
Proceedings of the 2018 Winter Simulation Conference
M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds.

GENERALIZED METHOD OF MOMENTS APPROACH TO HYPERPARAMETER
ESTIMATION FOR GAUSSIAN MARKOV RANDOM FIELDS

Eunhye Song
Yi Dong

Department of Industrial and Manufacturing Engineering
Penn State University

310 Leonhard Building
University Park, PA 16802, USA

ABSTRACT

When a Gaussian Markov random field (GMRF) is used as a metamodel of an unknown response surface
for a discrete optimization via simulation (DOvS) problem, the hyperparameters of the GMRF are estimated
based on a few initial design points in a large feasible solution space. Although the maximum likelihood
estimators (MLEs) are most commonly adopted to estimate these hyperparameters, its computation time
increases polynomially in the size of the feasible solution space. We introduce new generalized method
of moments (GMM) estimators of the hyperparameters of GMRFs and their initial sampling schemes, and
show they are consistent under some conditions. Unlike MLEs, the computation time for these GMM
estimators does not depend on the size of the feasible solution space. We show empirically that the GMM
estimators have smaller biases and standard errors than MLE for a wide range of initial simulation budget
while requiring orders of magnitude smaller computation time.

1 INTRODUCTION

Gaussian process (GP) is a popular choice for a metamodel to represent an unknown response surface
for both deterministic computer experiment and stochastic simulation when the goal is to find the optimal
parameters that minimizes (or maximizes) the response. After Jones et al. (1998) first introduced the idea
of using a GP metamodel for global optimization of a deterministic computer model, GP has been applied
to solve optimization via simulation (OvS) problems with continuous (Scott et al. 2011) and discrete
feasible solution spaces (Quan et al. 2013, Xie et al. 2016). These approaches can be categorized as
GP-based adaptive random search (ARS) algorithms, which iteratively update the GP model conditional on
the cumulative simulation results and decide which solution to simulate next by drawing inference on the
response surface from the GP model. A good GP model with strong inferential power allows the algorithm
to identify good solutions quickly by simulating only a small fraction of the feasible solution space.

Salemi et al. (2018) propose an ARS method for DOvS that uses a GMRF as a metamodel. A GMRF is
a special case of GP defined on undirected graph G = {V ,E }, where V is the set of feasible solutions and
E is the set of edges connecting the solutions. The Markov property of GMRF makes the response at each
solution independent from the rest of the graph conditional on the solution’s immediate neighbors (Rue
and Held 2005). Salemi et al. (2018) empirically show a GMRF provides better inference on the remaining
optimality gap between the current best solution and the global optimum than a continuous GP when
applied to a DOvS problem.

Similar to other GP-based ARS, Salemi et al. (2018) parameterize the initial GMRF model and
estimate its hyperparameters by running simulations at the initial design points (solutions). Hyperparameter
estimation for GMRF has been extensively studied in the context of image processing, where GMRFs
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are used for modeling textures in a two-dimensional image by representing each pixel as a node on the
graph Manjunath and Chellappa 1991, Dryden et al. 2002. In this setting, there is no need for “simulating
a solution” as observations at all solutions are given and MLE is commonly adopted for hyperparmeter
estimation. On the other hand, a DOvS problem for which ARS is considered as a solution method tends
to have a large, high-dimensional feasible solution space and therefore simulating all solutions is not an
option. Also, the size of the feasible solution space can make computation for MLE cumbersome as the
computational complexity of the likelihood function evaluation increases polynomially in the size of V (Rue
2001). The focus of this paper is to develop an estimation method for hyperparameters of GMRFs with
good small-sample performance that is computationally efficient for a large-scale DOvS problem.

We propose two generalized method of moments (GMM) estimators of the hyperparameters of GMRFs
whose computational complexity does not depend on the size of V . GMM is a popular parameter estimation
method in econometrics due to its computatinoal efficiency and robustness to the choice of the parametric
model (Mátyás 1999). The moment functions for GMM are derived from the conditional moments of the
GMRF. The first estimator, full-GMM, requires sampling all neighbors of the initial design points and the
neighbors of those neighbors, while slim-GMM requires a reduced number of solutions to be sampled.

In the next section, we introduce the concept of GMRF and discuss its MLE formulation. In Section 3.1,
we provide a brief overview of GMM and introduce the full- and slim-GMM estimators in Sections 3.2–3.3
followed by discussions on their consistency (Section 4) and small-sample performance (Section 5). We
empirically compare the performance of full-GMM and slim-GMM with MLE in Section 6.

2 PARAMETERIZATION OF GAUSSIAN MARKOV RANDOM FIELDS

Suppose we simulate each solution x of a DOvS problem to obtain simulation output Y (x) = y(x)+ ε(x),
where y(x) , E[Y (x)] and simulation error ε(x) has mean 0 and finite variance σ2(x). Given the set
of feasible solutions, X , we can formulate the DOvS problem as minx∈X y(x). We assume X is an
integer-ordered set in Rd containing n solutions.

Salemi et al. (2018) model the unknown response surface y = {y(x1),y(x2), . . . ,y(xn)} as a realization
of the GRMF defined on graph G = (X ,E )

Y, {Y(x1),Y(x2), . . . ,Y(xn)}> ∼ N(µµµ,Q−1), (1)

where µµµ is the mean vector and Q is the precision matrix, the inverse of the variance-covariance matrix.
The structure of Q is determined by the set of edges, E , which represents the connectivity among the
solutions in X on the graph. Defining E is a modeling decision as it is not inherent to the DOvS
problem itself. Salemi et al. (2018) suggest to define the set of neighboring solutions of x ∈X to be
N(x), {x′ ∈X : ||x−x′||2 = 1}, i.e., a solution can have at most 2d neighbors. We generalize this notation
to define a set of neighbors of A ⊂X : N(A ), {x′ ∈X \A |∃x ∈A s.t. ||x−x′||2 = 1}.

