ′ denotes expectation under the IS measure, and L is the corresponding likelihood ratio. The
representation (16) motivates the following approach to estimate p. Let (I (T ′i < τ ′i ),T

′
i ∧ τ ′i ,L

′
i), i =

1,2, . . . ,r, be i.i.d. copies of (I (T < τ),T ∧ τ,L) generated via IS. We then estimate p by

p̂ =
1
r

r

∑
i=1

I (T ′i < τ
′
i )L
′
i. (17)

We combine the two estimators ζ̂ from (15) and p̂ from (17) to obtain

µ̂ = ζ̂/ p̂ (18)

as the simulation estimator of µ in (8).

4.2 Simulation Estimators of F , ξ , and γ

We next employ the simulation estimator µ̂ from (18) to calibrate the approximate CDF F̃exp in (12) of T .
Specifically, we replace the unknown µ in (12) by µ̂ to obtain

F̂exp(t) = 1− e−t/µ̂ (19)

as a simulation estimator of F(t) for each t ≥ 0.
Similarly, for the q-quantile ξ = F−1(q) of F , we approximated it in (13) by ξ̃exp = −µ ln(1− q).

Replacing µ by its simulation estimator µ̂ from (18) leads to the estimator

ξ̂exp = F̂−1
exp (q) =−µ̂ ln(1−q) (20)

of ξ . Finally, for the CTE, we replace ξ̃exp and µ in (14) by their simulation estimators ξ̂exp and µ̂ to obtain

γ̂exp = ξ̂exp + µ̂ = µ̂[1− ln(1−q)] (21)
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as a simulation estimator of the CTE γ .
The simulation estimators F̂exp in (19) of F , ξ̂exp in (20) of ξ , and γ̂exp in (21) of γ are based on the

approximation (12), which becomes more accurate as the rarity parameter ε→ 0 in (10). But for an actual
physical system, we have a fixed value of ε > 0, so the exponential approximation F̃exp(t) in (12) typically
will not exactly equal F(t). Thus, the simulation estimators F̂exp, ξ̂exp, and γ̂exp will often be biased, and
the bias does not vanish as we increase the sample sizes s and r used to construct µ̂ in (18).

By (20) and (21), the estimators ξ̂exp and γ̂exp are simply constant multiples of µ̂ . Because µ̂ satisfies
a central limit theorem (CLT; Shahabuddin 1994), ξ̂exp and γ̂exp also obey CLTs, with centering constants
ξ̃exp from (13) and γ̃exp from (14), respectively, because of the bias.

5 APPROXIMATING THE CDF G OF S BY AN EXPONENTIAL

Recall that T D
= S+V , where S∼G is independent of V ∼H by (7). We next devise methods that separately

estimate G and H to estimate the CDF F of T , its q-quantile ξ , and the CTE γ . To do this, we will
approximate G by an exponential CDF, which is motivated by the asymptotic result in (11).

By (7), we can write the CDF F of T as a convolution

F(t) = G?H(t) =
∫

H(t− x)dG(x), (22)

where ? denotes the convolution operator. The convergence in (11) suggests that for small ε (which is now
dropped to simplify the notation), we have the parametric approximation

G(x) = P(S≤ x) = P(S/η ≤ x/η)≈ 1− e−x/η ≡ G̃exp(x). (23)

As η = E[S] is unknown, we will use simulation to estimate it, as will be discussed in Section 5.1, along
with the estimation of the CDF H of V .

Let ξ = F−1(q) be the q-quantile of F . We next obtain another representation for the CTE γ , which
requires the regenerative property of X but not the limiting result (11) nor the approximation (23).
Theorem 1 If F is continuous at ξ , then the CTE satisfies

γ =
1

1−q

[∫
x [1−H(ξ − x)] dG(x)+

∫
y [1−G(ξ − y)]dH(y)

]
. (24)

Proof. First write the CTE as

γ = E[T | T > ξ ] =
E[T I (T > ξ )]

P(T > ξ )
=

E[T I (T > ξ )]

1−q
, (25)

where the last step follows from the continuity of F at ξ . Express T D
= S+V using (7), so the numerator

in the right side of (25) then satisfies

E[T I (T > ξ )] = E[(S+V )I (S+V > ξ )]

= E[SI (S+V > ξ )]+E[V I (S+V > ξ )]