Given a neighborhood structure, the Markov property of GMRF can be written as
Y(x) ⊥ Y(V \{x,N(x)})|Y(N(x)) for x ∈ X , which implies Qii = Prec(Y(xi)|Y(N(xi))) =
V−1(Y(xi)|Y(N(xi))),Corr(Y(xi), Y(x j)|Y(N({xi,x j})) =−Qi j/

√
QiiQ j j, and Qi j 6= 0 if and only if xi ∈

N(x j), where Qi j represents the (i, j)th element of Q. Therefore, Q becomes a very sparse matrix even if
n is large as each row of Q has at most 2d +1 nonzero elements.

Given N(x), Salemi et al. (2018) parameterize Q by introducing θθθ = {θ0,θ1, ...,θd} and function

p(xi,x j,θθθ) =

 θ0, if xi = x j,
−θ0θ`, if |xi−x j|= e`,
0, otherwise,

(2)

where e` is the `th standard basis vector of Rd . Setting Qi j = p(xi,x j,θθθ), we get V(Y(xi)|Y(N(xi))) = θ
−1
0

and Corr(Y(xi),Y(x j)|YV \{xi,x j}) = θ`, if |xi− x j| = e`. Thus, θ0 is positive and 0 ≤ θ` ≤ 1, to ensure
Y(x) are positively correlated, which is a common modeling assumption for GP (Santner et al. 2003).
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Additionally, θ1,θ2, . . . ,θd are constrained such that Q is positive definite. They also parameterize the
mean vector of GMRF to be µµµ = β1n, where β ∈ R and 1n is the n-dimensional vector of ones, i.e., no
mean trend of Y is assumed. In this paper, we adopt the same parameterization for Q and µµµ .

To represent the stochastic simulation output of a DOvS problem, we define GMRF Yε such that
Yε −Y∼ N(0,Qε)⊥ Y, where Qε is the precision matrix of the stochastic errors at the solutions in X .
We treat Ȳ (x) = ∑

r(x)
m=1Ym(x)/r(x) as a realization of Yε(x), where r(x) is the number of replications run

at solution x. Therefore, the diagonal element of Qε corresponding to x is σ2(x)/r(x). We simulate all
solutions independently, i.e., Qε is a diagonal matrix.

In an ARS algorithm, (1) is updated by conditioning on the observations from the simulated solutions at
each iteration. The values of θθθ and β can be estimated via MLE in the initialization phase of the algorithm
by running simulations at the initial design points, which we review below.

Suppose X is partitioned into two sets X1 and X2, where the latter includes the initial design
points. Similarly, we can partition Y = (Y>1 ,Y>2 )> and Q =

[
Q11 Q12;Q>12 Q22

]
. We also define Yε

2 as
a subset of Yε corresponding to X2 and Ȳ2 as the realization of Yε

2. A plug-in estimator of Qε is
Q̂ε = diag

(
r(x1)/S2(x1),r(x2)/S2(x2), ...,r(xk)/S2(xk)

)
, where S2(x) = ∑

r(x)
j=1 (Yj(x)− Ȳ (x))2

/(r(x)−1).
Then, the log-likelihood function of (1) given Ȳ2 is

L (θθθ |Ȳ2),−
1
2

log |Σ22 + Q̂−1
ε |−

1
2
(Ȳ2− β̂1|X2|)

>(Σ22 + Q̂−1
ε )−1(Ȳ2− β̂1|X2|), (3)

where β̂ =
(

1>|X2|(Σ22 + Q̂−1
ε )−11|X2|

)−1
1>|X2|(Σ22 + Q̂−1

ε )−1Ȳ2 and Σ22 = (Q22−Q>12Q−1
11 Q12)

−1. Note

that Σ22 is the variance-covariance matrix of Y2 conditional on Yε
2 = Ȳ2. Since Qε is a diagonal matrix,

Q−1
ε is cheap to compute. We can compute Q−1

11 Q12 efficiently by first factorizing Q11 and use its factors
to solve Q11z = Q12 for z = Q−1

11 Q12. Although Q11 is a sparse matrix, these computations are expensive
when n is large since |X2| � |X1| ≈ n for typical ARS. On the other hand, Σ22+ Q̂−1

ε is a dense, but small
matrix, therefore, computing log |Σ22 + Q̂−1

ε | and (Σ22 + Q̂−1
ε )−1(Ȳ2− β̂1|X2|) in (3) is relatively cheap.

3 GENERALIZED METHOD OF MOMENTS ESTIMATOR FOR GMRF

In this chapter, we first provide a brief review of GMM method and propose new GMM estimators of the
hyperparameters of the GMRF. Two versions of GMM estimators are presented: full-GMM and slim-GMM
estimators. The latter requires a fewer number of solutions to be simulated. To represent the dependence
of Q on θθθ , we use Q≡Q(θθθ) in the following sections.

3.1 Generalized Method of Moments

GMM estimates the parameters of a statistical model by matching the moments formulated by unknown
parameters with the sample moments (Mátyás 1999). Let λλλ and ωi represent the vector of parameters of
the model and the ith i.i.d. observation for i = 1,2, . . . ,k, respectively. We define g : (λλλ ,ωi)→ Rp as a
moment function, which is chosen to satisfy the following moment condition

h(λ̃λλ ) = E[g(ωi, λ̃λλ )] = 0p, (4)

where λ̃λλ is the true parameter vector and 0p is a p-dimensional vector of zeroes. The expectation in (4)
can be estimated by a sample average ḡ given observations ω1,ω2, · · · ,ωk : ḡ(λλλ ) = ∑

k
i=1 g(ωi,λλλ )/k. The

GMM estimator λ̂λλ of λ̃λλ is defined as

λ̂λλ = argminλλλ∈Λ ḡ(λλλ )>Wḡ(λλλ ), (5)

where W is a p× p positive definite matrix and Λ ∈Rr is a feasible set of λλλ . Newey and McFadden (1994)
provide a set of regularity conditions for λ̂λλ to be a consistent estimator as below.
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Theorem 1 (Newey and McFadden 1994) Suppose ωi, i = 1,2, . . . , are i.i.d. and (i) E[g(ωi,λλλ )] = 0, if and
only if, λλλ = λ̃λλ ; (ii) λ̃λλ ∈ Λ and Λ is compact; (iii) g(ωi,λλλ ) is continuous at each λλλ ∈ Λ with probability 1;
iv) E[supλλλ∈Λ ||g(ωi,λλλ )||]< ∞. Then λλλ

p−→ λ̃λλ .

The condition that ωi’s are i.i.d. can be dropped if ωi is observed from an ergodic process. Condition (i), also
referred to as an identification condition, is difficult to establish for general λ̃λλ when g is a nonlinear function of
λλλ . Rothenberg (1971) show that if g(ωi,λλλ ) is continuously differentiable and E[∇λλλ g(ωi,λλλ )] =∇λλλ E[g(ωi,λλλ )],
then a sufficient condition for the local identification of λ̃λλ is that WE[∇λλλ g(ωi,λλλ )] has a full column rank in
a neighborhood of λ̃λλ . Due to the difficulties of showing global identification, (i) is often simply assumed
to hold (Newey and McFadden 1994).

If the number of moment conditions, p, is smaller than the number of parameters, r, then typically
there are multiple λλλ that satisfy E[g(ωi,λλλ )] = 0p. The full-GMM and slim-GMM estimators presented in
the following sections have the same number of moment conditions as the number of parameters, d +2.

The asymptotic variance of λ̂λλ is minimized when we choose W ∝ Ω−1, where Ω = E[g(ωi, λ̃λλ )g(ωi, λ̃λλ )
T ]

(Newey and McFadden, 1994). Although Ω is a function on unknown λ̃λλ , it can be estimated by 1) solving
(5) with Ŵ = I to obtain λ̂λλ ; and 2) plugging λ̂λλ in to compute Ω̂ = ∑

k
j=1 g(ω j, λ̂λλ )g(ω j, λ̂λλ )

>/k. The estimator
obtained by resolving (5) with Ω̂ is referred to as a two-step GMM estimator. If this procedure is repeated
multiple times, then the estimator is referred to as an iterative GMM estimator. Since Ω̂ is a consistent
estimator of Ω, the two-step or iterative GMM estimator has the minimum asymptotic variance, however,
in practice, estimator of Ω tends to have large variance when k is small. For our numerical example in
Section 6, we tested both two-step and iterative estimators, however, their empirical mean squared errors
tend to be larger than the GMM estimator with W = I for all test cases.

3.2 Full-GMM Estimator

In this section, we derive a moment function g : (θθθ ,β )→ Rd+2 to estimate the true hyperparameters θ̃θθ

and β̃ of the GMRF given the neighborhood structure defined in Section 2. Let Θ ∈ Rd+2 denote the
feasible region of (θθθ ,β ); as mentioned in Section 2, θ0 > 0 and 0 ≤ θ` ≤ 1. To make Θ compact, the
former condition can be modified to θ0 ≥ δ0, where δ0 is an arbitrarily small positive constant. For the
experiments in Section 6, we used δ0 = 10−6. A sufficient condition for Q(θθθ) to be positive definite is
diagonal dominance (Geršgorin 1931), i.e., ∑

d
j=1, j 6=i |Qi j|< |Qii|, which is equivalent to ∑

d
j=1 θ j < 0.5 under

the parameterization in (2). Similar to θ0, we may choose arbitrarily small δ > 0 and use ∑
d
j=1 θ j ≤ 0.5−δ

instead. Although β is unconstrained, we can put practical bounds on β such that βL ≤ β ≤ βU .
We define g , (g0,g1, . . . ,gd ,gd+1)

>, where each gi is a real-valued function of (θθθ ,β ). Exploiting the
Markov property of GMRF, the proposed moment function for the full-GMM estimation involves simulating
a central design point and its neighbors as well as the neighbors of the neighbors. Thus, the ith sample for
the full-GMM is defined as

ωi = Yε(xi)∪Yε(N(xi))∪
(
∪d
`=1Y

ε(N(xi`))
)
, (6)

where xi` is a `th-directional neighbor of xi. All selected solutions are simulated r times, i.e., r(x) = r.
For ease of exposition, we first present g for the case when Y(x) can be observed without simulation error.

Suppose Y∼ N(β̃1n,Q−1(θ̃θθ)). Then, as mentioned in Section 2

V(Y(xi)|Y(N(xi))) = θ̃
−1
0 , (7)

Corr(Y(xi),Y(xi`)|Y(N({xi,xi`}))) = θ̃`. (8)

Applying the law of total variance, (7) can be rewritten as θ̃
−1
0 = V[Y(xi)]−V [E[Y(xi)|Y(N(xi))]] =

E[Y(xi)
2]−E[E[Y(xi)|Y(N(xi))]

2]. From the conditional distribution of Y(xi)|Y(N(xi)), Rue and Held
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(2005) show that
E[Y(xi)|Y(N(xi))] = β̃ + ∑

xs∈N(xi)

θ̃(i,s)Y(xs), (9)

where θ̃(i,s) = θ̃`, if |xi−xs|= e`. Therefore, the following satisfies E[g0(ωi, θ̃θθ , β̃ )] = 0:

g0(ωi,θθθ ,β ) = θ
−1/2
0 −θ

1/2
0 Y(xi)

2 +θ
1/2
0

(
β + ∑

xs∈N(xi)

θ(i,s)Y(xs)

)2

. (10)

Note that θ
−1/2
0 g0(ωi,θθθ ,β ) also satisfy the moment constraint, however, it tends to show poorer finite-sample

performance than (10) when k is small (see Section 5. Estimating (10) from the sample requires observing
all neighbors of xi. We modify (8) to define g` for ` = 1,2, . . . ,d. From the conditional distribution of
Y({xi,xi`})|Y(N({xi,xi`})) we can derive

V[Y(xi)|Y(N({xi,xi`}))] = V[Y(xi`)|Y(N({xi,xi`}))] = θ̃
−1
0 (1− θ̃

2
` )
−1, (11)

E[Y(xi)|Y(N({xi,xi`}))] = β̃ +
1

1− θ̃ 2
`

(
∑

xs∈N(xi)\xi`

θ̃(i,s)(Y(xs)− β̃ )+ ∑
xs∈N(xi`)\xi

θ̃`θ̃(i,s)(Y(xs)− β̃ )

)
.