= E
[
E[SI (V > ξ −S) | S]

]
+E

[
E[V I (S > ξ −V ) |V ]

]
= E[SP(V > ξ −S | S)]+E[V P(S > ξ −V |V )]

= E
[
S [1−H(ξ −S)]

]
+E

[
V [1−G(ξ −V )]

]
because of the independence of S and V by (7). Thus, (24) immediately follows.
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5.1 Simulation Estimators of η , G, and H

As the approximate CDF G̃exp in (23) and the CTE representation in (24) depend on the unknown η , G, H, and
ξ , we next describe simulation estimators for them. We first explain how to handle η = E[S] = E[∑M

i=1Wi].
Writing S = ∑

∞
i=1WiI (M ≥ i), we see that

η =
∞

∑
i=1

E[Wi I (M ≥ i)] = E[W ]
∞

∑
i=1

E[I (M ≥ i)] = E[W ]
∞

∑
i=1

P(M ≥ i) =
1− p

p
ν (26)

by the independence of M and Wi, i≥ 1, which are i.i.d. with mean ν = E[W ]. Thus, (26) shows that η can be
expressed as a function of expectations of cycle-based quantities, where we recall that W ∼GW , with GW the
conditional CDF of τ given that τ < T , as defined in (4). Hence, ν = E[τ | τ < T ] = E[τI (τ < T )]/(1− p)
by (6), and we estimate E[τI (τ < T )] by (1/s)∑

s
i=1 τi I (τi < Ti), where (τi,I (τi < Ti)), i = 1,2, . . . ,s,

are from the same i.i.d. crude-simulation data used to construct ζ̂ in (15). Then we estimate ν via

ν̂ =
1

(1− p̂)s

s

∑
i=1

τi I (τi < Ti), (27)

where p̂ is from (17). Therefore, we arrive at our estimator of η based on (26) as

η̂ =
1− p̂

p̂
ν̂ . (28)

Replacing η in (23) by its estimator η̂ from (28), we obtain a parametric estimator of G̃exp(x) in (23) as

Ĝexp(x) = 1− e−x/η̂ . (29)

We next discuss how to use IS to estimate the CDF H of V , where we recall that H is the conditional
CDF of T given that T < τ , as in (5). Note that

H(y) = P(V ≤ y) = P(min(T,τ)≤ y | T < τ) =
P(min(T,τ)≤ y,T < τ)

p

=
E[I (min(T,τ)≤ y,T < τ)]

p
=

E ′[I (min(T,τ)≤ y,T < τ)L]
p

, (30)

where, as in (16), E ′ is the expectation operator under IS, and L is the corresponding likelihood ratio. We
previously obtained the IS estimator p̂ in (17) to handle the denominator p of (30). For the numerator, let
(I (T ′i < τ ′i ),T

′
i ∧ τ ′i ,L

′
i), i = 1,2, . . . ,r, be the same i.i.d. copies of (I (T < τ),T ∧ τ,L) obtained through

IS that we employed to construct the estimator p̂. We then build a nonparametric estimator Ĥ of H as

Ĥ(y) =
1

p̂ · r

r

∑
i=1

I (T ′i ∧ τ
′
i ≤ y,T ′i < τ

′
i )L′i. (31)

While other nonparametric estimators of H can also be constructed, e.g., by interpolating Ĥ in (31), or by
using kernel methods, etc., we will only work with Ĥ in (31).

5.2 Simulation Estimators of F , ξ , and γ

Now that (29) and (31) provide simulation estimators for the CDFs G and H of S and V , respectively, we
use them to build an estimator for the CDF F of T . The representation of F in (22) as a convolution of G
and H suggests estimating F(t) by

F̂?(t)≡ Ĝexp ? Ĥ(t) =
∫

Ĥ(t− x)dĜexp(x). (32)

The following result works out an expression for F̂?(t).
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Proposition 1 The estimator F̂? in (32) of the CDF F of T satisfies

F̂?(t) = 1− 1
p̂ · r

r

∑
i=1

I (T ′i < τ
′
i )L′i e−(t−A′i)

+/η̂ , (33)

where A′i = (T ′i ∧ τ ′i ), η̂ is defined in (28), and x+ = max(x,0).