(12)

Using (11), (8) can be rewritten as Cov(Y(xi),Y(xi`)|Y(N({xi,xi`}))) = θ̃`/(θ̃0(1− θ̃ 2
` )). From the law

of total covariance,

Cov(Y(xi),Y(xi`)|Y(N({xi,xi`})))
= Cov(Y(xi),Y(xi`))−Cov(E[Y(xi)|Y(N({xi,xi`}))],E[Y(xi`)|Y(N({xi,xi`}))])
= E[Y(xi)Y(xi`)]−E [E[Y(xi)|Y(N({xi,xi`}))]E[Y(xi`)|Y(N({xi,xi`}))]] . (13)

Notice that the expression for the product of conditional expectations in (13) can be derived from (12).
Thus, we define g`(ωi,θθθ ,β ) as

g`(ωi,θθθ ,β ) =−θ`/(θ
1/2
0 (1−θ

2
` ))+θ

1/2
0 Y(xi)Y(xi`)

−θ
1/2
0

(
β +

1
1−θ 2

`

(
∑

xs∈N(xi)\xi`

θ(i,s)(Y(xs)−β )+ ∑
xs∈N(xi`)\xi

θ`θ(i,s)(Y(xs)−β )

))

×

(
β +

1
1−θ 2

`

(
∑

xs∈N(xi`)\xi

θ(i,s)(Y(xs)−β )+ ∑
xs∈N(xi)\xi`

θ`θ(i,s)(Y(xs)−β )

))
,

(14)

which satisfies E[g`(ωi, θ̃θθ , β̃ ))] = 0 for `= 1,2, . . . ,d. Notice that θ
−1/2
0 g`(ωi, θ̃θθ , β̃ )) also satisfies the moment

condition, however, we choose (14) for the same reason as for (10) (see Section 5). Unlike (10), (14)
involves sampling the neighbors of xi`. Given our neighborhood structure, there are two candidates for xi`
for each `. We select one of the two candidates with probability 1/2. Additionally, we have a moment
condition with respect to β̃ : E[E[Y(xi)|Y(N(xi))]] = β̃ . Combined with (9), this condition implies that
E
[
β̃ +∑xs∈N(xi) θ̃(i,s)Y(xs)

]
− β̃ = 0. Therefore, the following satisfies E[gd+1(ωi, θ̃θθ , β̃ ))] = 0:

gd+1(ωi,θθθ ,β ) = ∑
xs∈N(xi)

θ(i,s)Y(xs). (15)
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In the context of DOvS, we observe Ȳ (xi), a realization of Yε(xi), instead of Y(xi). We define the
corresponding sample moment functions, gε

0,g
ε
1, . . . ,g

ε
d+1, as follows.

gε
0(ωi,θθθ ,β ) =

1

θ0
1/2 −θ

1/2
0

Ȳ 2(xi)−

(
β + ∑

xs∈N(xi)

θ(i,s)(Ȳ (xs)−β )

)2

− S2(xi)

r
+ ∑

xs∈N(xi)

θ
2(i,s)

S2(xs)

r

 ,

(16)

gε
` (ωi,θθθ ,β ) =−

θ`

θ
1/2
0 (1−θ 2

` )
+θ

1/2
0 Ȳ (xi)Ȳ (xi`)

−θ
1/2
0

(
β +

1
1−θ 2

`

(
∑

xs∈N(xi)\xi`

θ(i,s)(Ȳ (xs)−β )+ ∑
xs∈N(xi`)\xi

θ`θ(i,s)(Ȳ (xs)−β )

))

×

(
β +

1
1−θ 2

`

(
∑

xs∈N(xi`)\xi

θ(i,s)(Ȳ (xs)−β )+ ∑
xs∈N(xi)\xi`

θ`θ(i,s)(Ȳ (xs)−β )

))

+
θ

1/2
0 θ`

(1−θ 2
` )

2

(
∑

xs∈N(xi)\xi`

θ
2(i,s)

S2(xs)

r
+ ∑

xs∈N(xi`)\xi

θ
2(i,s)

S2(xs)

r

)
, (17)

gε
d+1(ωi,θθθ ,β ) = ∑

xs∈N(xi)

θ(i,s)(Ȳ (xs)−β ). (18)

The following lemma shows that gε , (gε
0,g

ε
1, . . . ,g

ε
d+1) provides the desired moment condition.

Lemma 1. Given true parameters θ̃θθ and β̃ , E[gε(ωi, θ̃θθ , β̃ )] = 0p .

Proof. Recall that Ȳ (x) is a realization of Yε(x). From the definition in Section 2, Yε(x) =
Y(x) + ε̄(x). Clearly, E[gε

d+1(ωi, θ̃θθ , β̃ )] = 0 as E[Ȳ (x)] = β . Since Y(x) ⊥ ε(x) and all solutions are
simulated independently E[Ȳ 2(xi)] = E[(Y(xi) + ε̄(xi))

2] = E[Y2(xi)] + σ2(xi)/r, and E[Ȳ (xi)Ȳ (xi`)] =
E[(Y(xi)+ ε̄(xi))(Y(xi`)+ ε̄(xi`))] = E[Y(xi)Y(xi`)]. Therefore, after some algebra we can show that

E

 1
θ̃0
− Ȳ 2(xi)+

(
β̃ + ∑

xs∈N(xi)

θ̃(i,s)(Ȳ (xs)− β̃ )