Proof. Put (29) and (31) into (32) and use the fact that Ĝexp(x) = 0 for x < 0 to get

F̂?(t) =
1

p̂ · r

r

∑
i=1

I (T ′i < τ
′
i )L′i

∫ t

0
I (A′i ≤ t− x)dĜexp(x)

=
1

p̂ · r

r

∑
i=1

I (T ′i < τ
′
i )L′i

∫ (t−A′i)
+

0
dĜexp(x)

=
1

p̂ · r

r

∑
i=1

I (T ′i < τ
′
i )L′i Ĝexp((t−A′i)

+),

which equals (33) by (29) and (17).

The corresponding estimator of the q-quantile ξ = F−1(q) is

ξ̂? = F̂−1
? (q). (34)

Computing ξ̂? typically requires applying a numerical root-finding method, such as the bisection method
or Newton’s method, incurring additional computational cost.

We next give a simulation estimator for the CTE γ .

Proposition 2 When ξ , G, and H in (24) are replaced by their respective estimators ξ̂? in (34), Ĝexp in
(29), and Ĥ in (31), the resulting CTE estimator is

γ̂? =
1

1−q

[
1

p̂ · r

r

∑
i=1

L′i I (T ′i < τ
′
i )
[
(ξ̂?∨A′i)+ η̂

]
e−(ξ̂?−A′i)

+/η̂

]
. (35)

Proof. The first term in the outer square brackets in (24) is expressed in terms of 1−H(·), and by (31),

1− Ĥ(y) =
p̂
p̂
− 1

p̂ · r

r

∑
i=1

I (A′i ≤ y)I (T ′i < τ
′
i )L′i

=
1

p̂ · r

r

∑
i=1

[1−I (A′i ≤ y)]I (T ′i < τ
′
i )L′i =

1
p̂ · r

r

∑
i=1

I (A′i > y,T ′i < τ
′
i )L
′
i.

where the second equality holds by (17), and A′i = (T ′i ∧τ ′i ), as in Proposition 1. Thus, replacing ξ , G, and
1−H in the first term inside the outer square brackets of (24) by their respective estimators leads to∫

x [1− Ĥ(ξ̂?− x)]dĜexp(x) =
1

p̂ · r

r

∑
i=1

L′i I (T ′i < τ
′
i )
∫

∞

x=0
xI (A′i > ξ̂?− x)dĜexp(x)

=
1

p̂ · r

r

∑
i=1

L′i I (T ′i < τ
′
i )
∫

∞

x=(ξ̂?−A′i)+
xdĜexp(x)

=
1

p̂ · r

r

∑
i=1

L′i I (T ′i < τ
′
i )
[
(ξ̂?−A′i)

++ η̂

]
e−(ξ̂?−A′i)

+/η̂ , (36)
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where we recall η̂ is defined in (28).
The estimator of the second term inside the outer square brackets of (24) is∫

y [1− Ĝexp(ξ̂?− y)]dĤ(y) =
1

p̂ · r

r

∑
i=1

L′i I (T ′i < τ
′
i )
∫

∞

y=0
y [1− Ĝexp(ξ̂?− y)]I (A′i ∈ dy)

=
1

p̂ · r

r

∑
i=1

L′i I (T ′i < τ
′
i )A′i [1− Ĝexp((ξ̂?−A′i)

+)]

=
1

p̂ · r

r

∑
i=1

L′i I (T ′i < τ
′
i )A′i e−(ξ̂?−A′i)

+/η̂ . (37)

By replacing the two terms inside the outer square brackets of (24) by their estimators (36) and (37), we
obtain the estimator of (24) as

γ̂? =
1

1−q

[
1

p̂ · r

r

∑
i=1

L′i I (T ′i < τ
′
i )
[
(ξ̂?−A′i)

++ η̂ +A′i
]

e−(ξ̂?−A′i)
+/η̂

]
,

which equals (35) because (ξ̂?−A′i)
++A′i = (ξ̂?−A′i +A′i)∨ (0+A′i) = ξ̂?∨A′i.

6 NUMERICAL RESULTS

We now present numerical results for our estimators, from Sections 4.2 and 5.2, of the CDF F of the
hitting time T , its q-quantile ξ , and the CTE γ . Due to space limitations, we focus on only one simple
model of an HRMS, as in Example 2 of Section 3. Specifically, the HRMS has three component types,
with five components of each type. There are 15 repairmen, so failed components never queue for repair.
The system is up if and only if at least two components of each type work, so the failure set A comprises
states having at least four components down of one type. Each component has failure rate ε and repair
rate 1. We consider two versions of the model: one with ε = 10−2, and the other has ε = 10−4.