)2
=−σ2(xi)

r
+ ∑

xs∈N(xi)

θ̃
2(i,s)

σ2(xs)

r
. (19)

Because E[S2(x)] = σ2(x), it follows from (19) that E[gε
0(ωi, θ̃θθ , β̃ )] = 0. Similarly,

E

[
Ȳ (xi)Ȳ (xi`)−

(
β̃ +

1
1− θ̃ 2

`

(
∑

xs∈N(xi)\xi`

θ̃(i,s)(Ȳ (xs)− β̃ )+ ∑
xs∈N(xi`)\xi

θ̃`θ̃(i,s)(Ȳ (xs)− β̃ )

))

×

(
β̃ +

1
1− θ̃ 2

`

(
∑

xs∈N(xi`)\xi

θ̃(i,s)(Ȳ (xs)− β̃ )+ ∑
xs∈N(xi)\xi`

θ̃`θ̃(i,s)(Ȳ (xs)− β̃ )

))]

=
θ̃`

θ̃0(1− θ̃ 2
` )
− θ̃`

(1− θ̃ 2
` )

2

(
∑

xs∈N(xi)\xi`

θ̃
2(i,s)

σ2(xs)

r
+ ∑

xs∈N(xi`)\xi

θ̃
2(i,s)

σ2(xs)

r

)
.

Hence, combined with that E[S2(xs)] = σ2(xs),E[gε
` (ωi, θ̃θθ , β̃ )] = 0 for `= 1,2, . . . ,d.

Given sample average of the moment function ḡε(θθθ ,β ) = ∑
k
i=1 gε(ωi,θθθ ,β )/k, the full-GMM estimators

are (θ̂θθ , β̂ ) , argminθθθ ,β∈Θ ||ḡε(θθθ ,β )||2, where Θ is the feasible space for (θ̂θθ , β̂ ) defined in Section 3.2.
Note that this formulation is the same as choosing an identity matrix for W in (5).

Figure 1a illustrates an example of ωi in two-dimensional X given the central design point, xi. The
simulated solutions are in solid circles. All neighbors of xi, xi1 and xi2 are simulated, where xi1 and xi2 are
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Figure 1: Sampling schemes for full-GMM and slim-GMM in a two-dimensional solution space. Simulated
solutions are represented by solid circles.

the uniformly selected neighbors of xi along the first and the second coordinate directions, respectively.
Notice that one solution belongs to both N(xi1) and N(xi2). In a d-dimensional case, xi has 2d neighbors
among which we select d neighbors, xi1,xi2, . . . ,xid , to construct g1,g2, . . . ,gd . For each xi`, there are
(2d−1) neighbors that are not included in N(xi). Also, each pair (xi`,xi`′), ` 6= `′, shares one neighbor.
Thus, the total number of feasible solutions we simulate for full-GMM estimation given k central design
points is

(
1+2d +d(2d−1)−

(d
2

))
k =

(
1+ 3

2 d + 3
2 d2
)

k. This implies that the total simulation effort for

full-GMM estimation increases in Ω(d2kr), which is not desirable for a high-dimensional DOvS problem.
In the next section, we introduce slim-GMM, which requires Ω(dkr) simulation budget instead of Ω(d2kr).

3.3 Slim-GMM Estimator

The expressions for g0 and gd+1 in (16) and (18) do not involve the neighbors of xi`, whereas g` in (17)
has summations over the solutions in N(xi`). As shown in Section 3.2, the neighbors of xi` are simulated
to estimate the conditional expectation in (12). To reduce the number of solutions to simulate, we modify
g`(ωi,θθθ ,β ) by introducing the following (2d−1)-dimensional multinomial random vector

Zi` ∼multinomial
(
1,(2d−1)−1,(2d−1)−1, ...,(2d−1)−1) . (20)

By definition, Zi` has only one nonzero element equals 1. We pair each element of Zi` with each of 2d−1
solutions in N(xi`)\xi and simulate the solution only if the corresponding element of Zi` is 1. Suppose
Z1

i` and Z2
i` are i.i.d. random vectors of distribution (20) drawn independently from ωi, then we define the

modified `th moment function for slim-GMM as

g̈ε
` (ωi,θθθ ,β )

=− θ`

θ
1/2
0 (1−θ 2

` )
+θ

1/2
0 Ȳ (xi)Ȳ (xi`)+

θ
1/2
0 θ`

(1−θ 2
` )

2

(
∑

xs∈N(xi)\xi`

θ
2(i,s)

S2(xs)

r

)

−θ
1/2
0

(
β +

1
1−θ 2

`

(
∑

xs∈N(xi)\xi`

θ(i,s)(Ȳ (xs)−β )+(2d−1) ∑
xs∈N(xi`)\xi

Z1
i`(s)θ`θ(i,s)(Ȳ

(1)(xs)−β )

))

×

(
β +

1
1−θ 2

`

(
(2d−1) ∑

xs∈N(xi`)\xi

Z2
i`(s)θ(i,s)(Ȳ

(2)(xs)−β )+ ∑
xs∈N(xi)\xi`

θ`θ(i,s)(Ȳ (xs)−β )

))
,
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where Z1
i`(s) (or Z2

i`(s)) denotes the element of Z1
i` (or Z2

i`) corresponding to xs and Ȳ (1)(xs) ⊥ Ȳ (2)(xs).
When Z1

i` and Z2
i` pick different solutions to simulate, then the latter condition is satisfied. When Z1

i` and
Z2

i` select the same xs ∈ N(xi`)\xi, Ȳ (1)(xs) is from the first r replications, and Ȳ (2)(xs) is from another r
replications. Thus, ωi for the slim-GMM includes observations in (6) as well as {Z1

i`,Z
2
i`, `= 1,2, . . . ,d}.

The following lemma shows that g̈`(ωi,θθθ ,β ) satisfies the moment condition.
Lemma 2. If Y∼ N(β̃1n,Q−1(θ̃θθ)), E[g̈ε

` (ωi, θ̃θθ , β̃ )] = 0.

Proof. Because Z1
i`,Z

2
i` ⊥ ωi and Z1

i` ⊥ Z2
i`,

E

[(
β̃ +

1
1− θ̃ 2

`

(
∑

xs∈N(xi)\xi`

θ̃(i,s)(Ȳ (xs)− β̃ )+(2d−1) ∑
xs∈N(xi`)\xi

Z1
i`(s)θ̃`θ̃(i,s)(Ȳ

(1)(xs)− β̃ )

))

×

(
β̃ +

1
1− θ̃ 2

`

(
(2d−1) ∑

xs∈N(xi`)\xi

Z2
i`(s)θ̃(i,s)(Ȳ

(2)(xs)− β̃ )+ ∑
xs∈N(xi)\xi`

θ̃`θ̃(i,s)(Ȳ (xs)− β̃ )

))∣∣∣∣∣ωi

]

=

(
β +

1
1− θ̃ 2

`

(
∑

xs∈N(xi)\xi`

θ̃(i,s)(Ȳ (xs)− β̃ )+ ∑
xs∈N(xi`)\xi

θ̃`θ̃(i,s)(Ȳ (1)(xs)− β̃ )

))

×

(
β̃ +

1
1− θ̃ 2

`

(
∑

xs∈N(xi`)\xi

θ̃(i,s)(Ȳ (2)(xs)− β̃ )+ ∑
xs∈N(xi)\xi`

θ̃`θ̃(i,s)(Ȳ (xs)− β̃ )

))
,

where the expectation is with respect to Z1
i` and Z2

i`. Therefore,

E

[
Ȳ (xi)Ȳ (xi`)−

(
β̃ +

1
1− θ̃ 2

`

(
∑

xs∈N(xi)\xi`

θ̃(i,s)(Ȳ (xs)− β̃ )+ ∑
xs∈N(xi`)\xi

θ̃`θ̃(i,s)(Ȳ (1)(xs)− β̃ )

))

×

(
β̃ +

1
1− θ̃ 2

`

(
∑

xs∈N(xi`)\xi

θ̃(i,s)(Ȳ (2)(xs)− β̃ )+ ∑
xs∈N(xi)\xi`

θ̃`θ̃(i,s)(Ȳ (xs)− β̃ )

))]

=
θ̃`

θ̃0(1− θ̃ 2
` )
− θ̃`

(1− θ̃ 2
` )

2

(
∑

xs∈N(xi)\xi`

θ̃
2(i,s)

σ2(xs)

r

)
. (21)

Notice that only the simulation error variances of solutions in N(xi)\xi` show up in (21), because Ȳ (1)(xs)⊥
Ȳ (2)(xs), i.e., the mean of the product of their simulation errors equals 0. Hence, E[g̈ε

` (ωi, θ̃θθ , β̃ )] = 0.

The slim-GMM estimators, θ̈θθ and β̈ , are obtained by using g̈ε = (gε
0, g̈

ε
1, . . . , g̈

ε
d ,g

ε
d+1)

> as a moment
function instead of gε . For slim-GMM, at most two neighbors of xi` are selected for simulation regardless
of the dimension of the solution space. Figure 1b shows an example of the sampling scheme for slim-GMM
in the same two-dimensional solution space in Figure 1a. One solution in N(xi1) is represented by a dashed
circle indicating it was not simulated, i.e., corresponding elements of Z1

i1 and Z2
i1 for this solution were 0.

On the other hand, only one solution in N(xi2) was selected by both Z1
i2 and Z2

i2, which happens to be one
of the solutions selected for xi1; this solution is simulated 3r times as described earlier.

In a d-dimensional case, we simulate (1+2d+2d)k = (1+4d)k solutions given k central design points
allowing some solutions to be chosen multiple times; we sample all 2d neighbors of the central design
point and only two neighbors of each of xi1,xi2, . . . ,xid . Therefore, the required total simulation effort for
slim-GMM is Ω(dkr), which is significantly smaller than that of the full-GMM for large d.

4 CONSISTENCY OF FULL-GMM AND SLIM-GMM

Since the observations from the GMRF are correlated, we need to assume the GMRF to be stationary
to show consistency of the full-GMM and slim-GMM estimators as discussed in Section 3.1). As the
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moment functions for both estimators are highly nonlinear, it is difficult to establish a general identification
condition as mentioned in Section 3.1. Another challenge is that E[gε(ωi,θθθ ,β )] depends on variances
and covariances of the sampled solutions, which are the elements of Q−1(θ̃θθ). Although Q(θθθ) has a nice
structure in (2), once inverted, the elements of Q−1(θθθ) are nonlinear functions of θθθ that depends on n as
well as the locations of the sampled solutions within X . The following theorem shows that the full-GMM
and slim-GMM estimators are consistent under the stationarity and identification assumptions.

Theorem 2 Suppose Y∼N(β̃1n,Q−1(θ̃θθ)) is stationary. If E[gε(ωi,θθθ ,β )] = 0d+2 has a unique solution at
(θθθ ,β ) = (θ̃θθ , β̃ ), then (i) (θ̂θθ , β̂ )

p−→ (θ̃θθ , β̃ ); (ii) (θ̈θθ , β̈ )
p−→ (θ̃θθ , β̃ ).