To implement our methods, we need to specify the IS distribution employed to construct the estimators
p̂ in (17) and Ĥ in (31), which subsequently are used in the estimators of F , ξ , and γ . Rubino and Tuffin
(2009) provide an overview of IS techniques designed to simulate HRMSs, where the basic idea is to
increase the probability of failure transitions. In our experiments, we applied the IS approach known as
zero-variance approximation (ZVA) of L’Ecuyer and Tuffin (2012). ZVA produces estimators of the MTTF
µ in (8) having the (desirable) bounded relative error (BRE) property, with the (even better) vanishing
relative error (VRE) holding under certain conditions.

For the methods in Section 4, computing F̂exp, ξ̂exp, and γ̂exp in (19)–(21) requires simulation to estimate
only µ = ζ/p. To do this, we simulated for each ε a total of 104 cycles, of which we allocated s to construct
the estimator ζ̂ in (15) using crude simulation, and we sampled the remaining r = 104− s cycles with IS to
build the estimator p̂ in (17). Goyal et al. (1992) derive the optimal allocation of s and r for a fixed total
budget to minimize the work-normalized asymptotic variance of the MTTF ratio estimator µ̂ in (18). We
ran pilot simulations with 103 cycles without IS (resp., with IS) for the numerator (resp., denominator) to
estimate the parameters determining the optimal allocation. Adding constraints that at least 10% of the 104

second-stage cycles are for simulating the numerator and the same for the denominator, we got the optimal
r = 9000 and s = 1000 for both values of ε in our example. To build F̂? in (33) of Section 5, we used the
same s+ r = 104 simulated second-stage cycles to compute the estimators ν̂ in (27) and Ĥ in (31).

In the discussion below, we refer to F̂exp (resp., F̂?) and its corresponding estimators of ξ and γ in
(20) and (21) (resp., (34) and (35)) as exponential (resp., convolution) estimators. For comparison, we
also built an empirical distribution F́ from n = 104 i.i.d. observations T́1, T́2, . . . , T́n, of T for ε = 10−2

generated via crude simulation, where F́(t) = (1/n)∑
n
i=1 I (T́i ≤ t). (We could not obtain an empirical

distribution for ε = 10−4, as we will explain later.) To define the corresponding estimators of ξ and γ , let
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Figure 1: Plots of the empirical estimator F́(t) of F(t), the exponential estimator F̂exp(t) from (19), and
the convolution estimator F̂?(t) from (32) for ε = 10−2 (left) and ε = 10−4 (right).

T́1:n ≤ T́2:n ≤ ·· · ≤ T́n:n be the sorted T́i values. Then the empirical estimators of the q-quantile and CTE
are ξ́ = F́−1(q) = T́dnqe:n and γ́ = [1/((1−q)n)]∑n

i=dnqe T́i:n, respectively, where d·e is the ceiling function.

The left side of Figure 1 plots F́(t), F̂exp(t), and F̂?(t) for ε = 10−2, which shows that the three curves
closely align. But the CPU times are not of the same order of magnitude, as seen in Table 1 for the
estimation of quantiles (for each particular method, computing the CDF and quantile estimators requires
roughly the same time). The right side of Figure 1 plots the exponential and convolution estimators of F(t)
for ε = 10−4, but we were not able to obtain the empirical distribution. Indeed, it would have required
a CPU time of more than one year to sample 104 observations of T for ε−4 using crude simulation; on
average, a single run of T takes more than one hour. But as ε shrinks, the approximations in (12) and (23)
become more accurate by virtue of the limiting results in (10) and (11), so the CDF estimators F̂exp and F̂?
should be close to the true F for ε = 10−4. Moreover, Table 1 shows that for this model, the CPU times
for the exponential and convolution estimators do not increase when ε decreases.

Table 1 contains results for the empirical, exponential, the convolution estimators of the q-quantile,
for three values of q. We used the bisection method to numerically compute the inverse in (34) for the
convolution estimator. For ε = 0.01, the exponential and convolution estimators of ξ are close to the

Table 1: Quantile estimators.