Proof. We first show consistency of (θ̂θθ , β̂ ) by verifying the conditions in Theorem 1. Following the
discussion in Section 2, we can choose Θ to be a compact space by adjusting the lower bounds on θθθ and
upper bounds on θ0 and β . From definition (6), ωi is a vector of simulation outputs. Given θθθ and β , and
for each `= 0,1, . . . ,d+1, gε

` (ωi,θθθ ,β ) is a continuous functions of θθθ and β , and second-order polynomial
in the elements of ωi: namely, gε

` (ωi,θθθ ,β ) = ∑s,s′ ci,s,s′(θθθ ,β )ωisωis′ , where ωis is the sth element of ωi and
ci,s,s′(θθθ ,β )’s are the parameters that only depend on θθθ and β . Since gε

` (ωi,θθθ ,β ) is a continuous function
of θθθ and β , ci,s,s′(θθθ ,β )’s are also continuous functions of θθθ and β , and therefore bounded for compact Θ.
Because ωisωis′ ≤ (ω2

is+ω2
is′)/2, gε

` (ωi,θθθ ,β )≤∑s,s′ max{0,ci,s,s′(θθθ ,β )}
(
(ωis)

2 +(ωis′)
2
)
. Since there are

a finite number of (s,s′) pairs, we can find Ci < ∞ such that Ci = sup(θθθ ,β )∈Θ max(s,s′){max{0,ci,s,s′(θθθ ,β )}},
thus for any θθθ and β gε

` (ωi,θθθ ,β ) ≤ ∑s6=s′Ciωisωis′ . Hence, combined with that the elements of ωi have
finite second moments as they are normally distributed, we can show E[supλλλ∈Λ ||g(ωi,λλλ )||]< ∞. Condition
(ii)–(iv) can be verified similarly for g̈ε .

Rue and Held (2005) provide two common examples of stationary GMRFs: (i) X is wrapped onto a
torus; (ii) X is an infinite lattice. In both cases, X has no boundaries, hence the distribution of Y has no
boundary effects granting stationarity. Toroidal X is a common assumption in image texture analysis as
it simplifies the computation of the likelihood function (Dryden, Ippoliti, and Romagnoli 2002). However,
for a DOvS problem, wrapping X onto a torus is not plausible in general as the objective function values
of the solutions at different boundaries of X may differ significantly. Assuming X is an infinite lattice
may not be plausible, either. However, when X is large, the GMM estimators may still approximate the
true parameters pretty well as can be confirmed by experiment results in Section 6.

5 SMALL-SAMPLE PERFORMANCE

There are several possible choices for g0,g`, and gd+1 other than (10), (14) and (15) as discussed in
Section 3.2; θ

−1/2
0 g0(ωi,θθθ ,β ) and θ

−1/2
0 g`(ωi,θθθ ,β ) also satisfy the moment conditions in (4). However,

these functions show poorer finite-sample performances than g0(ωi,θθθ ,β ) and g`(ωi,θθθ ,β ) for small k; there
is a positive probability that θ̂0 diverges to infinity (or pushed to the boundary of Θ) due to sampling error
for any finite k.

To see this, suppose we use θ
−1/2
0 g0(ωi,θθθ ,β ) = θ

−1
0 −Y(xi)

2 +
(
β +∑xs∈N(xi) θ(i,s)Y(xs)

)2 as
a moment function instead of g0(ωi,θθθ ,β ) and θ̃`,1 ≤ ` ≤ d, and β̃ are known. We define event
Ξ , {ωi|Y(xi)

2− (β̃ +∑xs∈N(xi) θ̃(i,s)Y(xs))
2 < 0}. When Ξ occurs, θ0 is pushed to infinity to make

|θ−1/2
0 g0(ωi,θθθ ,β )| small as θ0 is constrained to be positive. Note that Y(xi)|Y(N(xi))

D
= V +W , where

V = β +∑xs∈N(xi) θ̃(i,s)Y(xs) and W ∼ N(0, θ̃−1
0 ). Therefore, Ξ occurs, if and only if, (V +W )2−V 2 =
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Table 1: Estimated parameters for Case 1–4 from full-GMM and slim-GMM with k = 5,10 and 50 and
from MLE with n0 = 45,90 and 450. Starred (*) statistics are computed without the outliers, where the
estimators are greater than 1000θ0. All outliers are observed for the slim-GMM; Case 1 with k = 10, Case
2 and 4 with k = 5 each has one outlier; Case 4 with k = 10 has two outliers. We highlighted the results
of all three estimators for Case 1 in bold when k = 5 and n0 = 45.

Case1 Case2 Case3 Case4
θ̃0 θ̃1 θ̃2 θ̃0 θ̃1 θ̃2 θ̃0 θ̃1 θ̃2 θ̃0 θ̃1 θ̃2
0.001 0.1 0.1 1 0.1 0.1 0.001 0.4 0.05 1 0.4 0.05

full-
GMM

k = 5
Bias 0.000563 0.016 0.012 0.883 0.016 0.013 0.000083 −0.178 0.054 0.446 −0.174 0.048
SE 0.000060 0.004 0.004 0.121 0.005 0.005 0.000050 0.005 0.004 0.232 0.005 0.004

k=10
Bias 0.000669 0.016 0.019 0.659 0.016 0.017 0.000573 −0.136 0.058 0.799 −0.132 0.053
SE 0.000138 0.004 0.004 0.096 0.004 0.004 0.000211 0.005 0.004 0.484 0.005 0.004

k=50
Bias 0.000130 0.006 0.009 0.144 0.006 0.009 0.000150 −0.033 0.020 0.250 −0.031 0.019
SE 0.000013 0.003 0.003 0.015 0.003 0.003 0.000034 0.002 0.002 0.112 0.002 0.002

slim-
GMM

k=5
Bias 0.000744 0.013 0.011 1.376* 0.012 0.011 0.000276 −0.189 0.056 0.598∗ −0.186 0.050
SE 0.000174 0.004 0.004 0.557 0.004 0.004 0.000068 0.005 0.004 0.165 0.005 0.004

k=10
Bias 0.000460∗ 0.016 0.015 1.018 0.017 0.016 0.000335 −0.145 0.059 0.237∗ −0.146 0.057
SE 0.000054 0.004 0.004 0.358 0.004 0.004 0.000149 0.004 0.004 0.056 0.005 0.004

k=50
Bias 0.000125 0.006 0.009 0.136 0.009 0.010 0.000201 −0.044 0.028 0.090 −0.042 0.028
SE 0.000011 0.003 0.003 0.012 0.003 0.003 0.000139 0.003 0.003 0.026 0.003 0.003