ε q Empirical 95% CI CPU Expon. Est. Expon. 95% CI CPU Convol. Est. CPU
0.01 0.1 (1.701e+05, 1.971e+05) 890 sec 1.830e+05 (1.764e+05, 1.896e+05) 0.3 sec 1.865e+05 0.4 sec
0.01 0.5 (1.206e+06, 1.271e+06) 890 sec 1.204e+06 (1.161e+06, 1.247e+06) 0.3 sec 1.227e+06 0.4 sec
0.01 0.9 (3.958e+06, 4.135e+06) 890 sec 4.000e+06 (3.856e+06, 4.143e+06) 0.3 sec 4.075e+06 0.4 sec
10−4 0.1 N/A N/A 1.757e+13 (1.756e+13, 1.758e+13) 0.3 sec 1.762e+13 0.4 sec
10−4 0.5 N/A N/A 1.155e+14 (1.154e+14, 1.157e+14) 0.3 sec 1.159e+14 0.4 sec
10−4 0.9 N/A N/A 3.840e+14 (3.838e+14, 3.842e+14) 0.3 sec 3.850e+14 0.4 sec

empirical estimator, but with much less computational effort expended. For example, sampling T ∧ τ

(resp., I (T < τ)L) with crude simulation (resp., IS) to compute (15) (resp., (17)), (18), and (19), requires
simulating, on average, only 2.30 (resp., 4.25) transitions for ε = 0.01. For the exponential estimator, we
include a biased 95% confidence interval (CI) based on the CI for µ; see the paragraph before Section 5.
(For ε fixed, the approximation in (12) leads to estimators F̂exp and ξ̂exp having bias, which do not go away
as the sample sizes grow large. In contrast, the bias of the ratio estimator (18) of µ vanishes as sample

1811



Glynn, Nakayama, and Tuffin

sizes increase.) For ε = 10−4, we are not able to provide an empirical estimator of ξ , but the estimator
(18) of µ is so good that the (biased) CI of ξ based on the exponential estimator has a relative width of
only about 0.1%. But the exponential and convolution quantile estimators differ by about 0.3%, so the
(biased) exponential CIs do not include ξ̂?. This may indicate that ξ̂? and ξ̂exp have different levels of bias.

Table 2 provides results for the CTE estimators. These numbers exhibit similar behavior to what Table 1
shows for the quantile estimators: much smaller CPU times for the exponential and convolution estimators
than for the empirical, and very narrow (biased) exponential CIs (see the paragraph before Section 5), with
the convolution estimators for ε = 10−4 just above the exponential CIs.

Table 2: CTE estimators.

ε q Empir. Est. CPU Expon. Est. Expon. 95% CI CPU Convol. Est. CPU
0.01 0.1 1.964e+06 890 sec 1.920e+06 (1.851e+06, 1.989e+06) 0.3 sec 1.956e+06 0.4 sec
0.01 0.5 3.011e+06 890 sec 2.941e+06 (2.836e+06, 3.046e+06) 0.3 sec 2.996e+06 0.4 sec
0.01 0.9 5.915e+06 890 sec 5.737e+06 (5.531e+06, 5.942e+06) 0.3 sec 5.844e+06 0.4 sec
10−4 0.1 N/A N/A 1.839e+14 (1.834e+14, 1.845e+14) 0.3 sec 1.848e+14 0.4 sec
10−4 0.5 N/A N/A 2.817e+14 (2.809e+14, 2.826e+14) 0.3 sec 2.831e+14 0.4 sec
10−4 0.9 N/A N/A 5.495e+14 (5.479e+14, 5.512e+14) 0.3 sec 5.523e+14 0.4 sec

7 CONCLUDING REMARKS

We used simulation to calibrate approximations to the distribution F of the hitting time T to a rarely visited
set A of states for a regenerative process. The exponential approximations in (12) and (23) to F and G,
respectively, require the rarity parameter ε→ 0. But for an actual physical system, we have a fixed ε > 0,
which introduces bias in both exponential approximations. Our numerical results may indicate that the
two approximations produce different levels of bias, but this requires further study. Also, we are currently
working on CLTs for the convolution estimators, to complement those for the exponential estimators (see
the paragraph before Section 5). Chapter 3 of Kalashnikov (1997) provides upper and lower bounds to the
true CDFs F and G, and we are investigating extending them to the q-quantile and CTE of F .
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