MLE

n0=45
Bias 0.002729 0.066 0.111 1.869 0.061 0.055 0.001541 −0.218 0.163 1.280 −0.199 0.143
SE 0.000114 0.006 0.007 0.088 0.006 0.006 0.000079 0.006 0.007 0.071 0.006 0.006

n0=90
Bias 0.000974 0.074 0.066 0.922 0.065 0.063 0.000427 −0.124 0.087 0.401 −0.125 0.081
SE 0.000037 0.006 0.006 0.037 0.006 0.006 0.000025 0.006 0.005 0.024 0.006 0.005

n0=450
Bias 0.000043 0.001 0.001 0.043 0.001 0.002 0.000013 −0.006 0.001 0.014 −0.006 0.001
SE 0.000003 0.003 0.002 0.003 0.003 0.002 0.000004 0.001 0.001 0.004 0.001 0.001

(2V +W )W ≤ 0 and the probability of this event is

Pr{(2V +W )W ≤ 0}= Pr{0≤W ≤−2V |V ≤ 0}Pr{V ≤ 0}+Pr{−2V ≤W ≤ 0|V ≥ 0}Pr{V ≥ 0}

=
∫

∞

−∞

(
Φ(

√
θ̃0|2v|)−0.5

)
fV (v)dv,

where fV is the probability density function of V and Φ is the cumulative distribution function of a standard
normal random variable. Hence, for any θ̃0 > 0, event Ξ occurs with a positive probability and Pr{Ξ} is
an increasing function of θ0. In the context of DOvS, θ0 tends to be small (� 1) representing large spatial
uncertainty –small precision– about the response surface. Thus, the probability of having large θ̂0 is pretty
small for a practical DOvS problem.

Note that Ξ is defined for a single ωi. As k increases, the probability that the estimated θ0 is pushed
to infinity converges to 0. For our choice of g0(ωi,θθθ ,β ), even if Ξ occurs, θ0 is not pushed to infinity
because θ

−1/2
0 and θ

1/2
0

(
Y(xi)

2− (β +∑xs∈N(xi) θ(i,s)Y(xs)
)2
) balance each other. A similar observation

can be made for θ
−1/2
0 g`(ωi,θθθ ,β ).

6 EMPIRICAL RESULTS

In this section, we compare the empirical performance of the full-GMM and slim-GMM estimators with
the MLE by estimating the parameters of sampled observations from a GMRF with known parameters.
For all test cases, X is a two-dimensional 50×50 lattice. Hence, the sampled GMRFs are non-stationary,
which makes all three estimators inexact. When a solution is “simulated,” a normally distributed noise
with mean 0 and variance 0.52 was added to the sampled response surface to induce simulation noise.

Four settings of θ̃θθ were tested, θ̃θθ = (0.001,0.1,0.1), (1,0.1,0.1), (0.001,0.4,0.05),(1,0.4,0.05), while
β̃ is fixed to 0 for all cases. Note that the θ̃θθ values were selected to examine the performance of the
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Figure 2: Computation (wall-clock) time of full-GMM, slim-GMM, and MLE for Case 3: θ̃θθ =
(0.001,0.4,0.05) given k = 5,10,50 and n0 = 45,90,450.

estimators under low vs. high precision (θ̃0) as well as low vs. high spatial correlations (θ̃1 and θ̃2).
For full-GMM and slim-GMM, k = 5,10, and 50 central design points were selected by Latin hypercube
sampling. For MLE, we selected n0 = 45,90, and 450 initial design points by Latin hypercube sampling.
Notice that these are the numbers of solutions (allowing duplicates) we simulate for slim-GMM when
k = 5,10, and 50, respectively. We used r = 10 for all experiments.

Table 1 shows the estimated bias and the standard error of each estimator computed from 1,000
replications for each test case. Some test cases that had outliers (i.e., estimated θ0 is more than 1000 times
larger than θ̃0) are marked with ‘∗’ and their biases and standard errors are computed without these outliers
(See the caption of Table 1 for details). For k = 5 and 10 or equivalently n0 = 45 and 90, both full-GMM
and slim-GMM estimators have smaller bias and standard error in all test cases. When k is increased to 50
(n0 = 450), MLEs have smaller biases and standard errors in all test cases. In the context of ARS, sampling
450 initial solutions out of 2500 feasible solutions for the purpose of hyperperameter estimation appear
quite inefficient. Aside from a few outliers, full-GMM and slim-GMM do not have significant difference in
performance in all test cases, which votes in favor of using the slim-GMM as it requires a smaller number
of simulation runs given k. Note that one can always increase k or change from slim-GMM to full-GMM
estimation by sampling additional solutions in these outlier cases. The value of θ̃0 does not affect the bias
and standard error of the estimators of θ̃1 and θ̃2 for all three estimators. The relative bias of estimators
of θ̃1 and θ̃2 are larger when they are unbalanced (Cases 3 and 4) for all three estimation procedures.

Figure 2 shows the computation time measured in wall-clock time for each estimation method for Case
3 on a machine equipped with Intel R© CoreTM i7-7700HQ processor and 2.80GHz RAM. All other cases
showed similar patterns. The computation for GMM is about three orders of magnitude faster when k = 5
compared to that of MLE when n0 = 45. When k and n0 increase, the difference in computation time for
GMM and MLE increases. The computational saving would be more dramatic for a larger solution space
as GMM is not affected by the size of the solution space unlike MLE (see Section 2).

7 CONCLUSION

In this paper, we proposed the full-GMM and slim-GMM estimators of the hyperparameters of a GMRF and
showed their consistency under mild assumptions. The computational complexity of these GMM estimators
does not depend on the size of the feasible solution space whereas, computation required for MLE grows
polynomially in the size of the feasible solution space. The empirical results show that for a reasonable
range of sample size, the full-GMM and slim-GMM estimators have smaller empirical MSE than MLE.
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